ing

Introduction to Pathway Model

Systems Biology

First Python Edition

Herbert M. Sauro

University of Washington

Seattle, WA

142 *

sius Publishing

Ambro

Copyright © 2014-2018 Herbert M. Sauro. All rights reserved.
First Edition, version 1.14

Published by Ambrosius Publishing and Future Skill Software
www.analogmachine.org

Typeset using IATEX 2, TikZ, PGFPlots, WinEdt, InkScape, and
11pt Math Time Professional 2 Fonts

pef version is: 3.0.1a

Limit of Liability/Disclaimer of Warranty: While the author has used his best efforts in preparing
this book, he makes no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or
fitness for a particular purpose. The advice and strategies contained herein may not be suitable
for your situation. Neither the author nor publisher shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other
damages. No part of this book may be reproduced by any means without written permission of the
author.

ISBN 13: 978-0-9824773-7-3 (paperback)
ISBN-10: 0982477376 (paperback)

Printed in the United States of America.

Mosaic image modified from Daniel Steger’s Tikz image (http://www.texample.net/
tikz/examples/mosaic-from-pompeii/

Front-Cover: Cross-section through a single cell of Mycoplasma mycoides. Illustration by
David S. Goodsell, the Scripps Research Institute, with permission.

University Disclaimer: Any views, opinions, data, documentation and other information presented
in this book are solely those of the author and do not represent those of the University of Washington.

www.analogmachine.org
http://www.texample.net/tikz/examples/mosaic-from-pompeii/
http://www.texample.net/tikz/examples/mosaic-from-pompeii/

Contents

Preface e v
CoverImage e vi
A Note about Software vii
Prologue ix
1 Cellular Networks 1
1.1 Overall Organization, 1
1.2 Network Representation 2
1.3 Metabolic Networks o 2
1.4 Protein Networks 4
1.5 Gene Regulatory Networks 12
1.6 Genome Sizes 15
1.7 E.coli e 18
1.8 Network Motifs 22
FurtherReading 27
Exercises 29
2 Kinetics in a Nutshell 33
2.1 Introduction Lo 33
22 Definitions 33
2.3 Elementary Mass-Action Kinetics 35
24 Chemical Equilibriumo oo 35
2.5 Mass-action and Disequilibrium Ratio 37
2.6 Modified Mass-Action Rate Laws L. 37
Further Reading Lo 38

iii

iv CONTENTS
3 Stoichiometric Networks 39
3.1 Stoichiometric Networks 0oL, 39
32 Standard Visualization Notation 46
3.3 Mass-Balance Equations 46
34 Stoichiometry Matrix 54
3.5 Reversibility 55
3.6 Signaling Networks 57
3.7 Gene Regulatory Networks 58
3.8 Moiety Conserved Cycles 60
3.9 The System Equation, 63
3,10 Tellurium oL e e e 64
FurtherReading 65
Exercises 66
4 Introduction to Modeling 69
4.1 Introduction 69
4.2 Open, Closed, and Isolated Systems 70
4.3 WhatisaModel? 71
44 BuildingaModel 74
4.5 Variables, Parameters and Absolute Constants 77
4.6 Mathematical Descriptions of Models 79
47 Example e 83
4.8 Dimensionsand Unitso 84
4.9 Classificationof Models 86
4.10 Linear and Nonlinear Models 87
411 Linearization e e 89
412 ApproXimations e e e e e 93
413 ExampleModel L 95
4.14 Where to get Data for BuildingModels 96
4.15 OfExactitudein Science 99
FurtherReading 99
Exercises e 100

CONTENTS

5 Differential Equation Models

5.1 Introduction
5.2 Differential Equation Models
5.3 Matlab Solvers
54 PythonSolvers
55 Other Software
5.6 Moiety Conserved Cycles
5.7 Exploiting Fast Processes
FurtherReading
Exercises

6 Stochastic Models

6.1 Stochastic Kinetic Models
6.2 Stochastic Kinetics o
6.3 Time to Reaction
6.4 Running Stochastic Simulations
6.5 Events at Regular Intervals
6.6 Stochastic Trajectories
FurtherReading
Exercises e

7 How Systems Behave

7.1 System Behavior
7.2 Equilibrium
7.3 Steady State
74 Transients e
7.5 Setting up a Model in Software
7.6 Robustness and Homeostasis
FurtherReading
Exercises e
Tellurium Scripts e

8 Multicompartmental Systems

8.1 Multicompartment Systems Lo

103
103
103
115
116
117
119
122
129
130

133
133
134
137
140
142
143
147
148

149
149
149
152
155
155
156
156
156
158

159

CONTENTS

8.2 Simple Diffusion oL oL 159
8.3 Membrane Transporter Protein 163
8.4 Three Compartment Model 165
FurtherReading 167
Exercises e 168
Fitting Models 169
9.1 Introduction 169
9.2 Optimization Algorithms 174
9.3 Model Fitting Software, 195
94 UsingPythontoFitData 196
FurtherReading 197
Exercises e 198
Tellurium Scripts L e 199
Parameter Estimation 203
10.1 Introduction 203
10.2 Analysisof Residuals 203
10.3 y?-Goodness of Fit Testo v i it i 207
10.4 Estimating Confidence Intervals 211
10.5 Cross-validation L 216
10.6 Casestudies 217
107 FinalComments e 224
Further Reading L 225
Exercises 225

The Steady State 227
11.1 Steady State 227
11.2 Effect of Different Kinds of Perturbations 231
11.3 Computing the Steady State 233
11.4 Introduction to Stabilityo oL 244
11.5 Sensitivity Analysis L 246
FurtherReading 247

EXErcises e 247

CONTENTS

Tellurium Scripts o e

12 Stability

12.1 Stability
12.2 Jacobian for Biochemical Systems
12.3 External Stability L o
12.4 Phase Portraits
12.5 BifurcationPlots
FurtherReading
Exercises
126 AppendiX

13 Modeling FeedForward Networks
13.1 Coherent Type IMotif
13.2 Incoherent Type IMotif
FurtherReading
Exercises

Tellurium Scripts e

14 Behavior of Stochastic Models

141 Introduction e
14.2 Stochastic Bursting o
143 Stochastic Focusing oL,
144 Chatter.
FurtherReading
Tellurium Scripts

Appendix A List of Symbols and Abbreviations

Appendix B Useful Numbers
B.1 Useful Numbers

Appendix C Answers to Questions

Appendix D Enzyme Kinetics in a Nutshell

vii

249

255
255
260
261
262
267
280
281
284

287
288
292
293
295
295

299
299
300
303
306
308
311

317

321
321

325

327

viii

D.1 Michaelis-Menten Kinetics
D.2 Reversibility and Product Inhibition
D.3 Reversible Rate laws
D.4 Haldane Relationship

D.5 Competitive Inhibition

D.6 Cooperativity
D.7 Allostery
D.8 Elasticities
Further Reading

Appendix E Math Fundamentals
E.1 Notation

E.4 Partial Derivatives
E.5 Differential Equations
E.6 Taylor Series
E.7 Total Derivative
E.8 Eigenvalues and Eigenvectors

Further Reading

Appendix F

F1 Mean
F2 Deviation
E3 Standard Error
F4 Covariance
E5 Normal Distribution
F.6 Z-Scores or Standard Scores
E7 Null Hypothesis
ES8 %2 Distribution

F.9 F-test
F.10 Confidence Intervals
F.11 Bootstrapping

Statistics Reminder

E.2 Short Table of Derivatives
E.3 Logarithms

CONTENTS

CONTENTS ix

F12 Maximum Likelihoodo o oL 353
FurtherReading 356
Appendix G Modeling Standards and Databases 359
G.1 Introduction 359
G.2 Graphical Layout 360
G3 MIRIAM e 360
G.4 SBO - Systems Biology Ontology 361
G.5 Other Ontologies and Formats 361
G.6 Human Readable Formats 362
G.7 Databases 362
Appendix H Modeling with Python 365
H.1 IntroductiontoPython 366
H.2 Describing Reaction Networks using Antimony 370
H.2.1 Initialization of Model Values 373

H.3 Using libRoadRunner in Python 373
H.3.1 Time Course Simulation 374

H.3.2 Plotting SimulationResults 375

H.3.3 Applying Perturbations to a Simulation 376

H.3.4 Steady State and Metabolic Control 377

H.3.5 Other Model Properties of Interest 379

H.4 Generating SBML and MatlabFiles 379
HS5 Exercise 380
References 383
History 395

Index 1

X CONTENTS

Preface

This book is an introduction to modeling biochemical pathways and is written mainly for
people new to the field. The mathematics is generally light and the emphasis is on concepts
and exercises carried out at the computer. I would recommend having taken at least one
year of college cell biology and chemistry. The material presented in this book is suitable
for late sophomore or early junior years, or late first year and second year for the UK
university system.

I wrote this book because I felt there weren’t any text books specifically on modeling bio-
chemical networks. There are many books on mathematical modeling, but these tend to be
broad in scope and cover biochemical networks as one example among many.

Given how broad the field of modeling biochemical systems is, I've had to be strict on
what to include and the text reflects this personal view. I concentrate on two popular and
successful approaches to building biochemical models, one using differential equations and
the other using stochastic kinetics. I leave it to others to write about flux balance models,
Boolean networks, Petri nets and the many other modeling approaches that exist. The other
topic I do not review is the selection, limitations and assumptions of the various rate laws
that one can use in building a biochemical model. Many of these details can be found
in my companion book, ‘Enzyme Kinetics for Systems Biology’. This book is strictly
about modeling techniques and does not cover in great detail the kinds of dynamics one
finds in biochemical systems. This means there is little mention of oscillators, bistable
switches, negative feedback, and the myriad other interesting behaviors and systems we
find in biological networks. I have used one of the last chapters to describe the modeling
of feedforward network but other than that I only briefly mention other kinds of systems.
Furthermore, I do not discuss the important topic of metabolic control analysis. These
topics are reserved for another time. Lastly, one major omission in the book is spatial
modeling, an area that is becoming increasingly important as researchers turn to modeling
larger spatially extended systems such as tissues and organs. This topic alone would require
a separate publication in its own right.

As with my book on Enzyme Kinetics for Systems Biology, I have decided to publish this
book myself. I have found that traditional publishers have yet to catch up with modern
publishing trends, in particular the loss of copyright on the text as well as any figures and
even more problematic, the inability to rapidly update text to correct errors or when new
material needs to be added. Publishers still handle corrections via errata pages rather than
updating the book itself. With today’s print on demand technology, the restrictions imposed
by publishers seem unnecessary.

This edition is also a modified version of the original publication: Essentials of Biochemical
Modeling. The differences include a change to the book title and redoing all the modeling
examples in Python. The change in title is interesting because it appears that the term
"biochemical modeling’ is not common place so I decided to change the title that uses
terms more familiar with researchers.

CONTENTS xi

There are many people and organizations who I should thank, but foremost must be my
infinitely patient wife, Holly, and my two boys Theodore and Tyler who have put up with
the many hours I have spent working alone. I would like to thank Holly in particular for
helping me edit the text. I am also most grateful to the National Science Foundation and the
National Institutes of Health who paid my summer salary so that I could allocate some time
to write, edit and research. I would also like to thank the many undergraduates, graduates
and colleagues who have contributed to this work. In particular I want to thank my two
teachers, David Fell and the late Henrik Kacser who I had the privilege to work with as a
graduate student and postdoctoral fellow. I had many hours of fruitful conversations with
Luis Azerenza, Frank Bruggeman, Jim Burns, Vijay Chickarmane (who carried out some
of the optimization experiments in Chapter 9), Athel Cornish-Bowden, Jannie Hofmeyr
and Pedro Mendes. More recently I should thank my graduate students, in particular Frank
Bergmann (author of SBW) and Deepak Chandran (author of TinkerCell) who developed
a very deep understanding of how networks operate. I thank them for their dedication and
steadfast enthusiasm while they worked in my lab. I would also like to thank Kyung Kim, a
gifted applied mathematician, who helped me understand some of the subtleties of stochas-
tic systems. I would also like to sincerely thank Kaylene Stocking who translated all the
Jarnac scripts from the earlier edition into the Python scripts you see in this version. Finally
I would like to thank Joseph Hellerstein' at UW who provided many useful suggestions for
improving the text, and identifying errors in some of the examples.

I would like to sincerely thank my colleague James Glazier at Indiana University Bloom-
ington for helping me improve the text in the most recent version (1.13).

All remaining errors are as they say, my own responsibly.

Many thanks to the authors of the TgX system, MikTeX (2.9), TikZ (2.1), PGFPlots (1.9),
WinEdt (6.0), Inkscape (0.48.4), and Createspace for making available such amazing tools
for technical authors. It is these tools that make it possible for individuals like myself to
publish. Finally, I should thank Michael Corral (http://www.mecmath.net/) and Mike
Hucka (www.sbml . org) whose IAZTEX work inspired some of the visual styles I used in the
text.

August 2014 HERBERT M. SAURO
Seattle, WA

Thttps://sites.google.com/site/josephlhellerstein/

http://www.mecmath.net/
www.sbml.org
https://sites.google.com/site/josephlhellerstein/

Xii CONTENTS

Cover Image

The cover illustrates a crosssection through a single Mycoplasma mycoides cell that is ap-
proximately 250 nm in diameter. Mycoplasma mycoides is the agent for the contagious
disease bovine pleuropneumonia that infects cattle and goats. The organism has been se-
quenced and found to contain 985 genes and is the smallest known free-living life form
(Westberg et al., 2004). Since the genome is greatly reduced in size, the organism relies on
the host to provide much of its nutrition.

The Goodsell website? provides a key to identify the various parts in the illustration. For
example, the larger purple objects are the ribosomes, the yellow strand running through the
cell is DNA, the smaller blue objects are enzymes, and the green objects embedded in the
membrane are transporters and ATP synthetase.

The image was painted by the artist and scientist David S. Goodsell. The author is most
grateful to David Goodsell for his permission to use the image. For further remarkable
images painted by Goodsell, the second edition book, The Machinery of Life is highly
recommended.

Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson
B, Uhlén M. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type
strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome
Res. 2004 Feb;14(2):221-7.

Goodsell DS (2009) The Machinery of Life, Second Edition, Springer Science, Copernicus,
ISBN-13: 978-0387849249.

Zhttp://mgl.scripps.edu/people/goodsell/illustration/mycoplasma

http://mgl.scripps.edu/people/goodsell/illustration/mycoplasma

A Note about Software

A Note about Software

Some of the chapters in this book include model listings in an appendix. These listings are
expressed in Antimony [163] and libRoadRunner [155, 164] using Python in the integrated
modeling environment called Tellurium (tellurium.analogmachine.org). Antimony
and Python offer a simple way to express models in a concise and readable form. For those
who wish to use Matlab or another simulation tool, it is possible to load the scripts into
Python and convert them either to Matlab or SBML [76]. Once in SBML format, the models

can be loaded into a great variety of other software tools.

Section H.4 in Appendix H

describes in more detail how to generate SBML or Matlab from an Antimony/Python script.
All scripts will work on Tellurium 2.0.19 and above.

Spyder for tellurium (Python 2.7) |\ Figure 1

E“H b[»@»» w 38 »hE

[Editor - C: Python27\jbsite-packages \tellurium\example 1.py 35
| (2 examperpy B
1 3.0

o e
3Created on Thu Feb 27 18:56:59 2014
2

5 @author: mgaldzic

7
& dmport tellurium as te

3 > 54
,>m,

21 /J Species initializations

. -]
200+« BEY s
=
— [S1] =l
1541 I
— [s2)
— s3]
|z
(b |

22 Ss1-e;52-0;S3=-6;

23 S4=0; X0 = 10; X1 = ©;

25 // variable initialization:
26 VML = 10; Keql = 167 h = 10; V4 = 2.5; K54 = 8.5;
s

29 rr = te.loadAntimonytiodel (antStr)
36 result = rr.sinulate(s, 40, 500)
31 te.plotuithlegend (rr, result)

Type "screntitic” for mo
pythonz7/1ib/site-packages/telluriun’)
Not):e perfarwing conserved nolety conversion

'C: /Python27/1ib/site-packages/tel luriun/exanplel.py ', wdir=r'C:/
Pythonz?/hb/sne packages/telluriun’)

Notice: performing conserved moiety conversion

D cunfile(/ey thon2/Liby site-packages tellurivm/exanplel py s wlirer'Ci/

Console | Hitorylog | IPythen console

Permissions: R

End-of-lines: CRLF Encoding: UTF-8 Line: 31 Column: 24 Memory: 88 %

Above: Screen-shot of the Python environment we will use in the book.

xiii

tellurium.analogmachine.org

Xiv CONTENTS

Conventions

Traditionally concentrations are indicated using square brackets. That is:
[A]
is interpreted to mean the concentration of A. A on its own, as in:

A

is then interpreted to mean the amount of A. Given the many times in the text we refer
to concentrations, the use of square brackets each and every time will lead to some clutter
in the equations. To simply the notation, the text will instead use the simple A to repre-
sent concentrations and will state in the text if, on those rare occasions, amounts must be
specified.

Prologue

This book is about a grand vision, that of being able to predict in precise detail how living
systems grow, respond and change as they live their lives. Within that vision also lies a
hope that living systems can be engineered to the benefit of society and diseases such as
cancer finally conquered.

These ideas have a rich history in fiction. For many years science fiction writers have writ-
ten stories about engineering life. Three in particular stand out in my own mind. Frank
Herbert’s novel The Eyes of Heisenberg (1966), describes a future where micromanipula-
tion of cells at the molecular level is common place. Another author, Harry Harrison in
his Eden trilogy (1984), describes an earth populated by intelligent dinosaurs who have
complete mastery over genetic engineering and can manipulate living organisms at will.
Finally, Greg Bear writes a story called Blood Music (1985) that describes a renegade bio-
engineer who reengineers his own lymphocytes with intelligence, and then begin to alter
and “improve” his own genetic constitution with dire effects. These and many other stories
going all the way back to Shelley’s Frankenstein have predicted that one day. the ability
to control and change living systems at an unprecedented level would become a reality.
Obviously such control could be used for good or bad, and science fiction writers have
recognized both aspects in their writings. There are considerable ethical issues at stake and
many fear that such power could do great harm.

But what of the good? The ability to regenerate a severed spinal column, the replacement
of disfiguring skin burns, the regrowth of severed limbs, or a final cure for one of the most
feared diseases, cancer, could all eventually become reality if we had a better understanding
of living systems.

A key indicator of understanding in science and our goal to engineer is the ability to predict
what will happen to a system when perturbed. In biology we would ask the question:
how might a cell respond to a certain intervention? Such perturbations might include the
action of therapeutic drugs or engineering new abilities via synthetic biology. If we were
to administer a drug or cocktail of drugs, or change the expression of one or more genes,
can we predict the outcome? At the moment, not very well, and in fact the easiest way to
find out what will happen is to actually do the experiment. One reason for this is that a
living cell is a complicated beast with many thousands of interacting components. It is also
very challenging to characterize molecular based components that operate in a liquid/gel
like environment. Nevertheless, great progress has been made in the last sixty years in

XV

Xvi CONTENTS

cataloging and characterizing the various parts of a cell. This leads to the question whether
we can predict the outcome of interventions before they are even attempted given sufficient
information. In recent decades there has been a growing interest and some progress in
the possibility of building computer models of living organisms to make such predictions.
For example, we might build a computer simulation of a signaling pathway and use it to
investigate possible targets for disrupting or controlling it. Perhaps a synthetic biologist
might want to design a genetic network to control when a cell will replicate or begin to
produce a useful commodity.

This book is about introducing students to some of the concepts and techniques in modeling
life processes at the biochemical level. We will start by introducing biological networks be-
fore considering their mathematical representation in the form of stoichiometric networks.
It will be up to the new generation of young scientists and engineers to determine how these
tools might be applied and extended to solve problems that affect us today.

Cellular Networks

The study of cellular networks is one of the defining characteristics of systems and synthetic
biology. Such networks involve the coordinated interaction of thousands of molecules that
include nucleic acids, proteins, metabolites and other small molecules. Descriptions of
these elaborate networks can be found in text books, on wall charts, and more recently in
databases such as EcoCyc, RegulonDB, KEGG or STRING (Table 1.1).

1.1 Overall Organization

Biological networks can be organized into three broad categories (Fig. 1.5): gene regu-
latory, protein and metabolic networks. In the metabolic category, small molecules are
chemically transformed by enzymes. These molecules — or metabolites — serve either as
energy sources or as building blocks for more complex molecules, particularly polymers
such as polysaccharides, nucleic acids and proteins.

The protein networks constitute a major part of the decision making and nano-machine ap-
paratus of a cell. We can divide the decision making protein networks into two subgroups.
One subgroup involves transcription factor proteins that regulate gene expression, form-
ing what are called gene regulatory networks (GRNs). The second subgroup constitutes
the protein signaling pathways that integrate information about the internal and external
environments and modulate both the metabolic and gene regulatory networks.

The metabolic, protein, and gene regulatory networks each have a characteristic mode of
operation and differ by the molecular mechanisms employed and their respective operating

2 CHAPTER 1. CELLULAR NETWORKS

Table 1.1 Online E. coli resources

Online Resource URL

EcoCyc http://ecocyc.org/

RegulonDB http://regulondb.ccg.unam.mx/
KEGG http://www.genome. jp/kegg/
STRING http://string.embl.de/

time scale. In general, metabolic networks operate on the smallest time scale, followed by
protein signaling networks, and gene regulatory networks.

This picture is of course a simplified view. For example, it omits the extensive RNA net-
work that may be present, particularly in eukaryotic cells. Protein signaling networks are
also involved in a variety of other related functions such as cytoskeleton control and cell
cycle regulation. In addition, there is considerable overlap between the different systems
with gene, metabolic, and protein control networks interlinked [15].

1.2 Network Representation

There are different ways (Figure 1.1) to represent cellular networks depending on how
the information will be used and what kinds of questions are asked. Traditionally, cellu-
lar networks have been described using a stoichiometric formalism. Such networks are
mechanistic in nature, consistent with the laws of mass conservation and will often include
kinetic laws describing transformations of species from one form to another through bind-
ing/unbinding or molecular reorganization. In recent years an alternative representation,
which might be termed non-stoichiometric, has gained significant popularity with the ad-
vent of high-throughput data collection. Non-stoichiometric networks, of which there are
a great variety, include interaction networks which describe the relationship, usually via
some physical interaction but sometimes also functional, between molecular species or
functional entities such as genes or proteins. Non-stoichiometric networks tend to be more
course grained compared to stoichiometric networks, but their study has proven to be very
popular due in large part to the availability of vast new data sources. That, coupled with the
unprecedented interest in networks in general, has made the study of non-stoichiometric
networks an intellectually interesting area of study [6].

1.3 Metabolic Networks

The first cellular networks to be discovered were the metabolic pathways such as Glycol-
ysis in the 1930s and the Calvin cycle in the 1940s. The first metabolic pathways were

http://ecocyc.org/
http://regulondb.ccg.unam.mx/
http://www.genome.jp/kegg/
http://string.embl.de/

1.3. METABOLIC NETWORKS 3

elucidated by a combination of enzymatic inhibitors and the use of radioisotopes such as
carbon-14. The Calvin cycle for example was discovered by following the fate of carbon
when algae was exposed to !4C-labeled CO,. With the development of microbial genet-
ics, significant progress was made in uncovering other pathways by studying mutants and
complementing different mutants of a given pathway to determine the order of steps. The
reaction steps in a metabolic pathway are catalysed by enzymes, and we now know there
are thousands of enzymes in a given organism catalyzing a great variety of pathways. The
collective sum of all reaction pathways in a cell is referred to as metabolism, and the small
molecules that are interconverted are called metabolites.

Traditionally, metabolism is classified into two groups, anabolic (synthesis) and catabolic
(breakdown) metabolism. Coupling between the two metabolic groups is achieved through
cofactors of which a great variety exist. Two widely distributed cofactors include the pyri-
dine nucleotides in the form of NAD1 and NADP', and the adenine nucleotides in the
form of ATP, ADP and AMP. These cofactors couple redox and phosphate, respectively, by
forming reactive intermediates that enables catabolism to drive anabolism. Cellular respi-
ration is a catabolic process where molecules such as glucose and fatty acids are oxidized
in a stepwise fashion. The energy released is captured in the form of ATP and the ox-
idized products of water and carbon dioxide are released as waste. ATP can be used in
turn to drive anabolic processes such as amino acid or nucleotide biosynthesis. In general,
metabolic pathways tend to be regulated via allosteric regulation. This is where a metabo-
lite can regulate the reaction rate of an enzyme by binding to a site on the enzyme other
than the catalytic site. Such interactions form a network of feedback and feedforward reg-
ulation. Figure 1.2 shows a metabolic pathway of glycolysis from Lactococcus lactis. On
the left, glucose enters the cell which is converted in a series of reactions to ethanol and a
variety of other small molecules.

Metabolic networks are the fastest (excluding ion transfer mechanisms) in terms of their
response to perturbations and can operate on a time scale from microseconds to seconds.
This reflects the need to rapidly adjust the supply of molecular building blocks and energy
as supply and demand fluctuate. Physically, the rapid response of metabolic networks is
achieved by allosteric control where the fast diffusion of small molecules can bind and
rapidly alter the activity of selected enzymes.

Figure 1.4 shows a section of the glycolytic pathway which converts glucose to pyruvate
with the production of ATP and NADH. The diagram also shows the many negative and
positive feedback and feedforward regulatory loops in glycolysis. Not all of these are
present in all organisms, however many are. Note the six regulatory signals that converge
on 6-Phosphofructose-1-kinase (also known as phosphofructokinase) and Fructose Bispho-
sphatase (Labeled 2 and 3). Figure 1.4 uses a standard notation to indicate inhibition and
activation. Inhibition is often represented as a blunt ended arrow and in this book activation
by a rounded arrow (Figure 1.3).

4 CHAPTER 1. CELLULAR NETWORKS

\[o]

Stoichiometric Stoichiometric

Elementary Non-Elementary

Figure 1.1 Cellular networks are often represented using two common approaches, non-
stoichiometric and stoichiometric. Non-stoichiometric networks are characterized by a lack
of stoichiometric information and mass conservation. Stoichiometric networks are classi-
fied according whether they are elementary or not. Elementary networks are those where
the reactions cannot be broken into simpler forms. Non-elementary networks may have one
or more reaction steps which represent an aggregate of two or more elementary reactions,
the aggregation being dependent on assumptions such as quasi-steady state or equilibrium.

1.4 Protein Networks

Protein networks are by far the most varied networks found in biological cells. They range
from proteins involved in controlling gene expression, the cell cycle, coordinating and pro-
cessing signals from the internal and external environments, to highly sophisticated nano-
machines such as parts of the ribosome or the bacterial flagella motor.

Protein networks can be studied on different levels, broadly classified as either stoichio-
metric or non-stoichiometric networks. The non-stoichiometric networks can be as simple
as considering the physical associations between different proteins (often through the for-
mation of protein complexes). Such networks, also termed interaction networks, have been
elucidated largely with the help of high-throughput methods. An interaction is formed if
two proteins, A and B, are known to associate.

Another descriptive level involves functional and stoichiometric networks formed from a
consideration of specific stoichiometric binding events, covalent modification (most no-
tably phosphorylation), and degradation. Here two proteins, A and B might form a complex
with a stoichiometric relationship and given association constant.

1.4. PROTEIN NETWORKS

~% g9

@

G

Cellwall

(&)

Figure 1.2 Metabolic Pathway: Metabolic pathway image from JWS online (Jacky Snoep)
with permission. The pathway depicts the glycolytic pathway from Lactococcus lactis
using the Systems Biology Graphical Notation (SBGN) [94, 72].

Protein-Protein Networks

Work on uncovering protein networks has be ongoing since the 1950s and considerable
detail has accumulated on many different pathways across different organisms. Traditional
methods, though laborious [35, 33], have been used extensively to gain detailed knowledge

6 CHAPTER 1. CELLULAR NETWORKS

—e I >
Activation Inhibition ~ Mass Movement

Figure 1.3 Summary of regulation and reaction symbols.

Glucose

— |©

' Glucose 6-P

'

Fructose 6-P = Fructose 2,6-P2

ONNY
—if‘@
187

Frutose 1,6-P2

—— 2 ATP v 2 NADH
2 Phosphoenolpyruvate

_|_2ATP/: @

—

2 Pyruvate =——Jpp Alanine

©
Y

2 Citrate

®
\

Figure 1.4 A section of glycolysis with negative and positive regulation shown. 1. Hexok-
inase; 2. 6-Phosphofructose-1-kinase; 3. Fructose bisphosphatase; 4. Pyruvate kinase; 5.
Entry to Citric acid cycle; 6. To oxidative respiration.

on phosphorylation sites, protein structure, the nature of membrane receptors, and the con-
stitution and function of protein complexes. More recent high-throughput methods, though
more course grained, have uncovered large swaths of protein-protein interaction networks.
For example, in yeast, large scale studies have identified approximately 500 different pro-

1.4. PROTEIN NETWORKS 7

Network Type Timescale

Gene Regulatory Network

Genes
Minutes to
External Factors Hours
—_—
Proteins (TFs) -
Protein Signalling Network
——— | Proteins <— Proteins <— Seconds to
Minutes

Metabolic Network

Microseconds to
Seconds

—| Metabolites

Figure 1.5 Network Overview. The figure illustrates the three main network layers,
metabolic, protein and gene. TF — Transcription Factors. The arrows here represents inter-
actions between the different processes.

tein complexes [52, 90] and their relationships to each other.

A popular high-throughput technique that has been used to uncover protein-protein inter-
action networks is the yeast two-hybrid method [45, 136]. Other methods such as phage
display [162, 60], affinity purification, and mass spectrometry have also been successfully
employed [52, 90]. The yeast two-hybrid method (Figure 1.6) is based on the idea that
eukaryotic transcriptional activators consist of two domains, a DNA binding domain (DB)
and an activation domain (AD). The activation domain is responsible for recruiting the
RNA polymerase to begin transcription. What is remarkable is that the two domains do not
have to be covalently linked in order to function correctly; they simply need to be in close
proximity. The yeast two-hybrid method is based specifically on this property.

Assume we want to know whether protein X and protein Y interact with each other. In the
two-hybrid method, protein X is fused with the DB domain (known as the bait protein) and
the second protein, Y, is fused with the AD domain (known as the prey protein). These two
fused proteins are now expressed in yeast. If the two proteins X and Y interact in some
way, they will bring the DB and AD domains close to each other resulting in an active
transcriptional activator. If the gene downstream of the DNA binding sequence is a reporter

8 CHAPTER 1. CELLULAR NETWORKS

gene, the interaction of X and Y can be detected once the reporter gene is expressed.

A common reporter gene is the lacZ gene which codes for f-galactosidase and which pro-
duces a blue coloring in yeast colonies through the metabolism of exogenously supplied
X-gal (5-bromo-4-chloro-3-indolyl-5-D-galactoside).

There are some caveats with the yeast two-hybrid method, however. Although two proteins
may be observed to interact, the protein in their natural setting may not be expressed at the
same time or may be expressed but in different compartments. In addition, using the method
to identify interactions between non-yeast proteins may be invalid because of the alien
environment of yeast cells. As with many high-throughput methods, caution is advised
when interpreting the data.

_>

Wild Type ||‘ I”“h ll" {ll'l .l||' "'I» 4||' "'I» 1|||’ "I» 4||’ "|I> 1|||’ 'll

Reporter Gene

Bait

b,

BD-Bait ||‘ I”“h ll" {ll'l .l||' "'I» () "'I» 1|||’ "I» () "|I> 1|||’ 'll
Reporter Gene

Prey

»- @
Ap-Prey \MIHIMIKIMIRDRNDN NN

Reporter Gene

Bait Prey

———

-0 \FOHFUIVINIAINIT

Reporter Gene

Figure 1.6 Yeast two-hybrid. The wild-type transcription factor is composed of two do-
mains, BD and AD. Both are essential for transcription. Two fusion proteins are made,
BD-Bait and AD-Prey. Bait and Prey are the two proteins under investigation. If Bait and
Prey interact, BD and AD are brought together resulting in a viable transcription factor that
can express a reporter gene.

The yeast two-hybrid system helped generate one of the first large scale interaction graphs
to be published, the protein interaction graph of Saccharomyces cerevisiae [176, 79]. Sub-
sequent analysis of this map was conducted by Jeong et al. [81] and included 1870 proteins
nodes and 2240 interaction edges. Such graphs give a birds-eye view of protein interactions
in an entire cell (Fig. 1.7).

1.4. PROTEIN NETWORKS 9

L =
1 5 ‘ [' .,« B %‘ .
7 -7 mf!’ g LN
Ly ’>’-« P ‘f\\. \
4' b

Figure 1.7 The poster child of interaction networks, one of the earliest yeast protein inter-
action networks generated from yeast two-hybrid measurements. Each node represents a
protein and each edge an interaction. Although difficult to see in the figure, the graph nodes
have been annotated such that red (dark) indicate lethal phenotypic effect if removed, green
non-lethal, orange slow growth, and yellow unknown. Adapted from Barabdsi and Olt-
vai [7] but originally published in arXiv and Nature [81].

Signaling and Control Networks

Many protein-protein networks operate as signal processing networks and are responsible
for sensing external signals such as nutritional (for example, changes in glucose levels),
or cell to cell signals such as insulin or Epidermal growth factor (EGF). Other signaling
networks include control networks that are concerned with monitoring and coordinating in-
ternal changes, the most well known of these includes the cell cycle control network. Many
external signals act by binding to cell-surface receptor proteins such as the large family of
receptor tyrosine kinases and G-protein coupled receptors [89]. Once a signal is internal-
ized through the cell-surface receptors, other proteins including protein kinases and phos-
phatases continue to process the signal often in coordination with other signaling networks.
Eventually the signaling pathway terminates on target proteins that leads to a change in cell
behavior. Such targets can include a wide variety of processes such as metabolic pathways,
ion channels, cytoskeleton, motor proteins, and gene regulatory proteins.

The molecular mechanisms employed by signaling and control pathways include covalent

10 CHAPTER 1. CELLULAR NETWORKS

modification, degradation and complex formation. Covalent modification in particular is a
common mechanism used in signaling networks and includes a variety of different mod-
ifications such as phosphorylation, acetylation, methylation, ubiquitylation, and possibly
others [17]. As a result, the structure and computational abilities [156] of such networks
are likely to be elaborate. It has been estimated from experimental studies that in E. coli,
79 proteins can be phosphorylated [102] on serine, threonine, and tyrosine side groups
whereas in yeast, 4000 phosphorylation events involving 1,325 different proteins have been
recorded [138].

The cell cycle control network is an good example of a sophisticated protein control net-
work that coordinates the replication of a biological cell. The cell cycle includes a number
of common molecular mechanisms that are found in many other protein networks. These
can be grouped into three broad types: phosphorylation, degradation and complex for-
mation. Phosphorylation is a common mechanism for changing the state of a protein and
involves phosphorylation on a number of sites on the protein surface including serine/threo-
nine and tyrosine. In prokaryotes, histidine, arginine, or lysine can also be phosphorylated.
Phosphorylation is mediated by kinases. The human genome may have over 500 kinase
encoding genes [106]. The effect of phosphorylation is varied but most often causes the
altered protein to change catalytic activity, to change the protein’s ‘visibility’ to other pro-
teins, or to mark the protein for degradation. For example, Src is a tyrosine kinase protein
involved in cell growth. It has two states, active and inactive. When active, it has the ca-
pacity to phosphorylate other proteins. Deactivation of src is achieved by phosphorylation
of a tyrosine group on the C-terminal end of the protein. Dephoshorylation of the tyrosine
group by tyrosine phosphatases results in activation of the protein.

Phosphorylation can also be used to inactivate enzymes such as glycogen synthase by the
glycogen synthase kinase 3 protein. In the yeast cell cycle, the protein Weel is phospho-
rylated and inactivated by the complex Cdc2-Cdc13. Active Weel in turn (i.e. the unphos-
phorylated form) can inactivate Cdc2-Cdc13 by phosphorylating the Cdc2 subunit.

In addition to changing the activity of proteins, phosphorylation can also be used to mark
proteins for degradation. For example, the protein Ruml that is part of the yeast cell cy-
cle control network can be phosphorylated by Cdc2-Cdc13. Once phosphorylated,Rum1
is degraded. Degradation itself is an important mechanism used in protein signalling net-
works and allows proteins to be rapidly removed from a network according to the cell state.
Degradation is usually mediated by ubiquitylation. For example, Cdc2-Cdc13, via Ste9
and APC is marked for degradation by ubiquitylation (Ruml is similarly processed once
phosphorylated). Once marked this way, such proteins can bind to the proteasome where
they are degraded. Finally, binding of one protein to another can change the target protein’s
activity or visibility. An example of this is the inactivation of Cdc2-Cdc13 by Rum1. When
unphosphorylated, Rum1 binds to Cdc2-Cdc13, rendering the resulting complex inactive.

Different combinations of these basic mechanisms are also employed. For example, phos-
phorylation of complexes can lead to the dissociation of the complex, or the full activity
of a protein may require multiple phosphorylation events. Although signaling networks

1.4. PROTEIN NETWORKS 11

can appear highly complex and varied, most of them can be reduced to the three funda-
mental mechanisms of covalent modification, selective degradation and complex formation
(Fig 1.8).

These examples highlight the basic mechanisms by which protein signalling control net-
works can be assembled into sophisticated decision making systems.

="V .
Q Complex Formation

T : Phosphorylation

- —=—"
T O Dephosphorylation

0 Degradation of a
Q 4: 0-0-0-0 — complex

Degradation of a
—F —> ’ 0-0-0-0 phosphorylated form

Figure 1.8 Fundamental Protein Mechanisms.

In higher eukaryotic cells, particulary human, around 2% of the protein-coding part of the
genome is devoted to encoding protein kinases, with perhaps 10% of the coding region
dedicated to proteins involved in signaling networks. It has also been suggested that as
much as 30% of all cellular proteins in yeast and human can be phosphorylated [31].

The actual size of networks is even larger that these numbers suggest because of the sig-
nificant number of covalent variants and binding permutations. For example, the tumor
suppressor protein, p53, has between 17 and 20 phosphorylation sites alone [174]. If every
combination were phenotypically significant, as unlikely as that might be, this amounts to
at least 131,072 different states. On a side note, there is some discussion [42, 29] on how to
deal with networks when there is a proliferation in states due to covalent modification and

12 CHAPTER 1. CELLULAR NETWORKS

protein complex formation. Two issues present themselves, the first is how do we describe
such systems to a computer? This has been solved by using a rule-based approach. BioNet-
gen is an example of a software tool that allows a modeler to describe such models using
rules [63]. The second issue is how important is the combinatorial expansion to modeling,
are the multiple states actually functionalCitefacder2005rule,sekar2017introduction?

Ptacek and Snyder [139] have published a review on elucidating phosphorylation networks
where more detailed information is provided.

Figure 1.9 A Small Protein-Protein Interaction Map. This image was taken from the
STRING web site (Search Tool for the Retrieval of Interacting Genes/Proteins, http://
string.embl.de/). The image displays a small segment of the protein interaction map
centered around LEU3, the transcription factor that regulates genes involved in leucine and
other branched chain amino acid biosynthesis.

1.5 Gene Regulatory Networks

The control of gene expression in prokaryotes is relatively well understood. Transcrip-
tion factors control gene expression by binding to special upstream DNA sequences called
operator sites. Such binding results in the activation or inhibition of gene transcription.
Multiple transcription factors can also interact to control the expression of a single gene.
Such interactions can emulate simple logic functions (such as AND, OR, etc.) or more
elaborate computations. Gene regulatory networks can range from a single controlled gene
to hundreds of genes interlinked with transcription factors forming a complex decision
making circuit. There are different classes of transcription factors. For example, the bind-

http://string.embl.de/
http://string.embl.de/

1.5. GENE REGULATORY NETWORKS 13

ing of some transcription factors to operator sites is modulated by small molecules, the
classic example being the binding of allolactose (a disaccharide very similar to lactose) to
the lac repressor, or cCAMP to the catabolite activator protein (CAP). Alternatively, a tran-
scription factor may be expressed by one gene and either directly modulate a second gene
(which could be itself), or via other transcription factors integrating multiple signals onto
another gene. Additionally, some transcription factors only become active when phospho-
rylated or unphosphorylated by protein kinases and phosphatases. Like protein signaling
and metabolic networks, gene regulatory networks can be elaborate.

Significant advances have been made in developing high-throughput methods used to de-
termine protein-gene networks. Of particular interest are ChIP-chip [144, 5] and the more
recently developed ChIP-seq [107] screening method — Chromatin immunoprecipitation
microarray/Sequencing. ChIP works by treating cells with formaldehyde which crosslinks
DNA to the transcription binding protein if it is bound to the DNA. The cells are then lysed
and the DNA fragmented into small 1 kB or less fragments. A specific antibody is then used
to bind to the DNA-binding protein of interest and precipitate the protein and associated
DNA fragment. The precipitated DNA pieces are released by reversing the crosslinking. In
ChIP-chip, the released DNA pieces are hybridized to a microarray that enables the bound
protein to be located on the genome. A more recent version is ChIP-seq. In this procedure
the microarray stage is abandoned and instead, the released DNA pieces are sequenced.
Once sequenced, the location on the genome can be uncovered. These methods have been
successfully used to determine the gene-protein network of a number of organisms, with
yeast being the first [95]. Alternatively, other approaches have focused on determining
gene-protein networks from literature mining and careful curation or even prediction of
putative binding sites.

In general, gene regulatory networks are the slowest responding networks in a cell and work
from minutes to hours depending on the organism. Bacterial gene regulatory networks tend
to operate more quickly compared to eukaryotic gen networks. .

The most extensive gene regulatory network database is RegulonDB [77, 47] which rep-
resents the gene regulatory network of E. coli. In-depth reviews covering the structure of
regulatory networks can be found in the works of Alon [160] and Seshasayee [159].

To visually represent gene regulatory networks we will use a notation very similar to that
used by the software package Biotapestry [98, 99] because it offers a clear and concise
visual representation. To represent the expression of a gene controlled by a transcription
factor, P, we will use the diagrammatic notation shown in Figure 1.11. This omits details
such as translation and transcription, providing a concise representation of a gene regulatory
network without the mechanistic details that may not be important.

It is however possible to add transcription and translation as shown in Figure 1.12.

Figure 1.13 illustrates a range of gene regulatory patterns. We will cover the diagrammatic
notation in more detail in Chapter 3, but (Figure 1.3) blunt ends are used to indicate inhi-
bition while round circle ends represent activation. We can now construct gene regulatory

14 CHAPTER 1. CELLULAR NETWORKS

\ . (&9 Cross-link cells with
(® . formaldehyde
Isolate Nuclear
DNA
-
- YA TATY YN
AT AN
DIOTDTUIDIO. Sonicate DNA
- -
R YA ATV R YA ATY ALY AN
Add specific
antibody
AT IATYZTY AN
DYOHUIVIUH0. "
A Immunoprecipitate
\DAVQIOIDYDAD
A /)-k\ the complex
RN Y AN

AT AT YA WODFOIT VIV, Reverse cross-linking,

OGP UI DT and sequence fragments (seq)

- - - or apply to microarray
DHOIDITDIDID,. - =

R YA IATYIALY AN
chip seq = Transcription Factor
A Specific Antibody
Figure 1.10 ChIP-chip and ChIP-seq methods for identifying transcriptional binding sites.
Adapted from [107].

-«

1.6. GENOME SIZES 15

e

Figure 1.11 Representing a single gene. I represents the inducer and P the expressed
protein. Increasing I will increase the rate of protein P expression.

I_l E»mRNA-»P

Figure 1.12 Representing a single gene with the addition of explicit translation and tran-
scription. [represents the inducer and P the expressed protein.

networks by connecting single gene units together. Figure 1.14 illustrates two typical gene
regulatory networks. The first (a) shows a relatively simple sequence of gene regulatory
steps where on the left of the figure, an inducer, I, activates the expression of protein p;.
The gene is represented as a horizontal line with an emerging arrow on the right indicating
the expression of either mRNA or in this case protein. p; in turn inhibits a second gene
that reduces the expression of protein, p;.

It should be evident that these diagrams hide an enormous amount of detail. In these exam-
ples even the mRNA intermediates are absent. These diagrams are therefore at a very high
level and may be sufficient to answer particular questions when the detail is unnecessary.

The network in Figure 1.14(b), shows additional features including negative feedback and
a transcription factor dimerizing (v4) to form the active regulatory protein, p>. The mech-
anistic nature of the repression and activation is not specified in these diagrams.

Although the description of the three main network types may give the impression that they
act independently of each other, this is definitely not the case. For example, Figure 1.15
is an example taken from Caulobacter [19] showing a mixed gene regulatory and protein
network.

1.6 Genome Sizes

How big are cellular networks? We can try to answer this question by looking at whole
genomes. The sizes of genomes vary considerably from the minuscule 159,662 bases of
the symbiotic bacterium called Carsonella ruddii, which lives off sap-feeding insects, to
the Whisk fern comprised of 2.5 x 10!! bases. Some of this size difference is related to
the complexity of the organism, simpler organisms requiring fewer genes. However the
correlation, although on the whole positive, is not entirely linear. For example, E. coli has
roughly 4,300 genes on a genome of size 4.6 Mb, while humans have roughly 25,000 genes

16 CHAPTER 1. CELLULAR NETWORKS

—1 E’ Gene Activation

—_|. E’ Gene Repression

=11 Y Multiple Control

—I_L__L) Gene Cascade

! F Auto-Regulation
o —|l ' Regulation by Small

Molecule

l Regulation by
J Phosphorylation

Figure 1.13 Simple gene regulatory patterns.

on a genome of about 3000 Mb. The E. coli genome is quite dense with roughly 88% of
the genome coding for proteins [170] with the remainder being made up of RNA coding,
promoter sequences and other common segments. The human genome on the other hand is
very sparse with only about 2% of the genome actually coding for protein. There is ongoing
speculation as to why the human genome is so sparse and what role the other 98% might
play. Some evidence suggests an RNA based regulatory network [110] that is coded in at
least some of the non-coding sequences (the so-called junk DNA).

Figure 1.16 shows an example of a small genome from Mycoplasma genitalium. This
organism is a small parasitic bacteria that lives in primate genital and respiratory tracts and
is the smallest known free-living bacteria. The genome of this organism has 521 genes in
total, 482 of these code for protein while the remaining 39 reading frames code for tRNA
and rRNA.

The 482 genes that encode proteins in Mycoplasma genitalium include a wide variety of
functions (Figure 1.17) covering areas such as energy metabolism, replication and the cell
envelope. Even for such a small organism, there are still eight genes of unknown function.

Eukaryotic genes, especially human, are also fragmented into segments called exons (cod-
ing) and introns (non-coding). This segmentation allows different forms of protein to be
derived from the same gene by splicing together different exons. Although the number of

1.6. GENOME SIZES 17

. S
T =L pe

Figure 1.14 Two examples of gene regulatory networks. v; to vg represent either gene
expression or protein degradation rates (for example v,). I represents the concentration of
some inducer, assumed to be a constant value. Figure b) illustrates dimerization of p; and
negative feedback from ps.

genes is roughly 25,000, alternative splicing likely increases this number [18, 179]. Fi-
nally, many proteins, particularly those involved in signaling pathways, also have alterna-
tive forms due to covalent modification such as phosphorylation or methylation. This again
increases the actual number of states. In other words, the number of genes in a genome
gives a lower limit to the size of a cellular network, particularly in eukaryotic organisms.
The size of a given genome is therefore a poor indicator of organism complexity. To give
a better idea of the size and complexity of a small genome, let’s look more closely at a
specific one, E. coli.

Table 1.2 A comparison of genome sizes (base pairs) and estimated number of genes. Data
from Taft and Mattick [170].

Organism Genome Size Est. Number of Genes
E. coli 4,639,221 4,316
Bacillus subtilis 4,214,810 4,100
Saccharomyces cerevisiae 12,100,000 6,000
Caenorhabditis elegans 97,000,000 19,049
Arabidopsis thaliana 115,409,949 25,000
Drosophila melanogaster 120,000,000 13,600
Mus musculus 2,500,000,000 37,000

Homo sapiens 3,000,000,000 30,000

18 CHAPTER 1. CELLULAR NETWORKS

== gene expression DivK <]divK I £
mmmm transcription, DNA-binding

== post-translationalfprotein interactions/other

=== phosphotransfer events PleC + Pi ‘DiVJ"P
methylation G
% methylation site PleC DivJ
DivK~P
»-cell division —)l
S
CckA-HK~P CckA-HK
I :dnaAr’ Dnai >
*% CckA-RD CckA-RD~P
y
A 4 J_ gcrA GerA
ChpT~P ChpT
P1 P2 CtrA
ctrA vy | CpdR CpdR~P
* CtrA-P—}* proteolysis 4—
T T (ClpX)
bl L] G Y adad
S origin of replication
A A corM CorM 9 o
L redA RcdA
Factors in bold are essential in Caulobacter
* = DivL is involved in CtrA phosphorylation - TACA/SPMX pathWay se—
but the mechanism is still unknown.
= Chemotaxis
p- POlar morphogenesis

Figure 1.15 Example of a mixed network involving gene regulatory and protein phospho-
rylation networks in Caulobacter. Blunt ends to regulatory arcs indicate inhibition while
arrow ends indicate activation. Image from BioMed Central [19].

1.7 E. coli

The bacterium E. coli is probably one the best understood organisms so is worth considering
some of its features. Much of the information provided here comes from the EcoCyc and
RegulonDB online databases and their respective publications [83, 47].

E. coli is a cylindrical body, with a length of about 2um and diameter of about 0.8um.
These dimensions offer a convenient translation between concentration and number of mol-
ecules in E. coli. Thus 1 nM concentration roughly translates to one molecule per E. coli
cell (See exercises at end of chapter). For example, ATP is present at a concentration of
approximately 2 mM, meaning there are roughly 2,000,000 molecules of ATP in a single
E. coli cell.

The E. coli circular genome is composed of 4,639,221 base pairs (490um in diameter)
encoding at least 4,472 genes. 4,316 code for proteins with the remainder coding for various
RNA products such as tRNAs and rRNAs. The genes in E. coli, like other prokaryotes, are

1.7. E.COLI 19

w1 _ov 03 004 005 009 007 003 008 040 011 0f2 O3 01 015 018 047 018 013 020
o e S e o (— —— e m—
021 w21 022 023 0w 25 026 027 028 029 030 31 132 03 03 05 035 037 e 03 0
e — 1 :— T, =t E——
0o 022 0m oM 0% 045 047 028 D50 054 D52 os 054055 05 057 asa 050 080 054 0952
= @ =
082 053 064 055 [067 063 i 088 [E 071 072
=2, e e — —lildPar =
072 07 07 07 0@ 077 07 07 050 51 05z 083 084 _uss_ 039 037089 039 090 091083 033 034
-— S S [e e e o i, e s s et i e e
094 ogs 008 a7 005 003 w0 0102103 101 WS A7 08 M09 0 M M M3 44 15 118 117
P o s —"—— e E— —) m—
1 149 20 121 122 423 42 435 0 427 498 420 430 434 432 433 14 435 138 a7 138 .
[28 BT T B Ui T e e < T [T E— U e
!\lgpar MoFar RS RNA 205 ENG r;ﬁﬂ Hgear 10 141 5 142 143 144 135 135 M7 42 140 150 151 152 13
B e e] — it — R —
454 155 156157 150 158 0454%02 455 e 10 457 165 488 4 171 17 plTAm 177 Am_im 0 818 3 84 185 s
NP
a5 a7 BE_ 189 a0 181 22 e 180 185 185 17 106 100 200 301202
e — ——____ L —_— e <]
202 a0z 04 205 208 2073208 200 240 2 M2 an a2 245 247 218
D=t — | = - ——TTTTTIT
20 oz 21 22 a3 220 225 225 NgPar 227 338 220 310 21 0500 23z w7 aw E 200 211
e 8 B T R Do e
241 260
242 a3 204 205 209 07 e _ e 250 251 252 _ s 254 as5 eI 258 T
200 i 261 262 63 264 a6s 261 67 258 z6n am 271 272 o 215 am 277
B i - M L T T I — = == EmE— -
277 am 2w am 281 52 55 B4 285 286 28 358 260 200 201 202
~—) TS ¢ MaPer | WoPer mmm—
22 303 aun 205 08 a07 208 200 00 w1 w2 w304 205 208 307 308 308
s <] < — < —__ o e em— e
308 310 311 31 31 314 35318 317 313 3te 3m0 21 322 533 324
[1 < e— s Yo [e 1 TR [=
324305 396 327 225 330 w334 33 333 334 25 25 37 338 338 e 34
T+ — T L e — e L - S =
a0 241 32 3 3u 348 308 57 34 340 30 351 352353 354 355 356357
1 e _emmmee—————gmamml 1 e« o
768 360 380991762 367 34 %6 308 267 388 60 Im aM tm a@ M 3% 3W377 3 3 330 381
e — Jee il e — S— e — o T s Yor 4
3 352 gsr 38 385 366 557 338 509 300 301 S92 393 3ad 395 993 oe7 993 599
Al Coosesmm—m < ® 1 mm— < I e—— e amc e
200 01 413 a03dnd A5 AOE A0 403 A09 A a1 a1z 14 24 L5 4E 44746 40 4 121 200
e —— g —) EE—— K —— o T ek e e——————

222 43 a4 M5 LA4TR 429 20 51 1 &3 gpmadE 4T 45 A0 A0 441 A% A3 AM 4ds A8 287
R0 —] s] W e L Crtsrari] e R el e R e o i B e

ATy a0 a1 g2 as 455 4gd 458 157 458 450 a0 and a2 asa dapd aee%E apy ans
e — e e = ¥ em— T
268 288 a7 om N
[Aiminc acid bioaynihesis S Erergymetabolm [T pertbinding proteie|

L) | - FAibosomel RNA == Eiceymihes & of cofa cters, prosthetic groups [Fathy acidPhes pholipidmetabolam 1 Tmmbtion

bar | MaFa Fepeat ———1kb = Cellemskope [Purines, pyrmidines, and nuckectides] Transeription

FEpEs B Cellubr processes B Fe guliory functions] ?y"':"gﬂ"“
I Ceriral interme diry metabolsm [Replication fiicoet

Figure 1.16 Small genome with 521 genes from Mycoplasma genitalium. Image taken
from BioCyc.

not segmented (genes made of introns and exons); that is, a gene in E. coli is a contiguous
sequence of DNA translated into the final protein without editing. In addition, there is very
little non-coding DNA in E. coli with almost 88% of the genome coding for proteins.

Almost one quarter of all proteins produced by gene expression in E. coli form multimers,
proteins composed of multiple subunits. Many of these multimers are homomultimers,
meaning they are made up of the same subunits. Some of these proteins can also be co-
valently modified by phosphorylation, methylation or other means. There are estimated
to be at least 171 transcription factors that directly control gene expression. This number
provides insight into the size of the E. coli gene regulatory network. The EcoCyc database
reports at least 48 small molecules and ions that regulate these transcription factors.

Of the 4,316 genes in E. coli, 3,384 (76%) have been assigned a biochemical function.
There are at least 991 genes involved directly in metabolism with a further 355 genes in-
volved in transport. Other gene functions include DNA replication, recombination and
repair, protein folding, transcription, translation and regulatory proteins. An inventory of
small molecules has not been thoroughly made, but EcoCyc records at least 1,352 unique
small organic molecules, but there are likely many more.

These statistics suggest large numbers of interactions among many thousands of cellular
components forming extensive networks.

Given the size of a single E. coli cell, the concentration of protein in the cytoplasm, and
the average diameter of a protein (5 nm), it is estimated that the average spacing (center to

20 CHAPTER 1. CELLULAR NETWORKS

170
150
3
5
2100 96
o
i
Na)
=
=
S 32 32
28 29
AMTIIALE
6
0 4 FER] m BN

01 2 3 456 7 8 91011121314
Function

Figure 1.17 1: Cell Envelope; 2: Regulatory; 3: Unknown; 4: Central Metabolism; 5:
Cofactor Biosynthesis; 6: Purine/Pyrumdine metabolism; 7: Transcription; 8: Transport;
9: Replication/Repair; 10: Lipid Metabolism; 11: Translation; 12: Cellular Processes; 13:
Energy Production.

center) between proteins is about 7 nm. This suggests that the cytoplasm is quite dense.
David Goodsell (http://mgl.scripps.edu/people/goodsell) is well known for his
evocative illustrations of subcellular spaces. Figure 1.18 illustrates his rendition of a cross-
section through E. coli and gives a vivid impression of how packed the cytoplasm is.

There are two useful websites for obtaining basic operating information on E. coli. The
first is the E. coli. statistics site at Alberta (http://gchelpdesk.ualberta.ca/CCDB/
cgi-bin/STAT_NEW.cgi). The other is a more generic and community based website
called BIONUMBRS (The Database of Useful Biological Numbers). Publications from
the project also supply many useful statistics on E. coli [83, 85].

The number of molecules in a typical E. coli varies with the molecule type. For example,
there are approximately 2,000,000 Na™ ions while only 300,000 tryptophan molecules.
The larger the molecule, the fewer their number (Table 1.4). For example, transcription
factors are only present in numbers ranging from 10s to 100s, whereas ions are present in
the millions.

A significant study by Bennett et al. [10] measured over 100 metabolite levels in the main
metabolic pathways of glucose-fed, exponentially growing E. coli. The average concentra-
tion was found to be 0.22 mM. We can compare this with the average K, (concentration
of substrate that gives half maximal activity) of approximately 0.1 mM as reported by the

http://mgl.scripps.edu/people/goodsell
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi

1.7. E.COLI 21

&l

i"
'”‘
"‘%3;& e
2\ AT E

e

/%

Figure 1.18 Artists impression (With permission, Goodsell) of a cross-section through
E. coli illustrating the high density of proteins and other molecules in the cytoplasm,
drawn roughly to scale http://mgl.scripps.edu/people/goodsell/illustration/
public.

database. This suggests that on average enzymes operate above their half maximal activ-
ity. However, a more detailed analysis revealed considerable variability among different
metabolite types. For example, cofactors such as ATP and NAD™ were at concentrations
significantly above their K;,s. In contrast, substrate-enzyme pairs where the concentration
was below the K, were dominated by enzymes catalyzing nucleotide, nucleoside, nucle-
obase and amino acid degradation reactions. On the other hand, the glycolytic pathway,
tricarboxylic acid cycle, and the pentose-phosphate pathways all showed substrate concen-
tration that were similar to their K}, values.

We can also consider how fast processes occur in E. coli. As suggested earlier in the chap-
ter, metabolic responses are the fastest followed by protein signaling networks and gene
regulatory networks. Table 1.7 lists some estimated response times for various biological
processes.

The number of molecules and the rate of various processes gives some idea of the magni-
tude of systems we are dealing with. However, the economy of a typical cell, how ATP
is distributed to different processes and how supply and demand are maintained, is largely
not understood since many of these processes are difficult to measure. Moreover, there is

http://mgl.scripps.edu/people/goodsell/illustration/public
http://mgl.scripps.edu/people/goodsell/illustration/public

22 CHAPTER 1. CELLULAR NETWORKS

Property Dimensions

Length 2to3 um

Diameter ~ lum

Volume I1x10715L

Optimal generation time 20 to 30 mins
Translation rate 40 amino acids per sec
Transcription rate 70 nucleotides per sec
Number of ribosomes per cell 18,000

Average protein diameter 5 nm

Average concentration of protein 5-8 mM

Average number of proteins 3,600,000

Table 1.3 Basic Information on E. coli.

Molecule Estimated Number
Tons Millions
Small Molecules 10,000 - 100,000

Metabolic Enzymes 1000 - 10,000s
Signaling Molecules 100 - 1,000s
Transcription factors 10s to 100s
DNA 1-10s

Table 1.4 Orders of magnitude for various E. coli molecule types.

no economic theory that describes the life of a cell. This is a significant omission in our
understand of organisms, particularly when we attempt to engineer them.

1.8 Network Motifs

At first glance the complex biochemical maps we see on lab walls and in text books appear
to have little order. However on closer examination, patterns emerge. One way to discern
these patterns is to compare real biochemical networks with random networks and to look
for a given pattern in each. For example, let’s say we identify a pattern of regulation which
we label p;. We look for the occurrence of p; in both the real biochemical network and
the randomly generated network. If we find that the pattern is statistically enriched in the
real biochemical network compared to the randomly generated one, we say we have found
a network motif.

A motif is a subgraph within a network that occurs more often than one would expect by

1.8. NETWORK MOTIFS 23

Tons Estimated Numbers
Na 3,000,000

Ca 2,300,000

Fe 7,000,000

Small Molecules Estimated Numbers
Alanine 350,000

Pyruvate 370,000

ATP 2,000,000

ADP 70,000

NADP 240,000

Table 1.5 Small molecule estimates in E. coli.

random chance alone. Such subgraphs can be simple triangles, squares etc. It is assumed
that such motifs occur more frequently because they confer some functional advantage;
their identification is therefore considered important. Locating motifs in a large network
entails a three step process:

e Estimate the frequency of each isomorphic subgraph in the target network.
e Generate a suitable random graph to test the significance of the frequency data.

e Compare the target network with the random graph.

The critical stage is generating a suitable random model for comparison. The approach is to
generate a random network which has a degree distribution' that is the same as the degree
distribution of the real target network [118, 117, 115]. One way to accomplished this is by
starting with the target network itself and randomizing edges in such a way that the original
degree distribution is preserved. This is carried out multiple times in order to generate a
population of random networks. Once the random and target networks are ready, additional
algorithms are invoked to count the number of given motifs. The frequency distribution of
the motif in the random networks is then compared to the frequency distribution of the target
network. A simple significance test can be carried out using the z-score (1.1). The z-score
is computed by subtracting the number of a given motif in the target network from the mean
number of the same motif in the randomized networks. This difference is then normalized
by dividing by the standard deviation of the motif count in the random population. If the
z-score is greater than zero, then the observed number of motifs is greater than the mean,
while a negative z-score indicates that the observed number of motifs is below the mean. A
z-score of two indicates that the observed value is two standard deviations above the mean

I'The degree of a node is the number of edges incident on the node.

24 CHAPTER 1. CELLULAR NETWORKS

Signaling Proteins Estimated Numbers
Lacl 10 to 50

CheA kinase 4,500

CheB 240

CheY 8,200
Chemoreceptors 15,000

Metabolic Enzymes Estimated Numbers
Phosphofructokinase 1,550

Pyruvate Kinase 11,000

Enolase 55,800

Phosphoglycerate kinase 124,000
Malate Dehydrogenase 3,390
Citrate Synthase 1,360
Aconitase 1,630

Table 1.6 Estimated numbers for larger molecules in E. coli.

which can also be roughly interpreted as the 95% confidence level. That is, if a z-score
is two or above, the number of motifs is significantly different from a random network
suggesting that the motif has some functional significance.

n_nr

7 =

(1.1)

Or

The definition of a motif, while useful, has important restrictions. For example, consider
a large electronic circuit containing transistors, resistors and capacitors. A motif search
in such a circuit may find an overabundance of amplifier like motifs compared to a com-
pletely random circuit. However, such an analysis will not find specialist circuits such as

Process Rate

Cell Division Time 50 minutes

Rate of Replication 2,000 bp/s

Protein Synthesis 1,000 proteins/s

Lipid Synthesis 20,000 lipids/s

Ribosome Rates 25 amino acids per sec per ribosome

Number of ATP to make one cell 55 billion ATPs

Table 1.7 E. coli grown on minimal media plus glucose. Data from Phillips et al. (2010)
and E. coli stats reference: http://ccdb.wishartlab.com.

1.8. NETWORK MOTIFS 25

a resonance filter, which may only occur once in the circuit. The motifs located using this
approach therefore need to be fairly common in the network. The operational definition of
motifs excludes motifs which may only appear once in a network but whose role is critical
to the network’s function [161].

One motif that has been both theoretically and experimentally studied is the feedforward
loop (FFL). We will discuss this motif in more detail in Chapter 13. Here we will briefly
mention its relative abundance in real networks. Figure 1.19 illustrates motif findings in
part of yeast data using the MAVisto software [158]. The software has picked up a number
of feedforward loop motifs.

Phod crzt

l Put3 Daist Rim101

Stp1

Metd.

Abf1

Stb1 /

sfi1 Nrg1

Sipa Swis
Rpht Smp1
Hsft Mem1

Inod Rig3

Figure 1.19 Occurrences of feedforward loop motifs as generated by the software MAV-
isto [158]. The displayed network is part of yeast data supplied with the MAVisto software.
The software is very straightforward to use and will identify a wide variety of motifs. Other
similar tools include FANMOD [181] and the original motif tool mFinder [84].

The FFL has a simple structure; there is a single input, P;, and a single output, P3. There
are two routes from the input to the output nodes, one is direct and the other goes via an
intermediate node, P,. Figure 1.24b shows a generic FFL. Given this basic structure we
can imagine various combinations of activation and repression on the edges for a total of
eight combinations. These are shown in Figure 1.20. We can further categorize the eight
FFLs into two groups of four, coherent and incoherent. Incoherent FFLs are those where

26 CHAPTER 1. CELLULAR NETWORKS

the two routes have opposite effects on the output. Coherent FFLs are where the routes
have the same effect on the output. A motif search for all eight types in E. coli and yeast
reveals an asymmetry in the relative abundance in the different types. Most noticeably from

Figure 1.21 we see that two types predominate in both organisms, Coherent Type 1 (C1)
and Incoherent Type 1 (I1).

Coherent FFL
Py Py Py Py
P2 P2 P2 Py
P P P P
c1 3 c2 3 c3' 3 cs 3
Incoherent FFL
Py Py Py Py
P P P P3
I 3 23 i3 o 14

Figure 1.20 Full complement of feedforward motifs, classified into coherent and incoher-
ent types.

More interesting is that these two types have distinct behavioral properties. We will return
to the question of what dynamics these networks can display in Chapter 13 where we will
use simulation as a guide.

Menagerie of Motifs

The feedforward network described in the previous section is one of many different kinds
of identified motifs. It would take an entire book to describe them all. Instead we will
summarize them here, together with their basic dynamic properties. Figures 1.22, 1.23
and 1.24 show a variety of motifs. No doubt many more natural patterns remain to be
discovered, in addition to new motifs that have and will be designed by the synthetic biology
community [46].

1.8. NETWORK MOTIFS 27

0.7 4
o 06 W E. coli
£
s 0.5 - Yeast
<
3 04 4
<
o 03
2
& 02
&
0.1 4 I
0 n I - - .
c2 c3 c4 1 12 13 14
FFL Type

Figure 1.21 Relative abundance of different FFL types in yeast and E. coli. Labels on the
x-axis refer to the particular FFL motifs seen in Figure 1.20. Data taken from [104].

Further Reading

General

1. Bray D (2011) Wetware: A Computer in Every Living Cell. Yale University Press.
ISBN: 978-0300167849

2. Goodsell D S (2009) The Machinery of Life. Springer, 2nd edition. ISBN 978-
0387849249

3. Phillips R, Kondev J and Theriot J (2010) Physical Biology of the Cell. Garland
Science. ISBN 978-0-8153-4163-5

Specific

1. Alberts etal., (2002) General Principles of Cell Communication http://www.ncbi.
nlm.nih.gov/books/NBK26813/
2. Brown TA (2006) Genomes 3, Garland Science, 3rd edition. ISBN: 978-0815341383

3. Gerhard M and Schomburg D (2012) Biochemical Pathways: An Atlas of Biochem-
istry and Molecular Biology, Wiley, 2nd edition. ISBN: 978-0470146842

4. Hancock J (2010) Cell Signalling, Oxford University Press, 3rd edition. ISBN: 978-
0199232109

5. Hartl DL (2008) Genetics: Analysis Of Genes And Genomes. Jones & Bartlett
Learning, 7th edition. ISBN: 978-0763772154

http://www.ncbi.nlm.nih.gov/books/NBK26813/
http://www.ncbi.nlm.nih.gov/books/NBK26813/

28 CHAPTER 1. CELLULAR NETWORKS

Motif Structure Name Dynamic Properties

a)
1. Noise suppression

Negative 2. Accelerated response
Q Autoregulation 3. High fidelity amplifier

4. Feedback oscillator

- 1. Bistability
Positive) 2. Memory unit
O Autoregulation 3. Op Amp component

R Relaxation Adaptable oscillator
O\/O Oscillator

d)
X Double Positive Memory unit where both
O O Feedback units are either on or off
_/ eedbac

e)
VY Double Negative Memory unit where one
O,\/Q Feedback unit is off, the other is on

Figure 1.22 Motifs.
6. Nelson DL and Cox MM (2008) Wetware: Lehninger Principles of Biochemistry. W.
H. Freeman, 5th edition. ISBN: 978-0716771081

7. Salway JG (2004) Metabolism at a Glance, Wiley-Blackwell, 3rd edition. ISBN:
978-1405107167

Motifs

1. Alon U, (2006) An Introduction to Systems Biology: Design Principles of Biological
Circuits, Chapman & Hall/Crc Mathematical and Computational Biology Series.

2. Sauro, HM and Kholodenko, BN, (2004), Quantitative analysis of signaling net-
works, Progress in Biophysics and Moleclular Biology, 86, 5-43.

1.8. NETWORK MOTIFS 29

Motif Structure Name Dynamic Properties
7O
/ \/ Regulated Double Memory unit where nodes
Negative Feedback switch in opposite directions
OAO due to an event Z
\/

/ \ Regulated Double Memory unit that records
N\ aneventinZ

Positive Feedback

Single Input 1. Master/Slave regulator
Module (SIM) 2. Temporal sequencer - last
gene activated is the first
gene deactivated

®
/|
O

O

d)O
|

O

1. Neural network type

O
O
l Bi-Fan computations

>< 2. Synchronizers

O 3. Filters

Figure 1.23 Motifs.

3. Tyson JJ, Chen, KC and Novak, B, Sniffers, buzzers, toggles and blinkers: dynamics
of regulatory and signaling pathways in the cell, Current Opinion in Cell Biology,
2003, 15, 221-231.

4. Yosef N and Regev A (2011), Impulse Control: Temporal Dynamics in Gene Expres-
sion. Cell 144, 886—896.

Exercises

In the following exercises use the data given in the main text along with Tables 1.3, 1.4,
1.5, and 1.6.

30

CHAPTER 1. CELLULAR NETWORKS

10.

11.

12.

13.

. How many E. coli cells laid end to end would fit across the full stop at the end of this

sentence? Assume the diameter of the full stop is 0.5 mm.

Estimate the volume of an E. coli cell.

. Calculate the surface area of an E. coli cell. If a typical membrane protein is 5 nm

in diameter, estimate the number of membrane proteins that can be laid out on the
membrane if the center-center distance between each protein is 6 nm.

. Show that a 1 nM concentration is roughly equivalent to 1 molecule in a volume of 1

E. coli cell.

. Estimate the number of protein molecules a typical E. coli cell can make per second

assuming the average protein is 360 amino acids long. Assume that the number of
proteins in a cell is 3,000,000. How long would it take to make 3,000,000 proteins?

. If it takes 1,500 ATP molecules to make an average protein, how long would it take

before all the ATP is used up? Assume the ATP is not being replaced.

. E. coli can be considered a cylindrical volume with length 2 pum and diameter 1 pm.

A reaction is known to occur in E. coli with an intensive rate of 0.5 mmol s—! /71,
What is the rate of reaction per volume of E. coli? If Avogadro’s number is 6.022 x
10?3, express the rate in terms of molecules converted per second per E. coli.

. What are the visual symbols often used to represent activation and repression in

biochemical networks?

. Draw a similar diagram to the glycolysis regulatory diagram (Figure 1.4) but for the

lysine, threonine and methionine biosynthesis pathway from E. coli.

Why is the size of an organism’s genome a poor indicator of the organism’s com-
plexity?

Describe the basic approach used to find network motifs.

Looking at motif b) in Figure 1.23, try to explain how it might operate as a memory
unit.

Study the network shown below and try to figure out its function. Use Figures 1.22, 1.23,

and 1.24 as guides.

1.8. NETWORK MOTIFS 31

Input O — O
\\:@

Initial State: / \
o O 0.9)

B = Off
C=0n

o ©
: ©

The AND block on the left of the network represents an AND gate, that is the output
of the block is only active if both inputs are also active.

32

CHAPTER 1. CELLULAR NETWORKS

Motif Structure

Name

Dynamic Properties

a)

Cascade Unit

1. Noise filter
2. Nonlinear amplifier

b) O
|

Coherent 1. Noise rejection
O Feedforward 2. Pulse shifter
) O
l Incoherent 1. Pulse generator
2. Concentration detector
O Feedforward .
/ 3. Response time accelerator
9 O
/O MUIt'I;StJtpUt Pulse train generator

Figure 1.24 Feedforward Network Motifs.

Kinetics in a Nutshell

2.1 Introduction

Understanding chemical kinetics is at the heart of building biochemical models. This chap-
ter gives a minimal introduction to some of the essential concepts of elementary chemical
kinetics. A fuller account is given in the companion book, ‘Enzyme Kinetics for Systems
Biology’. This chapter may be omitted by those already familiar with this topic.

2.2 Definitions

Reaction kinetics is the study of how fast chemical reactions take place, what factors influ-
ence the rate of reaction, and what mechanisms are responsible.
Stoichiometric Amount

The stoichiometric amount is the number of molecules for a particular reactant or products
takes part in a given reaction reaction. For example:

2A+3B - A+3C

In the above example the stoichiometric amount for reactant A is 2 and for B is 3. The
stoichiometric amount for product A is 1 and for C is 3.

33

34 CHAPTER 2. KINETICS IN A NUTSHELL

Depicting Reactions

aA+bB+...—> +pP +q0 + ...

where a, b, ..., p,q, ... are stoichiometric amounts.

Rates of Change

The rate of change is defined as the rate of change in concentration or amount of a desig-
nated molecular species.

ds
Rate of Ch = —
ate of Change = —

Stoichiometric coefficients

The stoichiometric coefficient, c;, for a molecular species A4;, is the difference between
the molar amount of species, i — also called the stoichiometric amount — on the product
side and the molar amount of the same species on the reactant side.

¢; = Molar Amount of Product — Molar Amount of Reactant

In the reaction, 24 — B, the molar amount of A on the product side is zero while on the
reactant size it is two. Therefore the stoichiometric coefficient of A4 is given by 0—2 = —2.
In many cases a particular species will only occur on the reactant or product side but it is
not uncommon to find situations where a species occurs simultaneously as a product and a
reactant. As a result, reactant stoichiometric coefficients tend to be negative while product
stoichiometric coefficients tend to be positive.

Reaction Rates

The reaction rate, often denoted by the symbol v, is measured with respect to a given
molecular species normalized by the species stoichiometric coefficient. This definition
ensures that no matter which molecular species in a reaction is measured, the reaction rate
is uniquely defined for that reaction. More formally, the reaction rate for the given reaction
is:

aA+bB+...—> pP+q0+...
1 dA 1 dB 1 dP 1dQ

cadt cpdt’ cpdt cgdt
where c, are the stoichiometric coefficients. Alternatively, we can express the rate of
change in terms of the reaction rate as:

dA
A = CaqV (2.1)

2.3. ELEMENTARY MASS-ACTION KINETICS 35

2.3 Elementary Mass-Action Kinetics

An elementary reaction is one that cannot be broken down into simpler reactions. Such

reactions will often display simple kinetics called mass-action kinetics. For a reaction of
the form:

aA+bB+...— +pP +qg0 + ...

the mass-action kinetic rate law is given by:

v="k1A*BY ... —k, PP Q1 ... (2.2)

k1 and k, are the forward and reverse rate constants, respectively.

2.4 Chemical Equilibrium

In principle, all reactions are reversible, meaning transformations can occur from reactant
to product or product to reactant. The net rate of a reversible reaction is the difference
between the forward and reverse rates. Given a reversible reaction such as:

A=B

we can observe the concentrations of A and B approach equilibrium (Figure 2.3).

1
[
"C% 0.8
< B
< 0.6
=
.2
5 04 —
§ A
g 0.2
O
0
0 2 4 6 8 10
Time

Figure 2.1 Approach to equilibrium for the reaction A = B, k; = 0.6, k, =

0.4, A0) =1, B(0) = 0. Progress curves calculated from the solution to the differ-
ential equation dA/dt = ko B — k1 A.

At chemical equilibrium the forward and reverse rates are equal and is described by the
relation:

36 CHAPTER 2. KINETICS IN A NUTSHELL

= =2 =Ky (2.3)

This ratio has special significance and is called the equilibrium constant, denoted by K.
The equilibrium constant is also related to the ratio of the rate constants, k1/k». For a
general reversible reaction such as:

aA+bB+...=pP +q0 + ...

and using arguments similar to those described above, the ratio of the rate constants can be

easily shown to be:
PPQT... ki

Keg=—5"7F7—"=—
‘T AaBb . ks
where the exponents are the stoichiometric amounts for each species.

2.4)

For a bimolecular reaction such as:
HA=H+A

chemists and biochemists will often distinguish between two kinds of equilibrium constants
called association and dissociation constants. Thus the equilibrium constant for the above
bimolecular reaction is often called the dissociation constant, K ;:
Ky = A 2.5

4= A (2.5)
to indicate the degree that the complex is dissociated into its component molecules at equi-
librium. As a reminder, the symbols such as H, HA, etc, represent the concentration of the
particular species. The association constant, K,, though less commonly used, describes
the equilibrium constant for the reverse process H + A = HA, that is the formation of a
complex from component molecules:

Kg= —— (2.6)

It should be evident that:

Kj=— Q2.7)

The equilibrium constant is also related to the standard free energy change, AG?, such that:
AG° = —RT In K,y
where R is the gas constant, and 7" the temperature. Rearranged we can also see that:

Kog = e 4G/RT (2.8)

2.5. MASS-ACTION AND DISEQUILIBRIUM RATIO 37

2.5 Mass-action and Disequilibrium Ratio

Although in closed systems reactions tend to equilibrium, reactions occurring in living cells
are generally out of equilibrium and the ratio of the products to the reactants in vivo is called
the mass-action ratio, I". The ratio of the mass-action ratio to the equilibrium constant is
called the disequilibrium ratio:

_r
Keq

P (2.9)

At equilibrium the mass-action ratio will be equal to the equilibrium constant, thatis p = 1.
If the reaction is away from equilibrium then p # 1.

For a simple unimolecular reaction it was previously shown that the equilibrium ratio of
product to reactant, B/A, is equal to the ratio of the forward and reverse rate constants.
Substituting this into the disequilibrium ratio gives:
k Bk
p=rka_ Bk
ki Ak
Therefore: v
p=— (2.10)
vf
That is, the disequilibrium ratio is the ratio of the reverse and forward rates. If p < 1, the
net reaction must be in the direction of product formation. If p is zero, the reaction is as out

of equilibrium as possible with no product present.

2.6 Modified Mass-Action Rate Laws

A typical reversible mass-action rate law will require both the forward and the reverse rate
constants to be fully defined. Often however, only one rate constant may be known. In these
circumstances it is possible to express the reverse rate constant in terms of the equilibrium
constant.

For example, given the simple unimolecular reaction, A = B, it is possible to derive the
following:

v =k1A—sz
ko B
=k1A|l1—-——
e (klA)
k1
Since Koy = o
2
r
v:klA(l—) (2.11)

38 CHAPTER 2. KINETICS IN A NUTSHELL

where I' is the mass-action ratio. This can be generalized to an arbitrary mass-action
reaction to give:

v =k1A“Bb...(1 _ L) =ki1A°B? ... (1—p) (2.12)

eq

where A% B? . .. represents the product of all reactant species, a and b are the correspond-
ing stoichiometric amounts, and p is the disequilibrium ratio. The advantage of this expres-
sion is that equilibrium constants are more experimentally assessable that rate constants.
For the reaction:

2A+ B — C+2D

where k1 is the forward rate constant, the modified reversible rate law is:
v=Fk A’B (1 —p) (2.13)

The modified formulation demonstrates how a rate expression can be divided up into func-
tional parts to include both kinetic and thermodynamic components [73]. The kinetic com-
ponent is represented by the term k1 A* B b .., while the thermodynamic component is
represented by the expression 1 — p.

We can also derive the modified rate law in the following way. Given the net rate of reaction
U = vy — vy, We can write this expression as:

Ur
v = vy 1—;

v=vr(l—p) (2.14)

That is:

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius
Publishing ISBN: 978-0982477335

Stoichiometric Networks

3.1 Stoichiometric Networks

Almost all cellular events involve some kind of chemical process that includes binding,
unbinding, or transformation of compounds in specific stoichiometric amounts. The bind-
ing of the yeast cell cycle proteins cdc2 and cdc13 to form a cdc2-cdc13 complex, or the
isomerization of glucose-6-phosphate to fructose-6-phosphate are two notable examples.
When we put a collection of these processes together, we form a stoichiometric network.

One of the key characteristics of stoichiometric networks is that mass is conserved at each
transformation step. For example, the transformation S; — S means that when one
molecule of Sy disappears, one molecule of S5 is formed. An example of a very simple
and minimal stoichiometric network is the two step pathway shown below:

U1)

S SH

S3

In this system mass is conserved at every stage. In more sophisticated models where electric
charge is also considered, charge will be conserved as well.

Elementary Reactions

Chemical reactions that involve no reaction intermediates other than a single transition state
are called elementary reactions.

39

40 CHAPTER 3. STOICHIOMETRIC NETWORKS

Elementary reactions have been depicted in a number of ways in the literature. For example,
the transformation of one species into another can be represented by a simple line with an
arrow at the tip. The direction of the arrow indicates the direction of the positive reaction
rate (Figure 3.1). If a reaction rate is —0.75 mol 171, this means the reaction proceeds in
the opposite direction indicated by the arrow at a rate of 0.75 mol 171, Most if not all

a) A—>» B b A<—=B ¢ A—B d) A —> B

Figure 3.1 Simple Transformations. a) A single arrow, indicates positive rate direction.
b) Two arrows showing explicit reversibility. ¢) Common barb style used to indicate re-
versibility. d) Reversibility with dominant arrow indicating positive direction.

reactions are in principle reversible, that is, the reaction can only go in both directions.
Unless otherwise stated by the author, the reversibility is defined by the rate law attached
to the reaction. Sometimes reversibility is explicitly indicted by using multiple arrows.
These come in various forms. One approach is to use two lines and add arrowheads to
both the reactant and product line as shown in Figure 3.1b. Other authors add a smaller
reverse arrow as shown in Figure 3.1d, or more commonly use a barbed style as shown in
Figure 3.1c. In example (d) and (c) it is not possible to know which direction represents the
positive reaction rate unless it is assumed left to right.

For a bimolecular reaction that depicts dissociation or association, the notation is shown in
Figure 3.2 (a) and (b). This style makes it clear that there is a stoichiometric constraint

C

Figure 3.2 Dissociation and Association Reactions. (a) Equal stoichiometric proportions
of compounds A and B combine to form a complex, C. (b) Likewise, complex A dissoci-
ates into equal proportions of B and C.

between A and B and B and C. One molecule of A reacts with one molecule of B to form
one molecule of C. This notation can be misused for example where lines departing from
a branch point are joined, thereby implying a stoichiometric constraint when none actually
exists.

The simple association and dissociation reactions can be naturally extended to depict situ-
ations where both association and dissociation occur in the same reaction as show in Fig-
ure 3.3.

3.1. STOICHIOMETRIC NETWORKS 41

A C

B D

Figure 3.3 A bimolecular interaction, coupling one process, A to C, to another, B to D.
Equal proportions of A and B combine to form equal proportions of C and D.

Example 3.1

Write out the individual reactions for the following network, taking care to indicate the correct
stoichiometries.

S3

o
AN

U1
S1 — S2

S4
Answer:
S] —> S2
Sz — S3
S2 — S4

One area that is sometimes problematic is visually depicting reactions with non-unity stoi-
chiometry. The previous examples assumed that each molecular species had a stoichiom-
etry of one. However, what if species A in Figure 3.2 has a stoichiometry of 2 and B a
stoichiometry of 3. How should these be represented? Figure 3.4 shows three depictions
that have been used by authors in the past. Sometimes simple arc extensions are used to
indicate the stoichiometry, as seen in Figure 3.4a. A variation of (a) is to use small barbs
at the tips of the reaction arcs [30] where the number of barbs indicate the stoichiometry
as seen in Figure 3.4b. Finally, stoichiometric numbers may be placed near the tips of the
arcs, as shown in Figure 3.4c.

Example 3.2

The following network is made from elementary reactions. Write out the individual reactions, taking
care to indicate the correct stoichiometries.

42 CHAPTER 3. STOICHIOMETRIC NETWORKS

B3

Figure 3.4 Alternative ways for visually depicting non-unit stoichiometries. The use of
numbers in (¢) makes it possible to depict fractional stoichiometries.

Answer:

24— B
B —-3C
A+C — D

Non-Elementary Reactions

Non-elementary reactions include all reactions that have hidden reaction intermediates.
The most familiar is the enzymatic reaction where the enzyme-substrate complex and free
enzyme are rarely shown in network diagrams. The effect of hiding intermediates is that
it is possible to include regulatory links. For example, an enzyme may be regulated by an
allosteric effector where the mechanism is quite complex. Very often this mechanism will
be hidden and instead, the action of the effector will be represented by a simple regulatory
line in the diagram. For example, if an enzyme that catalyzes the conversion of species
S1 to S» is inhibited by a repressor molecule R, or activator A, then we can depict this
situation as shown in Figure 3.5.

a) R b) A
S A’Sz S1 L’SZ

Figure 3.5 Depicting regulation: a) Repression; b) Activation.

The blunt end representing inhibition is fairly well established in the literature, while the
activation symbol is more variable. Here we will employ a filled circle at the end point to

3.1. STOICHIOMETRIC NETWORKS 43

indicate activation. If a non-elementary reaction is regulated by multiple inputs, we would
use a depiction similar to what is shown in Figure 3.6.

St

R—

) —
S,

Figure 3.6 Multiple regulators on one reaction.

In hiding detailed mechanisms we also invoke certain assumptions when converting the
diagrams to a mathematical model. In the case of a simple enzyme mechanism, we will
often assume the rapid-equilibrium or steady state assumption for the formation of enzyme-
substrate complex (See Appendix D). Sometimes these assumptions are reasonable, other
times they are not. For a more comprehensive discussion of these issues see the companion
book ‘Enzyme Kinetics for Systems Biology’.

In Chapter 1 the diagrammatic notation shown in Figure 3.7 was used for representing
gene regulatory networks. This single genetic unit is certainly non-elementary as it hides
a considerable amount of detail. We can treat the unit as if it were a reaction step whose
rate of reaction is the rate of protein expression. It is important to remember that whenever

1 e

Figure 3.7 Representing a single gene. [represents the inducer and P the expressed
protein.

one sees a regulatory link in a reaction step, it always means that the reaction is non-
elementary and hides other mechanistic details. The use of non-elementary reactions is a
high level representation because unwrapping every non-elementary reaction into its full
set of elementary reactions would make the network overly complex to view, understand
and parameterize. Figure 3.8 illustrates an example of a simple pathway drawn using non-
elementary reactions together with a feedback inhibition step and the equivalent unwrapped
view of the same system. The exploded view is clearly more complex. The mechanism
chosen for the inhibition is the simplest possible, and therefore the unwrapped view could
potentially be even more complex. There will be many instances where we will not know
how an effector acts mechanistically and therefore unwrapping an elementary reaction is
not an option.

44 CHAPTER 3. STOICHIOMETRIC NETWORKS

A) Network made from Non-elementary Steps

B) Equivalent Network made from Elementary Steps
ES; ES, ES;3
Sl—< >\‘52’< >\‘S3’< >‘S4—>
E, E, Ej
ES4

Figure 3.8 Equivalent networks made from non-elementary and elementary components.

Text Representation

Although representing biochemical networks using pictures is very common, it is also pos-
sible to represent networks using a text notation. Text representations are particulary easy
for computers to read. For example, a linear chain of four reactions is shown in Figure 3.9.

If a species is converted to a waste product such as degradation fragments, then the symbol
@ is typically used to represent the empty species set. For example:

A+B->2C¢C
cC->40

Three software tools that support text based input are Jarnac [148], Antimony [163], and
PySCeS [125]. The Python based application called Tellurium (tellurium.analogmachine.
org integrates Antimony and the simulator libRoadRunner (1ibroadrunner.org) and will
be used to illustrate all simulations in this book. There are also rule-based text notations
but these are beyond the scope of this book and are supported by tools such as BioNetGen
or PySB. See Maus et al. for a review [111].

In this book models will be expressed in the Antinomy syntax which was itself derived and
improved from the Jarnac syntax. For example, to represent the above model, we would
write the script in Antimony as shown in Listing 3.1.

tellurium.analogmachine.org
tellurium.analogmachine.org
libroadrunner.org

N

N o o b~

3.1. STOICHIOMETRIC NETWORKS 45

S1 -> 82
52 -> S3
83 -> 84

Figure 3.9 Simple textual representation of a linear chain of three reactions and four molec-
ular species.

$A + B -> 2 C; k1xAxB;
C -> ; k2xC;

Listing 3.1 Example Antimony model.

The $ sign in front of species A means that the species concentration is fixed. This means
that when compiled by a simulator such as libRoadRunner no differential equation for this
specie will be generated'. Also note that Antimony permits empty reactants or products
in a reaction. In this case the second reaction that consumes C does not specify what C
is converted to, only its rate, k2*C. The implication here is that the products of reaction
from C emerge into a large volume such that their concentrations remain approximately
unchanged during the process. It also implies that the products do not affect the reaction,
also evident in the rate law.

We can also use Antimony to initialize concentrations and parameters, Listing 3.2.

$A + B -> C; k1*A*B;

C -> ; k2xC;
k1 = 0.34; k2 = 4.5;
A =10; B =0; C = 0;

Listing 3.2 Example Antimony model with initialization.

Antimony offers a host of other features including models composed of other models, and
the ability to specify discrete events directly in the model, for example:

model cell
A+ B -> C; k1xA*xB;
C -> ; k2xC;

at (time >= 5) : k2 = k2/2;

"'We will return to the notion by ‘fixed species’ in the next chapter.

46 CHAPTER 3. STOICHIOMETRIC NETWORKS

end

Listing 3.3 Example Antimony script with events.

3.2 Standard Visualization Notation

Cellular networks have been depicted on wall charts for many decades using a variety of
informal notations which we have briefly reviewed. With the increased interest in protein
and gene regulatory networks, the variety of notations has proliferated. As a result, there
have been some efforts, must notably the Systems Biology Graphical Notation (SBGN),
to define a standard set of node and edge symbols to represent stoichiometric networks.
Another visual notation is employed by Biotapestry [98] which provides a concise and
easy to read notation for representing gene regulatory networks.

SBGN can represent stoichiometric networks using a notation called SBGN process de-
scription. For example, Figure 3.10 illustrates the SBGN approach to representing an
enzyme catalyzed reaction. Round shaped nodes or a stadium shape (pill shaped) repre-
sent small molecules such as DHAP, ATP and F6P. Rounded rectangles are used to repre-
sent macromolecules, in this case enzymes TPase (Triose phosphate Isomerase) and PFK
(phosphofructokinase). In the second reaction (Figure 3.10) ATP negatively regulates the
reaction.

Full details of this visual specification can be found at the SBGN web site www . sbgn.org;
Figure 3.11 summarizes the main symbols.

3.3 Mass-Balance Equations

Consider a simple network made up of two reactions, v, and v, with a common species,
S. vy and v, are the rates of reaction such that vy is the rate at which § is produced and in
the second reaction, v; is the rate at which S is consumed (Figure 3.12).

According to the law of conservation of mass, any observed change in the amount of species
S must be due to the difference between the inward rate, v1, and outward rate, v,. That is,
the change in S is the difference in the two rates, leading to the differential equation:

ds G.1)
— =v;—V .
7 1— V2
This equation is called a mass-balance equation. We can reexpress equation (3.1) as:
— = V1 — V2

dt 'V

www.sbgn.org

3.3. MASS-BALANCE EQUATIONS 47

a) Simple uni-uni reaction

TPase

i%l

b) More complex reaction with regulation

@

g—

Figure 3.10 SBGN notation for enzyme catalyzed reactions.

where S, is the amount in moles and V' is the volume. Alternatively, we note that:

dt

= V(v1 —v2)
This assumes the reaction rates are expressed in mol 1=! t~1. Biochemical models will
sometimes assume a constant unit volume so that numerically:

ds _ dsS,
dt dt

Although we will express the rate of change in terms of concentration, it is implied that we
are dealing with a constant unit volume so that the change in concentration is the same as
the change in amount. It is important to note that it is amounts that are mass conserved, not
concentration. For example, if movement is from one compartment to another compartment
with a different volume, it is necessary to factor in the volume difference and explicitly
express the rate of change in amounts (We will consider this in more detail in Chapter 8).

Unless otherwise stated, the following assumptions should be made about models in this
book:

1. Well-Stirred Reactor. Many biochemical models assume that the volume in which reac-
tions take place is well-stirred. This means there are no spatial inhomogeneities. For small
cells such as E. coli, this is a reasonable assumption. The diffusion rate of molecules in the
cytoplasm is so fast that a given molecule will, on average, sample every location in the E.

CHAPTER 3. STOICHIOMETRIC NETWORKS

48

Jojesado jou

Jojesado 1o

Jojesado pue

J

sJojesadQ |ealbo]
J

Bey

dewqns

P-4 @

SOPON 8oUdIB}RY

x8|dwod

~
ole 2ousjeAInba e J3avi Juswpedwoo Jos fidwia
a3avi
o (] I,
Jojesado Nd3
2Je 2160] |ea160 |é
SOPON Jaulejuo) slowpnw
J juabe Buiqunpad E
uone|nwys Alessagau . A_._| N
Heni E 138V 138Vl
adAjouayd e (o} (on]
uoniqiyu E _‘ N ainjesy
2\ pioe olejonu 1381
uoeIooss| Wn@‘
sisAjejeo E O—- 2
<+— e Tm_m< v ejnosjowoorw | 13EV1
uonenwis . uoeroosse \‘A EIETEE Inos)
Nd a3avi
uone|npow O—
A=I00 . ssao0.d ulepsoun VAHvA
T |esiwayo ajdwis e
; [v]
ssa204d papiwo E 9|qelEA 9)B)S ——BADHBA—
uononpoud @Algl
ssaooud v._H_.A uopeuoul Jo Jiun Amus payadsun e
uondwnsuod
—r—C)
souy Buiosuuo)) S8PON SS800.d spun Aelixny L SBPON [00d Amug)
f

o0
=
. p—
hel
3
<=
w2
S
S
p—
o)
Q
=
N
o=
z
ol
o
=
. p—
o]
o)
g
-
=
&)
ol
5]
w2
3
5]
S
k=)
St
=
@)
)
Q
=
5)
5
o
)
a4
=)
o
=
=
N
c
&
Z
@)
m
n
—
41-
%)
)
S
=
g0
- p—
=

%)
e
(o]
=}
oY)
Q
[}
=
=
=
g
o
e

www.sbgn.org

3.3. MASS-BALANCE EQUATIONS 49

U1 Vs

; ;
> >

Figure 3.12 Simple two step pathway.

coli cell in one second. In larger eukaryotic cells spatial homogeneity may occur as there
are known mechanisms to restrict diffusion of important molecules from a given location.
As such, the assumption of a well-stirred reactor may still apply. Ultimately, the validity of
the assumption rests with whether the model generates useful and verifiable predictions.

2. Large number of molecules. In the last chapter we reviewed the range of molecule
and ion numbers found in biological cells. The numbers varied from a few copies for the
Lacl repressor protein to many millions in the case of ions. When there are large numbers
of molecules or ions, concentrations can be approximated using a value that continuously
changes. In such cases we can use differential equations to model the rates of change.
When dealing with small numbers of molecules however, concentration as a continuous
variable may no longer make sense. For example, given that 1 nM roughly equates to one
molecule per E. coli cell, it doesn’t make much sense to quote a figure of 1.5 nM since
that implies 1.5 molecules per cell. When dealing with small numbers of molecules, it is
not possible to have a continuous range of concentrations. Under these circumstances a
discrete probabilistic approach is best. We will come back to this important topic later.

3. Unit Volume. Unless otherwise indicated, we will assume fixed unit volumes.

Model Complex Networks

For more complex systems such as the one shown in Figure 3.13 where there are multiple
inflows and outflows, the mass-balance equation is given by:

/

Inflows S; Outflows

~

dS;/dt =) Inflow — >_ Outflows

\/

Figure 3.13 Mass Balance: The rate of change in species S; is equal to the difference
between the sum of the inflows and the sum of the outflows.

50 CHAPTER 3. STOICHIOMETRIC NETWORKS

ds;

== Z Inflows — Z Outflows (3.2)

For an even more general representation, we can reexpress the mass-balance equations by
taking into account the stoichiometric coefficients. The rate at which a given reaction,
vj, contributes to change in a species §;, is given by the stoichiometric coefficient of the
species, S; with respect to the reaction, ¢;; multiplied by the reaction rate, v; (See equa-
tion (2.1)). That s, areaction j contributes ¢;; v; rate of change in species S;. For example,
with the reaction A — B which has a reaction rate v, and c4 is -1, we can say that the re-
action contributes —1v to the rate of change in A. For a species S; with multiple reactions
producing and consuming S;, the mass-balance equation (assuming constant unit volume)
is given by:

ds;
d_[l = Zc,-jvj (3-3)
J

where ¢;; is the stoichiometric coefficient for species i with respect to reaction, j. For
reactions that consume a species, the stoichiometric coefficient is often negative; otherwise
the stoichiometric coefficient is positive (See Chapter 2). In considering the simple example
in Figure 3.12, the stoichiometric coefficient for S with respect to v; is 4+1 and for v, is
—1. That is:

as n
a Cs1V1 T Cs2V2
or
ds
T (+Dvy + (=Dvz = v —v2

How we describe the construction of the mass-balance equation may seem overly formal,
however the formality allows us to write software that can automatically convert network
diagrams into mass-balance differential equations.

3.3. MASS-BALANCE EQUATIONS 51

Example 3.3

Consider a linear chain of reactants from S to S5 shown in Figure 3.14. Write out the mass-balance
equations for this simple system.

U1 U2 U3 V4
Si Sh S3 W Ss
Figure 3.14 Simple straight chain pathway.
dS] dSZ
—_ = -V — = V1 —V
di ! a 7
ass _ aSe _
a o 2Tn a BT
ds
d_ts =y (34

Each species in the network is assigned a mass-balance equation which accounts for the flows into
and out of the species pool.

Example 3.4
Write out the mass-balance equation for the branched system shown in Figure 3.15:
/
V1
S

N
N

Figure 3.15 Multi-branched pathway.

The mass-balance equations are given by:
dS
dt
ds»
dt

=V1 —VUz2—U3

= VU3 — V4 — Vs

52 CHAPTER 3. STOICHIOMETRIC NETWORKS

Example 3.5

Write out the mass-balance equation for the more complex pathway:

A+x 2 ox
v
X+vy 2 7z
v3
Z 2 Y4B

This example is more subtle because we need to take into account the stoichiometry change between
the reactant and product side in the first reaction (vq). In reaction vy, the stoichiometric coefficient
for X is 41 because two X molecules are made for every one consumed. Taking this into account,
the rate of change of species X can be written as:

ax +2
— =V v — v
97 1 1= V2

or more simply as vy — v,. The full set of mass-balance equations can therefore be written as:

dA dX
EZ—Ul E=U1—U2
dY dz
E=U3—U2 E=Uz—U3
dB
a

The last example (3.5) illustrates a very important aspect of converting a network diagram
into a set of differential equations. The process is potentially lossy. That is, it is not always
possible to fully recover the original network diagram from the set of derived differential
equations. This is because in one or more of the reactions, the stoichiometries may cancel.
In example (3.5) the reaction A + X — 2X is not recoverable from the final set of
differential equations. Instead, if we reverse engineered the differential equations, the first
reaction would be:
A—>X

which is not like the original. This is not a common occurrence although in protein sig-
naling pathways it might be more common than other kinds of networks. What it means
however is that sharing models by exchanging differential equations is not recommended.
This is one reason why standard exchange formats such as SBML [76] store models explic-
itly as a set of reactions, not as a set of differential equations. Many models are exchanged
using Matlab which means that much of the biological information, particularly informa-
tion on the underlining network, is lost. Exchanging models via computer languages such
as Matlab is therefore not recommended.

3.3. MASS-BALANCE EQUATIONS 53

Example 3.6

Write out the mass-balance equation for pathway:
S+ S3 l) S>
v2
252 —> S3
Sy —> 38,

In this example we have non-unity stoichiometries in the second and third reaction steps. The mass-
balance equations are given by:

ds das, 5

=y — =v; —2v
dt ! dt ! 2
@:v—v —v @=3v

7 2 3 1 7 3

Example 3.7

Write out the mass-balance equations for Py and P, for the following gene regulatory network:

The key to this problem is that the network diagram suggests that the regulation from P; to vs results
in no consumption of P;. Pp acts only as a regulator. That being the case, the two mass-balance
equations are:

dP,
@ T
dpP,
T T

From the previous examples we see that it is fairly straightforward to derive the mass-
balance equations from a visual inspection of the network. Many software tools exist to
assist in this effort by converting network diagrams, either represented visually on a com-
puter screen (for example, PathwayDesigner), or by processing a text file that lists the
reactions in the network (for example via Tellurium) into a set of differential equations
(See Appendix H).

54 CHAPTER 3. STOICHIOMETRIC NETWORKS

3.4 Stoichiometry Matrix

When describing multiple reactions in a network, it is convenient to represent the stoich-
iometries in a compact form called the stoichiometry matrix. Traditionally the matrix is
denoted by N, where the symbol N refers to ‘number’?. The stoichiometry matrix is a m
row by n column matrix, where m is the number of species and »n the number of reactions:

N = m X n matrix

The columns of the stoichiometry matrix correspond to the individual chemical reactions in
the network. The rows correspond to the molecular species, with one row per species. Thus,
the intersection of a row and column in the matrix indicates whether a certain species takes
part in a particular reaction or not. The sign of the element determines whether there is a
net loss or gain of substance, and the magnitude describes the relative quantity of substance
taking part in the reaction.

The elements of the stoichiometry matrix do not concern themselves with the rate of reac-
tion. This latter point is particularly important because various stoichiometric analyses can
be carried out purely on the stoichiometry without any reference to reaction rate laws.

The stoichiometric matrix is not concerned with describing reaction rates. Reaction
rates are given by rate laws in a separate vector (See section 3.9).

In general, the stoichiometry matrix has the form:

- v; —>

[e

where c;; is the stoichiometry coefficient for the i th species and j ™ reaction. As mentioned
before, the stoichiometry matrix is generally a lossy representation. That is, it is not always
possible to revert back to the original biochemical network from which the matrix was
derived. For example, consider the simple stoichiometry matrix:

-1 0
N = 1 -1
0 1

The most obvious network that this matrix could have been derived from is:

A— B
B—C

2Some recent flux balance literature uses the symbol S; the traditional symbol N will be used here.

3.5. REVERSIBILITY 55

But an equally plausible network is:

2 — A+ B
B—C

It is not possible from the stoichiometry matrix alone to determine the original network.

Example 3.8
Write out the stoichiometry matrix for the simple chain of reactions which has five molecular species
and four reactions as shown below. The four reactions are labeled, v; to v4.

U1 U2 U3

S3 S4

V4

Sl S2 SS

The stoichiometry matrix for this simple system is given by:

U1 1%} V3 VU4
-1 0O 0 O S1
1 -1 0 0 S>

0
0 0 1 -1 Sy
0

The rows and columns of the matrix have been labeled for convenience. Normally labels are absent.

Example 3.9
Write out the stoichiometry matrix for the multibranched pathway shown in Figure 3.15.
V1 VU3 V3 VU4 Vs

N = I -1 -1 0 0] S
0 0 1 -1 -1 S>

3.5 Reversibility

Up to this point we have not discussed whether a given reaction is reversible or not. When
dealing with kinetic models, reversibility often manifests itself as a negative reaction rate
in the rate law. For example, the rate law for the simple mass-action reversible reaction
A = B is given by:

vV = kl A— sz

56 CHAPTER 3. STOICHIOMETRIC NETWORKS

When this reaction goes in the reverse (right to left) direction, the reaction rate, v, will be
negative. This may not be apparent from the stoichiometry matrix, which in this case is:

[

Information on reversibility is therefore traditionally found in the rate law. In this example
the rate law could equally have been k1 A, suggesting an irreversible reaction. Depending
on the modeling problem, reversibility can be made more explicit in the stoichiometry
matrix by specifying a separate reaction path for the reverse reaction. For example, in the
previous example we might instead represent the system by two separate rate laws:

A— B Uf=k1A
B—> A Urzsz

The stoichiometry matrix now becomes:

=[]

Splitting a reaction into separate forward and reverse steps might not always be possible
however. For example, an enzyme catalyzed reversible reaction such as A = B cannot be

represented using:

dB

o= Vf — Uy
where vy is the forward rate and v, the reverse rate. At first glance we might choose to
model the forward and reverse rates using irreversible Michaelis-Menten rate laws (D.2).
However, the forward and reverse reactions are not independent. They are connected by
the shared free enzyme pool so that when the forward rate rises, the reverse rate falls due
to competition for free enzyme. If the modeler insists on separating the forward from the
reverse rate, then the full enzyme mechanism in terms of elementary steps must be used
(See the companion text book Enzyme Kinetics for Systems Biology for more details).
Alternatively, and more commonly, a reversible enzyme catalyzed reaction is expressed
using the reversible Michaelis-Menten equation (D.4):

_ Vi/Ks(S = P/Keg)
1+S/Ks+ P/Kp

where S and P are the substrate and product concentrations respectively. Vy is the max-
imal forward rate. Some modelers will choose to express all reactions using elementary
reactions but this poses its own problems, particularly when trying to set values for the
many elementary rate constants that result. Ultimately, the decision has to be made on a
case by case basis and will depend on the model’s purpose.

Before leaving the topic of reversibility, it is worth mentioning product inhibition. This
occurs when the product binds to an enzyme without resulting in any reverse reaction rate.

3.6. SIGNALING NETWORKS 57

However, binding of product competes with substrate which in turn represses the forward
rate. Reactions that are often considered irreversible can still be affected by product. More
details are provided in section D.5.

To illustrate how we apply the stoichiometry matrix to different kinds of networks, let’s
look at a simple signaling network and two simple gene regulatory networks.

3.6 Signaling Networks

Figure 3.16 illustrates a simple protein signaling network comprised of two double phos-
phorylation cycles coupled through activation by protein C on the lower double cycle (D, E
and F). In this model all species are proteins and we assume that protein A and D are un-
phosphorylated, B and E singly phosphorylated, and C and F doubly phosphorylated. C
acts as a kinase and phosphorylates D and E. The reverse reactions, vy, V4, v7 and vg are
assumed to be catalyzed by phosphatases.

vy Vg
/\ RN
B-® COO

RN

D E®7 F-O0®
_

Vg vg

Figure 3.16 Simple signaling network. Protein C activates the activity of reactions vs and
Ve.

There is no specified stoichiometric mechanism for the activation on vs and ve. Therefore,

the stoichiometric matrix will contain no information about this. The stoichiometric matrix
for this system is:

Vi V2 U3 Vg Vs Vg VU7 Ug
AT-1 1 0 0 0 0 0 07
B 1 -1 -1 1 0 0 0 0
C 0 0 1 -1 0 0 0 0
N=1p 0 0 0 0 -1 1 0 0 3-5
E| o0 0 0 0 1 —1 —1 1
FL o o 0o 0 0 0 1 -1

58 CHAPTER 3. STOICHIOMETRIC NETWORKS

The matrix is composed of two separate blocks corresponding to the two cycle layers. It is
important to emphasize again that whenever there are regulatory interactions in a pathway
diagram, these do not appear in the stoichiometry matrix. Instead, such information will
reside in the rate laws that describe the regulation. If however the mechanism for the
regulation is made explicit, then details of the regulation will appear in the stoichiometry
matrix. Figure 3.17 shows a simple example of an inhibitor, 7, regulating a reaction, S
to P. The left displays an implicit regulatory interaction. All we see is a blunt ended
arrow indicating inhibition. In this case details of the regulation will be found in the rate
law governing the conversion of S to P. On the right is an explicit mechanism, a simple
competitive inhibition. In this case details of the inhibition mechanism will find its way into
the stoichiometry matrix, although from an inspection of the matrix, the type of regulation
may not be obvious.

Figure 3.18 shows a comparison of the implicit and explicit models in terms of the stoi-
chiometry matrix. In each case the rate laws also change. In the implicit form, the rate law
will be a Michaelis-Menten competitive inhibition model whereas in the explicit model, the
rates laws (now multiplied in number) will be simple mass-action rate laws. The choice of
what to use, an implicit or explicit model, will depend entirely on the type of question that
the model is attempting to answer. There is no right or wrong way to do this, the details of
a model will depend on the type of question being asked.

v, v,

. S+E ES —S-E4+P
(V)
S——p
Uy EI Uy
Implicit Regulatory Explicit Regulatory
Interaction Interaction

Figure 3.17 Example of implicit and explicit depiction of a regulatory interaction. The
left-hand mechanism involving inhibitor, 7, will not appear in the stoichiometry matrix
whereas in the explicit mechanism, it will.

3.7 Gene Regulatory Networks

Consider a transcription factor P; that represses a gene with expression rate vz shown in
Figure 3.19, left panel. In this model we have production of P; from reaction vy, and
degradation of P; via v,. The construction of the stoichiometry matrix will depend on how
we represent the regulated step, vs. If regulation is implied, meaning there is no explicit
kinetic mechanism, then the regulation will not appear in the stoichiometry matrix. For the

3.7. GENE REGULATORY NETWORKS 59

U1 1% U3 V4 U5
S [-1 1 0 —1 1 7]
U1
P P 0 0 1 0 0
1 0 0 0 —1 1
N= II) (1) N= E —1 1 1 -1 1
ES I -1 -1 0 0
EIL 0 0 0 1 —1 |
Implicit Explicit

Figure 3.18 Stoichiometry matrices corresponding to the two models in Figure 3.17.

network on the left in Figure 3.19, the stoichiometry matrix is:

U1 [%)
N=pP [1 —1] (3.6)

The stoichiometry matrix has only one row indicating that there is only one species in the
model, Pp, and there is no hint in the stoichiometry matrix of any regulation. In this model
P is not explicitly sequestered by the operator site upstream of the gene. We make the
significant assumption that when P; regulates, its own state is not affected in any way.

Consider now that the interaction between P; and vs is made mechanistically explicit.
The right-hand network in Figure 3.19 shows one possible way in which to represent the
interaction of the transcription factor, Py with gene v3. In the explicit model the transcrip-
tion factor P is assumed to bind to a repressor site preventing gene expression. In the

Implicit Model Explicit or Mechanistic Model
. -

1 Vo 1 Vo _I.->Active
U1
Pl 1 -) Uyuf
=0
far nactive

U1
—

Figure 3.19 Two simple gene regulatory networks involving gene repression. On the left
side is the implicit model where P; represses v3, on the right side is the explicit model
showing a more detailed mechanism for the regulation.

explicit model there are two new species, designated active gene and inactive gene. The
stoichiometry matrix will therefore include two additional rows corresponding to these two

60 CHAPTER 3. STOICHIOMETRIC NETWORKS

new species. The stoichiometry matrix for the explicit model is shown here:

Vi V2 V4r V4f
P 1 -1 -1 1

N = Pji(Active) 0 0 -1 1 3.7)
Pi(InActive) 0 0 1 -1

In this case P; is actively sequestered onto the operator site and therefore appears in the
stoichiometry matrix. Processes such as consumption, production, or sequestration by some
binding mechanism will appear as columns in the stoichiometry matrix.

In conclusion, regulation does not appear explicitly in a stoichiometry matrix unless the
regulation is represented as an explicit mechanistic scheme. The choice of implicit or
explicit representations depends on the question being asked and the availability of suitable
data.

3.8 Moiety Conserved Cycles

Many cell processes operate on different time scales. For example, metabolic processes
tend to operate on a faster scale than protein synthesis and degradation. Such time scale
differences have a number of implications to model builders, software designers, and model
behavior. In this chapter we will briefly examine some of these aspects in relation to species
conservation laws. We will return again to the topic in Chapter 5.

To introduce this topic, consider a simple protein phosphorylation cycle such as the one
shown in Figure 3.20. This shows a protein undergoing phosphorylation (upper limb) and
dephosphorylation (lower limb) via a kinase and phosphatase, respectively.

®
"

Figure 3.20 Phosphorylation and dephosphorylation cycle forming a moiety conservation
cycle between unphosphorylated (left species, A) and phosphorylated protein (right species,
AP).

The depiction in Figure 3.20 is a simplification. The ATP used during phosphorylation
and the release of free phosphate during the dephosphorylation event are not shown. In
addition, synthesis and degradation of protein is also absent. In many cases we can leave
these aspects out of the picture. ATP for instance is held at a relatively constant level by
strong homeostatic forces from metabolism so that within the context of the cycle, changes

3.8. MOIETY CONSERVED CYCLES 61

in ATP isn’t something we must worry about. More interesting is that within the time scale
of phosphorylation and dephosphorylation, we can assume that the rate of protein synthesis
and degradation is negligible (Figure 3.21). This assumption is more significant and leads
to the emergence of a new property called moiety conservation [143].

Protein Synthesis
(slow)

Protein Degradation
(slow)

Figure 3.21 Phosphorylation and dephosphorylation cycle that also includes the slower
process of protein synthesis and degradation. We assume that the phosphorylated and un-
phosphorylated protein can be degraded but only the unphosphorylated protein is synthe-
sized.

In chemistry a moiety is described as a subgroup of a larger molecule. In this case the
moiety is a protein. During the interconversion between the phosphorylated and unphos-
phorylated states, the amount of moiety (protein) remains constant. More abstractly we can
draw a cycle in the following way (Figure 3.22), where S; and S5 are the cycle species:

Figure 3.22 Simple conserved cycle where S; + S> = constant.

The two species S1 and S, are conserved because the total S; + S remains constant over
time (at least over a time scale shorter than other processes that may be involved). Such

62 CHAPTER 3. STOICHIOMETRIC NETWORKS

cycles are collectively called moiety conserved cycles.

Moiety: A subgroup of a larger molecule.

Conserved Moiety: A subgroup whose interconversion through a
sequence of reactions leaves it unchanged.

Protein signalling pathways abound with conserved cycles such as these although many are
more complex and may involve multiple phosphorylation reactions. In addition to protein
networks, other pathways also possess conservation cycles. One of the earliest conservation
cycles to be recognized was the adenosine triphosphate (ATP) cycle. ATP is a chain of three
phosphate residues linked to a nucleoside adenosine group as shown in Figure 3.23.

NH,
NZ | \>
N
N N
WOH
o
NN o
HO 0 0 o)
I I I
.0 -0 -0

Figure 3.23 Adenosine Triphosphate: Three phosphate groups plus an adenosine sub-
group.

The linkage between the phosphate groups involves an unstable phosphoric acid anhydride
bond. These bonds can be cleaved by hydrolysis one at a time leading to the formation of
adenosine diphosphate (ADP) and adenosine monophosphate (AMP), respectively. The hy-
drolysis provides much of the free energy to drive endergonic processes in the cell. Given
the insatiable need for energy, there is a continual and rapid interconversion between ATP,
ADP and AMP as energy is released or captured. One constant during these interconver-
sions is the amount of adenosine group (Figure 3.25). Adenosine is a conserved moiety.
Over longer time scales there is also the slower process of AMP degradation and biosyn-
thesis via the purine nucleotide pathway; but for many models, we assume that this process
is very slow compared to ATP turnover by energy metabolism.

3.9. THE SYSTEM EQUATION 63

Degradation,

ATP = > ADP = > AMP T€III55 g thesis
\ / /
T
Fast Slow

Figure 3.24 The interconversion of ATP, ADP and AMP is generally considered fast in
comparison to the slow process of synthesis and degradation of AMP.

There are many other examples of conserved moieties such enzyme/enzyme-substrate com-
plexes, NAD/NADH, phosphate and coenzyme A. In all these cases the basic assumption
is that the interconversions of the subgroups is rapid compared to their net synthesis and
degradation. We should emphasize that in reality, conserved moieties do not exist since all
molecular subgroups will at some point be subject to synthesis and degradation. However,
over sufficiently short time scales, the sum total of these groups can be considered constant.

ATP ADP AMP

OH

o o OH
Ho | _o. | _o. |l _o Ho | _o. Il _o

[l 1
0 0 0 0

Figure 3.25 The adenosine moiety, indicated by the boxed molecular group, is conserved
during the interconversion of ATP, ADP and AMP.

3.9 The System Equation

Equation (3.3), which describes the mass-balance equation, can be reexpressed in terms of
the stoichiometry matrix to form the system equation:

ds

— =N 3.8
7 v (3.8)

where N is the m X n stoichiometry matrix and v is the n dimensional rate vector, whose
ith component gives the rate of reaction i as a function of the species concentrations. s is
the m vector of species. This is a key equation for describing a network of processes inside

64 CHAPTER 3. STOICHIOMETRIC NETWORKS

a cell. Of particular significance is that the equation explicitly separates the network, in the
form of N, from the process rates, v.

Looking again at the simple chain of reactions in Figure 3.14, the system equation can be
written as:

1 0 0 0
s 1 -1 0 0 Z;
- =Nv= 0 1 -1 0 : (3.9)
0 0 1 -1 3
0 0 0 1 va

If the stoichiometry matrix is multiplied into the rate vector, the mass-balance equations
shown earlier (3.4) are recovered. To illustrate what the system equation might look like
for a simple system, consider the following model expressed in Antimony format:

A -> B; ki1*A - k2%B;
B -> C; k3*B - k4x*C;

The system equation for this model is:

[klA_sz] (3.10)

k3B —k4C

3.10 Tellurium

The modeling platform Tellurium [148] provides facilities to extract the stoichiometry ma-
trix from a model. The command for generating the stoichiometry matrix is getFull-
StoichiometryMatrix (). The short-hand version for this command is sm. The script and
results of a run are given below:

import tellurium as te

r = te.loada (''"'
J1: A -> B; ki1xA - k2xB;
J2: B -> C; k3*%B - k4xC;

ki =0.1; k2 = 0.02;

k3 = 0.3; k4 = 0.04;

A = i0g, B = 03 G = 0
lll)

print r.getFullStoichiometryMatrix()
print r.getReactionIds()
print r.getFloatingSpeciesIds()

3.10. TELLURIUM 65

If this script is run, the output is:

[[1. -1.]
[-1. 0.]

[0. 1.1
[IJll, 'J2']
[lBl, IAI, lCI]

The row and column order in the stoichiometry matrix can obtained from calls to
rr.getReactionIds()

for the column order and

rr.getFloatingSpeciesIds()

for the row order. Using the supported shortcuts (See appendix), the script becomes:

import tellurium as te

r = te.loada (''"'
J1: A -> B; k1*xA - k2xB;
J2: B -> C; k3*%B - k4xC;

k1 =0.1; k2 = 0.02;

k3 = 0.3; k4 = 0.04;

A = i0g, 83 = 03 C s 0f
lll)

print r.sm()
print r.rsQ)
print r.fs()

Further Reading

1. Palsson BO (2006) Systems Biology Systems Biology: Properties of Reconstructed
Networks. Cambridge University Press, ISBN: 978-0521859035

2. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius
Publishing ISBN: 978-0982477335

3. Stephanopoulos G, Aristidou A, and Nielsen J (1998) Metabolic engineering: prin-
ciples and methodologies. Academic Press, ISBN: 978-0126662603

66 CHAPTER 3. STOICHIOMETRIC NETWORKS

Exercises

1. Explain the difference between the terms: Stoichiometric amount, stoichiometric
coefficient, rate of change (dX/dt), and reaction rate (v;). Refer to Chapter 2 to
answer this question.

2. Determine the stoichiometric amount and stoichiometric coefficient for each species
in the following reactions (Refer to Chapter 2 to answer this question):

A— B

A+ B —C
A— B+C

2A — B
3444B —2C + D
A+B—A+C
A+2B—3B+C

3. Derive a set of differential equations for the following model in terms of the rate of
reaction, vq, Uy, and vs:

A% 2B
B3¢
cByg

4. Derive the set of differential equations for the following model in terms of the rate of
reaction, vy, v, and v3:

AL B
2B+CB3B+D
DIAcCc+4

5. Write out the stoichiometry matrix for the networks in question 3 and 4.

6. Enter the previous models, 3 and 4, into Tellurium and confirm that the stoichiometry
matrices are the same as those derived manually in the previous question.

7. Derive the stoichiometry matrix for each of the following networks. In addition,
write out the mass-balance equations in each case.

()

3.10. TELLURIUM 67

(b)

(c)

(d)

A+X 5 B+y

V3

B+X-3yY

B2 C C+X 2Dty
D+Y 32X XXy
v7 vg
X+w 2oy 2w B x+w

8. For the irreversible enzyme catalyzed reaction, A — B:
(a) Write out the stoichiometry matrix.
(b) Write out the stoichiometry matrix in terms of the elementary reactions that make

up the enzyme mechanism.

9. A gene G expresses a protein p; at a rate vy. p; forms a tetramer (4 subunits),
called p‘l1 at a rate v. The tetramer negatively regulates a gene G,. p; degrades at
arate v3. G, expresses a protein, pp at a rate vg. p; is cleaved by an enzyme at a

68 CHAPTER 3. STOICHIOMETRIC NETWORKS

rate v4 to form two protein domains, p% and p%. p% degrades at a rate vs. Gene G3
expresses a protein, p3 at a rate vg. p3 binds to p% forming an active complex, p4
at a rate vq9, which can bind to gene G and activate G. p4 degrades at a rate v7.
Finally, p; can form a dead-end complex, ps, with p4 at a rate vg.

(a) Draw the network represented in the description given above.

(b) Write out the differential equation for each protein species in the network in
terms of vy, V7, ...

(c) Write out the stoichiometric matrix for the network.
10. Write out the differential equations for the system depicted in equation (3.9).

11. Given the following stoichiometry matrix, write out the corresponding network dia-
gram. Why might this process not fully recover the original network from which the
stoichiometry matrix was derived?

Af=1 0 -1 0 0
B 1 -1 0 0 3
cl o 2 -1 o0 o
p| 0 0 1 -1 0 3.11)
E| 0 0 0 1 -1
F| o0 0 0 o0 1
6L 0 0 0 -1 0

e .
Vg Vs v o®
U1 g 7

13. Why is it better to store a model as a list of reactions rather than a set of differential
equations?

Introduction to Modeling

4.1 Introduction

The universe is a very large place and to study it in its entirety would not be practical.
Instead, we always study a small portion of the universe, often under very controlled con-
ditions which we call a system. Everything else other than the system is called the sur-
roundings. Between the system and the surroundings we, as scientists, try to enforce strict
rules on how the system interacts with the surroundings. These interactions occur at the
system boundary.

The system is a defined region of the universe that we wish to study.
The surroundings is everything else other than the system.

The boundary is the interface between the system and the surroundings.

The word system derives from a Greek term that means “place together”, suggesting a
system is one or more parts working together.

In order to make the study of a particular system possible, we will often impose strict
conditions on how the system interacts with the rest of the universe. If the system were
allowed to freely interact with its surroundings, then we’re effectively back to studying the
entire universe again. When we study a system, we make sure that we know exactly how
the system interacts with its surroundings and in ways that we can control.

69

70 CHAPTER 4. INTRODUCTION TO MODELING

The actual boundary of the system is however entirely at the discretion of the experimenter
and depends on practical as well and scientific considerations. The important point is that
the boundary is under our strict control, at least in principle. The nature of this control also
determines whether our system is open, closed or isolated.

In general, the experimenter decides the location of the boundary that exists between
the system and the surroundings. Once set, the experimentalist will usually impose
constraints on how the surroundings and system are allowed to interact with each other.

4.2 Open, Closed, and Isolated Systems

When considering systems it is helpful to distinguish between three types of boundary
conditions that exist between the system and the surroundings. These types are called
isolated, closed and open systems. Each of these systems represent an idealized state. In
practice we try to approximate them as well as possible. An isolated system, as the name
suggests, is completely cut off from the rest of the universe, that is neither energy nor matter
can be transferred across the isolated system’s boundary. A closed system is one that only
transfers energy, for example heat, work or light. An open system is one that can exchange
both energy and mass with the surroundings.

System Property

Isolated No transfer of energy or matter
Closed No transfer of matter
Open Transfer of matter and energy

The distinction between a closed and open system in biology is very important. Open
systems are characteristic of biological systems. For example, glycolysis is a pathway for
converting an external nutrient source such as glucose, into available energy, such as ATP
or heat and waste products lactate or ethanol. That is, it exchanges mass and energy with
the surroundings. Without mass and energy exchange, biological systems would eventually
run to thermodynamic equilibrium and cease to function. All models of living biological
systems are therefore open.

Example 4.1

For each of the following systems, decide whether the system is isolated, closed or open. Comment
on the nature of the surroundings.

i) A system represented by a mechanical clock slowly winds down in a room controlled by a ther-
mostat.

4.3. WHAT IS A MODEL? 71

Isolated System Closed System
\L1V)
S\‘ "’¢ Energy
= —
z $
2, N
?, \
TN\
Open System
\LI D) Energy
\bl/
R
- et
- ~———> Mass
= ~
¢' \\
I\

Figure 4.1 Open, Closed, and Isolated Systems.

The clock starts with an amount of potential energy in the wound spring which slowly dissipates,
ultimately as heat which is transferred to the surroundings. No mass is exchanged with the room.
The clock is therefore a closed system. Because the clock is in a temperature controlled room, the
temperature of the room appears constant to the clock even though the clock dissipates heat.

ii) A car engine running idle in the open air.

The car engine is burning fuel that generates both waste gases and heat. The heat and waste gases
are lost to the surroundings. At the same time the car engine takes in oxygen. The car system is
therefore open since it exchanges both matter and energy with the surroundings. In addition, given
that the exchange takes place in the open, the surrounding temperature, oxygen and carbon dioxide
levels appear constant because the large volume of the atmosphere acts as a buffer. We assume that
the fuel tank is part of the system.

iii) A bacterial culture is grown in batch and kept in a sealed and insulated chamber.

The batch vessel is isolated and therefore the culture itself is an isolated system. There is no ex-
change of mass or energy with the surroundings. However, if we focus our attention on a single
bacterium, we would have to conclude that a single cell is an open system which consumes nutri-
ents, produces waste, and generates heat. However, the bacterial surroundings are not kept constant
and the temperature. as well as waste products. rise with the loss of nutrients. Eventually the
nutrients are used up, the culture dies, and the system tends to thermodynamics equilibrium.

4.3 What is a Model?

There are many ways to describe systems, ranging from pictures or cartoons to verbal and
mathematical representations. Collectively, these descriptions are called models. A model
is our way of describing a particular system. The Oxford English Dictionary defines a
model in the following way:

“A simplified or idealized description or conception of a particular system,

72 CHAPTER 4. INTRODUCTION TO MODELING

situation, or process, often in mathematical terms, that is put forward as a basis
for theoretical or empirical understanding, or for calculations, predictions, etc.”

This definition embodies a number of critical features that define a model, the most im-
portant being that a model represents an idealized description, a simplification, of a real
world process. This may at first appear to be a weakness, but simplification is usually done
intentionally. Simplification allows us to comprehend the essential features of a complex
process without being burdened and overwhelmed by unnecessary detail.

A more interesting way to describe models is to use mathematics, a language created for
logical reasoning. Mathematical models are useful in biology for a number of reasons, but
the three most important are increased precision, prediction, and the capacity for analysis.
Analysis is carried out either by simulation or by mathematical analysis. Although visual
models can be used to make predictions, the kinds of predictions that can be made are
limited. The use of mathematical models opens up whole new vistas of study which visual
models simply can not match.

A model is a simplified description of a system. A model can be used to represent
known facts about the system and hypotheses concerning the system’s operation. Mod-
els can be described using pictures, plain text, mathematics or computer software.

Models come in various forms including verbal, written text, visual, mathematical (4.1),
and others. Molecular biology has a long tradition of using visual models to represent cel-
lular structure and function; one need only look through a modern textbook to see instances
of visual models on every page. Visual models have been immensely useful at describing
complicated biological processes but are limited in scope.

Like visual models, mathematical models can serve at least two important roles in systems
biology:

e Heuristic Models

Heuristic models serve as test beds for investigating basic principles, for example the
effects of feedback or sequestration. Heuristic models are employed to aid reasoning
about particular aspects of biological networks. Heuristic models are frequently used
to illustrate properties of biological networks.

e Particular Models

Particular models are constructed to model a specific real system, such as glycoly-
sis [171], apoptosis [157], or the sporulation circuit in Bacillus subtilis [80]. They
represent a working hypothesis for a particular biological system, and allow us to
generate predictions about the real system and falsifiable statements about the model.

4.3. WHAT IS A MODEL? 73

Particular Models

What makes a good particular model? There are a range of properties that a good model
should exhibit, but the most important are accuracy, predictability and falsifiablity.

> A model is considered accurate if the model is able to describe current experimental
observations by reproducing the current state of knowledge.

> A predictive model should be able to generate insight and/or predictions beyond current
knowledge. Without this ability, a model is considerably less useful, some would even
suggest useless.

> Finally, a model should be falsifiable. By this we mean that a model cannot be proven
true, only disproved. The only discipline where statements can actually be proven true or
false is mathematics. Starting with a set of axioms, mathematicians derive theorems that
can be shown beyond any doubt to be true or false. In contrast, scientific models based on
observations cannot be proven correct. This is because it is simply not possible to test every
possible circumstance in which the model may apply and be able to make the necessary
measurements error free. Instead, we are left with two options: model falsification and
model validation.

Model Falsification

We can falsify a model by finding observations that the model fails to predict. In this
case the model must be changed or abandoned. Although the idea of falsifying a model is
appealing, in practice it is not often used since even partially correct models can at times
be useful. This leads to the second option, model validation which is the most commonly
used approach.

Model Validation

Model validation is based on the idea that predictions made by a model are verified by
experimentation. The word validate may imply that once a model is ‘validated’, the model
can now be considered a true representation of the real system, but this is not accurate. A
validated model is simply one where our confidence in a model’s ability to predict and pro-
vide insight has improved. As already suggested, no model is correct. The utility of a model
is based on how well it can make useful predictions and how well it fits existing knowledge.
Models will have a certain scope within which they are useful. For example, Newtonian
mechanics is useful for describing objects traveling at speed much slower than the speed of
light. Objects traveling close to the speed of light cannot be described by Newtonian me-
chanics. Michaelis-Menten kinetics is useful for describing steady state systems, but is less
useful for describing transient behavior if enzyme concentration is higher or comparable to
substrate concentration. One role of model validation is therefore to delineate its scope.

Thus, validation serves two purposes: to describe the scope of a model and to increase con-

74 CHAPTER 4. INTRODUCTION TO MODELING

fidence in the ability of the model to make useful predictions. It is important to understand
that validation does not ‘prove’ that a model is correct since no such statement can be made.

Models cannot be proved to be true. We can only improve our confidence in a model’s
utility through experiment.

Other Attributes

There are other desirable model attributes including parsimonious and selective. A parsi-
monious model is a model that is as simple as possible, but no simpler. Occam’s infamous
razor states that “Entities should not be multiplied beyond necessity” and argues that given
competing and equally good models, the simplest is preferred. Finally, since no model can
represent every single detail of a system, a model must be selective and represent those
things most relevant to the task at hand.

4.4 Building a Model

In this section we will introduce modeling by building a simple water tank model. We will
wait until Chapter 5 before discussing how to use software to run a model simulation.

Water Tank Model

Figure 4.2 shows two water tanks. This is a pictorial model of our system. Our aim it to
attempt to make quantitative predictions on the height of water in the tanks. We cannot
easily do this with just the picture diagram. Instead we must convert the picture into a
mathematical model.

Let us first verbally describe the model. The first tank is fed with water at a rate Q1 (m3
s~1). This tank drains into a second tank at a rate 0>, which in turn drains to waste at a rate
Q3. The second tank has an additional feed of water flowing in at a rate 4. The height of
the water level in each tank is given by /1 and /5, respectively and the volumes by V; and
V5. Each tank has a cross sectional area, A. In building the mathematical model we will
make some assumptions, most notably:

e Mass is conserved as water moves from one tank to another.
e External environment is constant, for example the temperature.

e We assume Torrielli’s Law for the flow of water out of a tank.

With the assumptions in place, we can now start to construct a mathematical model of the
tank system.

4.4. BUILDING A MODEL 75

The rate of change in the volume of water in a given tank is the rate at which the water
enters, minus the rate at which it leaves. For the first tank that rate of change of volume,
Vi, 1s:

% =01-0>
This uses the assumption of conservation of mass. If we want the equation in terms of the
rate of change of height, then we need to recall that V = Ah, that is:

av _dh o dh_ 1 dh
dt dt dt A dt
so that:
dhi _ 01— 0>
dt A

Using Torrielli’s Law! we know that the rate of water flowing out of a given tank, i, is equal

to:
Qi = Kivh;

Where K; is a constant related to the resistance of the output pipe. Therefore, for the first

tank we have:
dhy _ 01— Kvh
dt A

Figure 4.2 Water Tank Model.

Describing the height of the second tank is slightly more complicated because we also have
the additional flow Q4. Again we will invoke the law of mass conservation to state that any
change in volume must be due to the difference in water flow into the tank and out of the
tank. That is, the rate of change of the second tank volume is given by:
dV,
_Z — + _
g =221 04— 05

"http://en.wikipedia.org/wiki/Torricelli’s_law

http://en.wikipedia.org/wiki/Torricelli's_law

76 CHAPTER 4. INTRODUCTION TO MODELING

_hl m

e R e i ha |
= .
=t
=
<
= 5
.20
>
T

0
0 5 10 15 20 5

Time
Figure 4.3 Simulation of the tank model.

Using the relationship between volume, area and the height /5, we can write:
dhy 02+ 04— 03

dt A

0, was given previously as K1+/h1, likewise, Q3 is given by K, +/h». Therefore the full
differential equation is:

dhy Kivhy+ Q4 — Koy

dt A
With the differential equations in hand, the next stage is to assign values to the various
parameters in the model. For example, the cross-sectional areas of the tanks, the flow Q4
into the second tank, the flow Q; into the first tank, and the two tank constants, K; and
K>. Once the parameters are assigned, we initialize the two heights /; and /5, then enter
the equations into a computer program to solve the differential equations. We will leave the
actual simulation task to Chapter 5. For now we just show the results from a simulation of
the tank model using Tellurium (Figure 4.3). The plot displays the heights, 4 and A, as
water fills the tanks one at a time.

(4.1)

To summarize, we have learned a number of things from this exercise. First, models include
assumptions and simplifications, and it is the careful selection of these that marks a good
model from a bad one. The assumptions in this model include: 1) We assume low flow
rates such that Torrielli’s Law is a reasonable approximation; 2) The flows Q1 and Q4 are
constant. The other thing we have learned is that there are at least four different types of
quantities in the model. We will go into more detail in the next section but for now, we can
briefly indicate what these quantities are:

1. Inputs to the system such as Q.

2. Model variables which include the two heights, /1 and /5, which change in time as
the system evolves.

4.5. VARIABLES, PARAMETERS AND ABSOLUTE CONSTANTS 77

3. A number of physical parameters which are fixed during the study of the model but
which we could in principle change. In the tank model these include the volume,
cross-sectional area of each tank, and the diameter of the outflow pipes.

4. Finally, there are parameters which we cannot change such as the force of gravity.

4.5 Variables, Parameters and Absolute Constants

Figure 4.4 classifies the different kinds of quantities we find in a model. These include abso-
lute constants, parameters, inputs, dependent variables, independent variables and outputs.
This is a long list so a concrete example will help better explain each quantity. Consider
the following simple pathway model:

X, =5 §) = S5 —> X, (4.2)
The rate laws are given by:
v1 = k1Xo
S2/81)
V2o =kS1 |1 — — 5=
2= "2 1(¢e—AG°/RT
v3 = k352

where AG? is the standard free energy, R the gas constant, and T the temperature. Note
that e~4G?/RT equals the equilibrium constant, K., see equation (2.8). We will make a
number of assumptions: i) The reactions take place in a constant unit volume at a constant
temperature. ii) Species X, and X are fixed by some external and unspecified process. iii)
Reactions occur in well-stirred volumes. Let us list each type of quantity in this model:

Absolute Constants The absolute constants in a model include Napier’s constant e, and
the gas constant, R. Absolute constants cannot typically be changed by the experimenter.

Parameters The parameters of a model are those quantities which could, in principle, be
changed by the experimenter but which remain constant when the model is used to make
predictions. In the pathway model one can imagine that the AG° and the reaction rate
constants are parameters. However, these particular parameters are not easily changed. It
might be possible to change them by altering the ionic composition, the solvent, or temper-
ature. Usually however we treat kinetic and thermodynamic parameters as absolute con-
stants. The exception to this is if the reactions are enzyme catalyzed. In this case one could
change the enzyme concentration or through site-direct mutagenesis, change the enzyme
kinetic properties.

78 CHAPTER 4. INTRODUCTION TO MODELING

Inputs The inputs to the system are those quantities which are under direct control of the
experimenter and can conceivably be changed by the experimenter during the course of a
model simulation. In the pathway model, the inputs include X, and X;. Other examples
of inputs include nutrient sources, temperature, enzyme concentrations, and any kind of
external effector such as a drug or inhibitor.

In biology the inputs are often clamped to some fixed values (cf. voltage clamp), but can
also be varied in some controlled way by the experimenter. The clamping mechanism can
simply be a large external reservoir so that any exchange of mass between the system and
the external reservoir has a negligible effect on the external concentration. Alternatively,
there may be active mechanisms maintaining an external concentration. A classic example
of active maintenance of an external variable is the voltage clamp used in electrophysiology.

External concentrations may also change slowly in time compared to the timescale of the
model so that over the study period, the external concentrations change very little. A typical
example is the study of a metabolic response over a timescale that is shorter than change in
gene expression. This permits a modeler to study a metabolic pathway without considering
the effect of changes in gene expression.

The external species inputs such as X, are also called boundary variables because they
are considered to be at the boundary of the system.

Molecular species that are not dependent on the action of the model are sometimes
called boundary species. Often boundary species are fixed by the modeler but it is
possible for the modeler to impose a particular change in a boundary species to simulate,
for example the adminstration of a drug as a bolus or as a continuous infusion.

Dependent Variables The dependent variables, also called the state variables, are the
minimum set of variables to describe the state of a system. In biochemical modeling these
variables often include the concentrations of molecular species or voltages across mem-
branes. In the pathway model (Figure 4.2), the two dependent variables are S; and S». The
distinguishing feature that separates the input variables from the dependent variables is that
while the inputs can be directly controlled by the model observer, the only way the de-
pendent variables can change is through the operation of the model itself, i.e. they depend
on the model. In biochemical modeling the dependent variables are also called floating
species.

Molecular species that change in time as a result of the action of the model are some-
times called floating species.

The distinction between the inputs and the dependent variables is important. Once the
choice is made, the separation is strictly adhered to during the course of a study. This
means for example that the environment surrounding the physical system will, by definition,
be unaffected by the behavior of the system. If for some reason parts of the environment do

4.6. MATHEMATICAL DESCRIPTIONS OF MODELS 79

Internal Variable External Variable
State variable Inputs
Dependent variable Independent variable

Floating variable (species) Boundary variable (species)

Table 4.1 Synonyms for internal and external variables.

change as a result of the system and can in turn affect the system in some way, then these
parts must now be considered part of the system.

The state of a system at time ¢ is described by a set of state variables:

x(1)

They are the smallest set of variables that define the state of the system.

Independent Variables There are two main independent variables in biochemical mod-
eling: time and space. In this book we will be mainly concerned with time dependent and
not space dependent models.

Outputs The outputs are the readouts from the model, and are the quantities that an
experimenter can actually measure. However the outputs are sometimes no different from
the dependent variables, particularly in a computer model. Experimentally however, there
are times when it is not possible to measure a particular dependent variable or when a
derived measurement is required or measured. For example, we will often report the pH
rather than the actual hydrogen ion concentration. In the case when we cannot make a direct
measurement, we instead use a proxy, for example a fluorescence measurement or another
molecular marker that follows the variable of interest. In the case of derived quantities, a
very common one is the pathway flux. We will not cover this in great detail in this book,
but separating the outputs from the independent variables is an important part of classical
control and metabolic control theory.

4.6 Mathematical Descriptions of Models

There are many different ways to represent models using mathematics. We must describe
for example how the variables and parameters in the system will be represented. Two
common representations include discrete or continuous variables. The change in the level
of water in a tank is reasonably described using a continuous variable such as height. On
the other hand, it might be more realistic to describe the dynamics of lion predation on

80 CHAPTER 4. INTRODUCTION TO MODELING

[Quantities]
Absolute Quantiaties
constants which can vary
l SP“‘:E and l Variables which
Time vary in space

and time

Independent .
[variables j[State variables x(t)]

Not allowed
to vary
E’arameters p(ta (Inputs u(t)J (Outputs y(z)J

Figure 4.4 Classification of quantitative terms.

the Serengeti using a discrete model where individual lions are represented. It does not
make much sense to refer to 8.67 lions in a model. The choice of whether to use a discrete
or continuous description depends entirely on the system being studied and the questions
posed.

Another important categorization is whether the model should be represented in a deter-
ministic or stochastic form. A deterministic model is one where if we repeated the simu-
lation using the same starting conditions, we would get exactly the same result again. That
is, the future state of the model is completely determined by its initial starting point. The
model of the water tanks filling up is an example of a deterministic model.

4.6. MATHEMATICAL DESCRIPTIONS OF MODELS 81

A discrete variable is one that cannot take on all values within a given numeric range.
For example, the number of airplanes in the sky at any one time is a discrete num-
ber. In statistics this is generalized further to a finite set of states, such as true/false or
combinations in a die throw.

Continuous variables can assume all values within a given numeric range. For con-
venience we will often represent a measurement as a continuous variable. For ex-
ample, we may use a continuous variable such as the mole to represent the con-
centration of a solute as it is unwieldy to refer to the concentration of a solute as
5,724,871,927,315,193,634,656 molecules per liter.

(. J

A stochastic model is not deterministic, that is running a simulation of a stochastic model
with the same initial conditions will not lead to the same outcome. The reason for this is that
processes in a stochastic model are probabilistic. For example, whether a chemical reaction
will occur or not during a set time period is given by a probability. This is reasonable since
at the molecular level, collisions between molecules are unpredictable.

Each step in a stochastic simulation is determined by one or more random processes. To
give an example, modeling lion predation on the Serengeti could be modeled as a stochastic
process. It is not guaranteed that a lion will catch its prey every time, instead there is a
probability it will succeed. To model this process a computer simulation would throw a die
to determine whether the lion had succeeded or not. Repeatedly running such a simulation
would naturally give a slightly different outcome because the die throws would be different
for each run. In systems biology stochastic models have been shown to be very important
in reproducing certain behaviors.

A deterministic model based on ordinary differential equations assumes a continuum of val-
ues for concentration. This ignores the fact that cellular processes operate at the molecular
level and concentrations can be described using discrete values representing the number
of molecules. However, because we often deal with systems containing tens of thousands
of particles, we assume that we can describe concentration as a continuous variable and
therefore differential equations are an appropriate choice. For systems where the particu-
late number is very low, of the order of tens of particles, the use of a continuum measure
might be unreasonable.

A deterministic model is one where a given input will always produce the same output.
For example, in the equation y = x?2, setting x to 2 will always yield the output 4.

A stochastic model is one where the processes described by the model include a ran-
dom element. This means that repeated runs of a model will yield slightly different
outcomes.

(. J

However, an additional and more important problem arises when dealing with low partic-
ulate numbers. At low concentrations, Brownian motion becomes a significant factor in

82 CHAPTER 4. INTRODUCTION TO MODELING

determining reaction rates. The time when a molecule binds or is transformed becomes a
probabilistic property. Models of systems containing low particulate numbers are therefore
better modeled using a stochastic, discrete approach [184, 150].

We can now classify a model as a combination of attributes. The water tank model uses
a deterministic, continuous approach. The model of the lion population on the Serengeti
uses a discrete and stochastic approach. Table 4.2 shows four possible combinations and
examples where each combination might be appropriately used.

Type Example
Continuous/Deterministic ~ Projectile motion
Continuous/Stochastic Brownian motion
Discrete/Deterministic Large population dynamics
Discrete/Stochastic Small population dynamics

Table 4.2 Examples of different kinds of model.

Forcing Functions

As described earlier, it is common to ensure that the surroundings do not change during the
duration of the study. For example, we might make sure that the pH remains constant by
using a buffer solution. The key point is that the experimenter has complete control over the
experiment. In some cases it is useful for an experimenter to change the surrounding condi-
tions in a controlled fashion. For example, he/she might slowly increase the concentration
of an administered drug or make a step change in a variable such as enzyme concentration.
In systems theory such controlled changes are often called forcing functions.

Environment - ~
B1,B>, B, ...
(:__)

S1.82,8i....

L System

Figure 4.5 System and Environment: Sy, S», S;,... are state variables that may change
during the evolution of the system; By, Bs, B;, ... are boundary variables that are clamped
to certain values by the observer. The exchange arrows represent the exchange of mass
between the environment and system.

4.7. EXAMPLE 83

4.7 Example

Figure 4.6 illustrates a simplified model of glycolysis. The corresponding Table 4.3 lists
the different variables and parameters identified in the model. The concentration of glucose
and ethanol are assumed to be boundary variables, controlled by the observer and classified
as inputs. Control can be arranged by supplying glucose from a large volume compartment
so that during its consumption there is only a negligible change in concentration. Likewise,
we assume that ethanol is discharged into a large volume.

Another set of concentrations assumed to be constant are the NAD and NADH cofactors.
This may be an unreasonable assumption to make however, because we know that the redox
potential can change. We must assume that the model builder has good reason for making
this assumption and will make this explicit when the model is formally published. The
model builder must be specific about these decisions and explain why they were made. Such
choices are necessary when building models and great care should be made when making
them. One simple way to justify this assumption is that if the model adequately predicts
experiments of interest to the experimenter, then it seems reasonable that a floating redox
potential is not important. However as demands on the model to make further predictions
increase, there may come a time when the model fails to make a correct prediction, and
assumptions such as the fixed redox potential need to be revisited.

NAD NADH NADH NAD

GlucoseN F-16-BisP —< G3P Pyruvate M Ethanol

ATP ADP 2ADP 2ATP

ATP ——> ADP + Pi

Figure 4.6 A simplified glycolytic pathway. Many reactions have been condensed and
ATP consumption has been simplified to a single process, ATP — ADP + Pi.

The modeler also makes an assumption about ATP. Since glycolysis is an important path-
way for generating ATP, some way to simulate ATP consumption is necessary. This is
achieved by including a single step that hydrolyzes ATP to ADP, even though we know that
ATP consumption is a complex process involving many separate reactions. The response
of the pathway to changing ATP demand can be simulated by perturbing the ATP demand
step.

We know that the number of molecules involved in glycolysis is huge, of the order of
100,000 to millions. We can therefore safely use a continuous, deterministic model, most
likely based on a set of differential equations. The assumptions made in building this model
may appear to be completely unreasonable, but one sure test is to determine how well the

84 CHAPTER 4. INTRODUCTION TO MODELING

State Variables System Parameters Boundary Variables/Inputs

F-16-BisP Kinetic Constants ~ Glucose
G3P Enzyme Activities Ethanol
Pyruvate Volume NAD
ATP Temperature NADH
ADP Pi

Table 4.3 Variables and parameters for the simplified glycolytic model 4.6. We assume
that glucose and ethanol are clamped by the observer using large volume sinks. We assume
that during the period of study, the concentrations of NAD and NADH remain essentially
unchanged. F-16-BisP = Fructose-1,6-bisphosphate; G3P = Glyceraldehyde-3-Phosphate;
Pi = Phosphate.

model reproduces what is currently know about the system and whether it makes useful
predictions that can be further tested. If either of these tests fail, then we know that the
assumptions about the model need amendment.

There is one final and important point to make. It is easy to look at a model and suggest
that it is unrealistic because it misses out certain features. However a model should only be
judged by how useful it is, not by how many details it incorporates. This is a common error
made by many who are new to modeling.

[The realism of a model can only be judged with respect to its purpose and utility.]

Steps in Building a Model

To summarize, we can break down the approach to building a model into five stages:

Define the system boundaries.

Define the simplifying assumptions.

Invoke physical laws to describe the system processes.
Test (validate) the model against experimental data.
Alter model if necessary and repeat.

4.8 Dimensions and Units

The variables and parameters that go into a model are expressed in some standard of mea-
surement. In science the recognized standard for units are the SI units. These include units

4.8. DIMENSIONS AND UNITS 85

such as the meter for length, kilogram for mass, second for time, Joules for energy, kelvin
for temperature and the mole for amount. The mole is of particular importance because
it is a means to measure the number of particles of substance irrespective of substance
mass. Thus 1 mole of glucose has the same number of molecules as 1 mole of the enzyme
glucose-6-phosphate isomerase even though the mass of each type of molecule is quite dif-
ferent. The actual number of particles in 1 mole is defined as the number of atoms in 12
grams of carbon-12 which has been determined empirically to be 6.0221415 x 1023 (Avo-
gadro’s constant). This definition means that 1 mole of substance will have a mass equal
to the molecular weight of the substance, making it easy to calculate the number of moles
using the following relation:

mass

moles = .
molecular weight

The concentration of a substance is expressed in moles per unit volume and is usually
termed molarity. Thus a 1 molar solution means 1 mole of substance in 1 liter of volume.

Dimensional Analysis

Dimensional analysis is a simple but effective method for uncovering mistakes when for-
mulating kinetic models.

Amounts of substance is usually expressed in moles and concentrations in moles per unit
volume (mol /~1). Reaction rates can be expressed either in concentrations or amounts per
unit time depending on the context (mol t~!, mol /=1 ¢~ 1).

Rate constants are expressed in differing units depending on the form of the rate law. The

rate constants in simple first-order kinetics are expressed in per unit time (¢~!), while

in second-order reactions the rate constant is expressed per concentration per unit time
-1 -1

(mol™ " t7).

In dimensional analysis, units on the left and right-hand sides of expressions must be the
same units (or dimensions). There are certain rules for combining units when checking
consistency in units. Only like units can be added or subtracted, thus the expression S + k
cannot be summed because the units of S are likely to be mol / —1 and the units for k1,
t~1. Even something as innocent looking as 1 4 S can be troublesome because S has units
of concentration but the constant value ‘1’ is unitless.

Example 4.2

Determine the overall units for the expression ki S/K,, where the units for each variable are
ki1t 1), S(mol I71), and K, (mol [71).

We first write out the expression in terms of the individual units:

t~1 mol 17! /(mol I71)

86 CHAPTER 4. INTRODUCTION TO MODELING

By treating the symbols as algebraic variables, we see that the symbol mol /=1 will cancel leaving
just:
=

The term in the exponential must be dimensionless. The term eX? is permissible, but e*

is not if, for example, k is a first-order rate constant. Trigonometric functions will always
resolve to dimensionless quantities because the argument will be an angle. Angles can
always be expressed as a ratio of lengths which will, by necessity, have the same dimension.

4.9 Classification of Models

In addition to classifying models as discrete/continuous and deterministic/stochastic, there
are additional properties of models that can be used for further categorization (Table 4.4).

Linear or Nonlinear

Dynamic or Static

Time invariant or time dependent
Lumped or distributed parameter models

Table 4.4 Additional categories for classifying models.

Dynamic and Static Models

A static model is one where the variables of the system do not change in time. For example,
a circuit made up of only resistors can be modeled as a static system because there are no
elements in the circuit that can store or dissipate charge. The currents and voltages are con-
sidered instantaneous without any time evolution. Static systems are therefore unaffected
by time and as such they are simpler to model. A flux balance model [130] is an example
of a static model in biochemical modeling.

Time Invariant Systems

All the models we will consider in this book will be dynamic models, that is proteins or
metabolite levels change over time. In these cases time is acting as an independent variable
and means that running the model at a start time of # = 0 or # = 10 makes no difference to
the time evolution of the model. All that matters are the initial conditions we set to the state
variables and the values we assign to the parameters and inputs. Such models are called
time invariant.

4.10. LINEAR AND NONLINEAR MODELS 87

If a parameter of the system depends on time, then the model is called time dependent. This
means that the system will behave differently if the same input is applied at different times.
An example of a time dependent model is where we apply a drug in the form of a pulse
and the duration of the pulse depends on when the drug was administered. An example of
a time dependent non-biological model is a parking lot where the price of a ticket depends
on the time of day. Those systems which are linear and time invariant represent a special
category of system called linear time invariant systems (LTI). Such systems will be covered
in greater detail in a subsequent book.

Lumped and Distributed Parameter Models

Many complex models can be approximated with a single number. For example, we often
describe a resistor using a single value, its resistance. In reality the resistor has a length,
a diameter, and a chemical composition. The resistance is a function of all these proper-
ties that make up the resistor. We could model the resistor by slicing up the resistor into
many small compartments and compute the resistance as a systemic property. In the former
case we have what is called a lumped parameter model, in the second case a distributed
parameter model.

4.10 Linear and Nonlinear Models

When we use mathematics to describe physical systems, there is a great divide that sepa-
rates linear from nonlinear models. This separation is fundamental and places hard limits
on what we can and cannot do with mathematical analysis.

Inputs to a linear system result in their weighted sum appearing in the outputs. The output
is a superposition of the inputs. The simplest linear system is given by the relation y = ax,
where x is the input and y the output. We know this is linear for the following reason. Let
us apply two separate inputs, x1 and x3 to this system. This gives us outputs ax; and axz,
respectively. If we now apply the sum of the inputs, x; + x5, we get a(x; + x») as the
output, which is simply the sum of the separate inputs.

axy +axz; = a(xy + x2)

This is called the property of additivity and can be generalized as follows. A mathematical
model, f(x), shows additivity if the following is true:

fxr+x2+..)=f(x1)+ f(x2)+...

This states that the sum of multiple inputs applied simultaneously is equivalent to applying
the inputs separately. Nonlinear systems do not follow this rule. Strictly speaking, a linear
system also needs to satisfy homogeneity (or scaling), thatis, f(ax) = af(x). Combining
additivity and homogeneity gives us the general rule of linearity called superposition:

88 CHAPTER 4. INTRODUCTION TO MODELING

flaxy +bxa +...) = f(axy) + f(bxy) + ...

Any system that satisfies superposition is a linear system. Any system that does not is a
nonlinear system. Table 4.5 illustrates some functions that are nonlinear.

x" Yx

Xy sin(x)

log(x)
(dy/dy)" VinS/(S + Km)

Table 4.5 Examples of nonlinear functions.

Example 4.3

Show that the function e* is nonlinear.

We first apply separate inputs, x; and x5, to the function and compute the sum of the output, that is:
e’ 4 e*2

We next take the sum of the inputs, x; + x,, and apply the sum to the function, that is:

e*1 +x2

To obey additivity the two expressions much be equal. However, e¥1 7*2 = ¢*1¢*2 which is not the
same as e*! + e*2. Therefore e* is a nonlinear function.

Similarly, we can also easily show that homogeneity (f(ax) = af(x)) is not true because it should
be evident that:
aex ;é eax

To appreciate the difference between linear and nonlinear functions, consider the system
y = x2. Let us apply two separate inputs, x; and x», to give outputs x% and x%. If we
now apply the inputs simultaneously, that is y = (x; + x2)2, we obtain x% + x% + 2x1x7.
We see that the output is not simply xf + x% but includes an additional term, 2x1x,. This
term is the nonlinear contribution. Imagine that this difference now enters further nonlinear
processes, leading to further changes. Eventually the output looks nothing like the input.
This makes most nonlinear systems difficult to understand.

Unless the system has an infinite number of solutions (degenerate) or has the trivial solution
(where the solution is zero), linear systems will admit only one solution. In contrast, it is
possible for nonlinear systems to admit multiple solutions, that is given a single input, a
nonlinear system can regurgitate one of a number of possible distinct outputs. To make

4.11. LINEARIZATION 89

matters worse, in the majority of mathematical models found in biochemical networks, it
is not even possible to find the solutions analytically. That is, we cannot mathematically
describe how an output depends on an input other than by doing a brute-force computer
simulation. Understanding nonlinear systems in biology or elsewhere is a huge unresolved
problem. While there is a complete theory of linear systems, no such equivalent exists
for nonlinear systems. When dealing with nonlinear systems we are often forced to use
computer simulations.

There is one useful approach to help address nonlinear models. If we were to draw a
nonlinear curve on a graph and zoom in closer to a particular point on the graph, the curve
would eventually look like a straight line. We can essentially turn a nonlinear system into
a linear one but only in small regions of the system’s behavior where linearity dominates.
This process is called linearization and is a powerful technique for studying nonlinear
systems.

4.11 Linearization

When modeling nonlinear systems we have two options, to simulate or to linearize. Simu-
lation will be considered later, here we will look closely at a technique called linearization.
To linearize a model means replacing the nonlinear version with a linear approximation
which is easier to understand. It should be emphasized that in the process, we loose valu-
able information, but enough information is preserved to make linearization an extremely
useful and popular tool.

One of the most useful results in mathematics is the Taylor series (See Appendix E for
a review). This is a way of approximating a mathematical function by using an infinite
polynomial series such as the following:

f(x) =co+c1x + cax? 4+ e3x3+ ... 4.3)

We can represent any continuous function using such a polynomial. For example, we can
represent sin(x) using the formula:

sin(x) =x ——+ — —--- 4.4)

Without going into the details, the Taylor series is a means for defining the ¢; terms in the
polynomial series (4.3) given any continuous function. The Taylor series is always defined
around some operating point, X,, and a point near the operating point, x. The Taylor series
is given by:

90 CHAPTER 4. INTRODUCTION TO MODELING

1 d?

5 dxz (X - x0)2

d
£6) = £+ L (x—) +
X

1 d"
+ .+ = f(x—xo)”—i—... (4.5)
n! dxn

. J

All derivatives must be elevated at the operating point x,.

The various derivatives in the Taylor series must be evaluated at x,. The the function f(x)
must be continuous so there are no holes or sudden breaks (discontinuities) in the curve
described by the function. The number of terms in the Taylor series determines how well
the series approximates the function: the fewer terms, the more approximate the series is.
For example, the most approximate expression is given by using only the first term, f(x,).
However, f(x,) is a constant so this represents a very poor approximation. To make the
approximation more useful we include the first two terms of the Taylor series:

J(x) =~ f(xo) +

af (x — x0) (4.6)
X

dxo

Provided x is close to x,, the approximation is good. Note that the derivative must be
computed at the operating point, x,. For example, let us form the Taylor series for the
function y = sin(x) around x, = 0. Recall that sin(0) = 0 and cos(0) = 1, then write out
the Taylor series:

. dsin(x, 1 d?sin(x
ymsm(O)-l—#(x—0)+2—!7()(x—0)+...
I 3 1 s
y%0+1x+0—§x +0+§x + ...
That is:
x3 X
T T

Note this is the same as equation (4.4). The linear approximation is given by the first two

terms: _
dsin(x,)

dx
Since sin(0) = 0 and dsin(xg)/dx = cos(0) = 1, the linear approximation is therefore
y = X, a straight line running through the origin (Figure 4.7). We have linearized the sin
function and Figure 4.7 shows how good our approximation is.With only two terms the
linear approximation only matches a region near x,, and fails to capture the periodic nature
of the sin curve.

y & sin(0) + (x—0)

To illustrate linearization with another example, consider the simple nonlinear function,
y = x2. To linearize we must first choose an operating point around which to linearize,

4.11. LINEARIZATION 91

AV

Figure 4.7 Linearized sin(x) function represented by the straight line through zero.

for example, x, = 2. According to the second term in the Taylor series we need to find the
derivative, df /dx so that the first two terms of the Taylor series (Equation 4.6) become:

J(x) = f(2) + 2x0(x = 2)

To obtain the linear approximation we evaluate the derivative at the operating point (x, =
2), that is df /dx = 2x, = 4 so that the final linear approximation is:

fx)=4—4(x—-2)=4x—-4
Figure 4.8 shows the original nonlinear function together with the linear approximation.

40

30

~ 20

10

Figure 4.8 Taylor series approximation of y = x2 at the operating point, x, = 2. The
linear approximation is y = 4x — 4.

92 CHAPTER 4. INTRODUCTION TO MODELING

Equation (4.6) is also commonly written in the form:

af

8
dx, o

J(x) = fxo) +

where §x = (x — x,). If the equation f is a function of more than one variable, then
additional terms appear. For example, the linearization of f(x, y) near x,, and y, will give:

9 5x + %(w 4.7)

f(x’y)%f(xo’yo)'i‘a T

As before, the derivatives must be evaluated at the operating point.

Example 4.4
Linearize the following equation at x, = 2:
I

x+1

y =

To linearize we must apply equation (4.6). We first compute, f(x,). Since x, = 2, then:
S(x0) =8/3

Next we form the derivative df/dx:

df 2x3 4 3x?

dx — (x+1)2
At x, = 2 the derivative is given by:
df(2) 28
dx 9

Inserting f'(x,) and the derivative into:

d
Fe)~ f0) +)
X

yields:

8 28
f(x)%§+3(x—xo):—+x___:

4.12. APPROXIMATIONS 93

Example 4.5

Linearize the following equation at x, = 1 and y, = 0:

f(x.y) =x*—2xy —sin(y)

To linearize a two dimensional system we must apply equation (4.7). We first compute, f(x,, yo)-
Since x, = 1 and y, = 0, then:

S (X0, y0) =1
Next we form the two derivatives df/dx and df/dy:
0 0
—f=2x—y —f=—2x—cos(y)
0x ay

At x, = 1 and y, = 0 the derivatives are given by:

8f(1,0)_2 af(1,0)
ox ay

Inserting f(x,, ¥o) and the derivatives into:

d d
f(x,y) =~ f(X0,Y0) + af(x_xo) + af(y — Yo)
X y

yields:
f(x,y) ~2x -3y —1

4.12 Approximations

By their very nature, models involve making assumptions and approximations. The best
modelers are those who can make the most shrewd and reasonable approximations without
compromising a model’s usefulness. There are however some kinds of approximations
which are useful in most problems, these include:

e Neglecting small effects.

Assuming that the system environment is unchanged by the system itself.

Replacing complex subsystems with lumped or aggregate laws.

e Assuming simple linear cause-effect relationships where possible.

Assuming that the physical characteristics of the system do not change with time.

Neglecting noise and uncertainty.

94 CHAPTER 4. INTRODUCTION TO MODELING

Let’s review each of these in greater detail.

Neglecting small effects. This is the most common approximation to make. In many
studies there will always be parts of the system that have a negligible effect on the properties
of the system, at least during the period of study. For example, the rotation of the earth,
the cycle of the moon, or the rising and setting of the sun will most likely have a negligible
influence when studying the action of an enzyme. Assuming of course we are not studying
circadian rhythms.

Assuming that the system environment is unchanged by the system itself. This is a
basic assumption in any study. The minute a system starts to affect the environment in an
uncontrolled way, we have effectively extended the system boundaries to include more of
the environment. It will often be the case that the interface between the environment and
the system will not be perfect so that there will be some effect that the system has on the
environment. So long as this effect is small, we can assume that the environment is not
affected by the system.

Replacing complex subsystems with lumped or aggregate laws. Lumping subsystems is
a commonly used technique in simplifying cellular models. The most important is the use of
aggregate rate laws, such as Michaelis-Menten or Hill like equations to model cooperativity.
Sometimes entire sequences of reactions can be replaced with a single rate law. Certain
assumptions are invoked in making the aggregations, in particular it will often be assumed
that the processes inside the aggregate are much faster then the processes external to the
aggregate. We will return to this topic in Chapter 5.

Assuming simple linear cause-effect relationships. In some cases it is possible to assume
a linear cause-effect between an enzyme reaction rate and the substrate concentration. This
is especially true when the substrate concentration is below the K, of the enzyme. Linear
approximations make it much easier to understand a model.

Physical characteristics do not change with time. A modeler will often assume that the
physical characteristics of a system do not change, for example the volume of a cell, the
values of the rate constants or the temperature of the system.

Neglecting noise and uncertainty. Most models make two important approximations. The
first is that noise in the system is either negligible or unimportant. In many nonbiological
systems such an approximation might be quite reasonable. However cellular phenomena
operate at the molecular level. Biological systems are susceptible to noise generated from
thermal effects as a result of molecular collisions. For many systems the large number of
particles ensures that the noise generated in this way is insignificant and in most cases can
be safely ignored. For some systems such as prokaryotic organisms, the number of particles
can be very small. In such cases the effect of noise can be significant and therefore must be
included as part of the model.

4.13. EXAMPLE MODEL 95

4.13 Example Model

Before we leave this chapter, let us look at building a model of a simple chain of four
enzyme catalyzed reactions (Figure 4.9). Begin by constructing a mathematical model of
this system.

Figure 4.9 Simple Straight Chain Pathway.

First, we must decide where the boundary of the pathway is, assuming there is one. A
convenient place to have a boundary is the start and end metabolites of the pathway, that is
S1 and S5. We will assume that these two metabolites are fixed and are unaffected by the
system (Figure 4.10). In modeling language these are the boundary species or inputs to the
model.

System

Surroundings

Figure 4.10 Simple Straight Chain Pathway with system shown in a box and S; and S5
outside the system. We assume S; and S5 are fixed.

The metabolites that can change in time include S5, S3, and S4 and are known as the
dependent variables, the state variables, or floating species. We can write the differential
equations that represent the rates of change of S,,S3 and S4. Note that there will be
no differential equations assigned to S; and S5 because these are fixed and unchanging.
According to mass-balance, the following differential equations must be true:

dsS,
o T
dS;
@ o
dSy
o v

Next we must decide on the rate laws, vy, v, v3, and v4. This is possibly the most difficult
part to building a model and a detailed examination of the literature is necessary to decide

96 CHAPTER 4. INTRODUCTION TO MODELING

which rate laws are the most appropriate to use. The companion text book, “Enzyme Ki-
netics for Systems Biology” [149] gives much more detail on rate laws in general. Here a
variety of rate laws will be used to illustrate the kinds of rate laws that one might employ.
For example, a simple reversible mass-action rate law may be best for the first reaction v,
that is:

V1 = k1S1 - szz

This rate law introduces two new parameters, the rate constants, k1 and k». These are
fixed and unaffected by the model. For the second reaction, let us use a simple allosteric
regulated rate law. Assume that the reaction v, is allosterically inhibited by S4. For this
we can apply the simplest exclusive Monod, Wyman, Changeax model [119]:

v Sy (1 + SZ/Km)4
"(1+ S2/Km)* + L (1 + S4/Kp)*

Uy =

where the Hill coefficient is equal to four, L is the allosteric constant, K; is the inhibition
constant, K, is the substrate concentration at half-maximal activity, and V}, the maximal
velocity.

The third rate law will be a simple irreversible but product inhibited Michaelis-Menten rate

law, that is:
S3

S3+ Km (1 + S3/Kp)
where V;, is the maximal velocity of the reaction, K, is the Michaelis constant, and K, is

the product inhibition constant. The last reaction, v4 will be assigned a simple irreversible
mass-action rate law:

Vg = k3S4

where k3 is the rate constant. In total the model has ten parameters, two boundary species
and three state (or floating) species. The model can be completed by assigning values to
all the parameters, boundary species, and initial conditions to the state variables. Once
the model is described, it can be entered into a simulation tool such as Tellurium (See
Appendix H) or PathwayDesigner [153, 1] and the evolution of the system studied. We will
discuss running simulations in Chapter 5 and 6.

4.14 Where to get Data for Building Models

The perennial problem that confronts the biochemical pathway modeler is where to get
the data to build the first version of the model. We should first distinguish two kinds of
data, network connectivity and data related to the kinetics of individual reaction steps. The
former is well supported in the literature and various databases. An entire field called
metabolic network reconstruction has emerged in the last ten years as a result of the avail-
ability of genome-scale data sets.

4.14. WHERE TO GET DATA FOR BUILDING MODELS 97

Metabolic Reconstruction

Metabolic network reconstructions [68, 172] describe an organism’s metabolism through
the analysis of genomic data. The scale of network reconstruction may range from indi-
vidual pathways to whole genomes. Analyzing and annotating genomic sequences, storing
and retrieving metabolic network information, and representing network data are key tasks
associated with metabolic network reconstruction. A common first approach to reconstruct-
ing metabolic networks is to compare the unknown network with already well characterized
networks. After that, further experimental data is collected to validate or fill in any missing
gaps. As a result of these efforts, there are now many hundreds of metabolic reconstruc-
tions available. Model SEED [69] is a resource for genome-scale metabolic models. Of
particular interest is that metabolic reconstructions can be download in standard SBML,
thus allowing a wide range of tools to import the reconstructions.

Other significant sources of networks are the KEGG? and MetaCyc? repositories. KEGG in
particular has a wide range of networks including both vertebrates and invertebrates. The
SuBliMinaL Toolbox* provides facilities to download and manage network models from
KEGG and MetaCyc in the form of SBML.

The data are less easily obtained for protein signaling and gene regulatory networks. For
both of these network types, one has to trawl through the literature. Although there have
been many attempted efforts to use high-throughput data to generate networks, these are
generally unreliable [165, 8]. The current most reliable way to generate protein and gene
regulatory network is to read the source literature.

Kinetic Data

The real problem however is collecting kinetic data for the individual reaction steps. BR-
ENDA? is an enzyme database that contains details on the kinetics of many different en-
zymes. The main problem is that the data reported in BRENDA was often collected under
non-physiological conditions. It has been shown several of times in recent years [177, 96]
that reliable models require kinetic data to be measured under physiological conditions. If
reliable kinetics data is not available, then an alternative is to employ generalized or ap-
proximate rate laws. There are a variety of these (covered in more detail in the companion
book Enzyme Kinetics for Systems Biology), but one in particular will be mentioned here,
the lin-log approximation.

Without going into the derivation, the simplest /inear approximation is given by:

*http://www.genome. jp/kegg/
Shttp://metacyc.org/
“http://www.mcisb.org/resources/subliminal/
Shttp://www.brenda-enzymes.org/

http://www.genome.jp/kegg/
http://metacyc.org/
http://www.mcisb.org/resources/subliminal/
http://www.brenda-enzymes.org/

98 CHAPTER 4. INTRODUCTION TO MODELING

8 .
=1, (1 + Zggio%) (4.8)
i i

In the linear approximation (4.8) the species term is given by: 85/S,, or (S — S,)/So.
Recall the Taylor expansion (E.6) for the natural logarithmic function (In) around y, to the
first (linear) approximation is given by:

In(y) = In(yp) + ==

o

Note that d1n(y,)/dy, = 1/y,. Rearranging the linear approximation yields:

220 ~ n(y) —In(y,) = In (1)

o o

Now substitute §S; /S7 for In(S; /S?). This simple change leads to a significantly improved
approximation over the linear equation and is called the linear-logarithmic approximation
or lin-log for short [182, 64, 178, 66].

One of the chief advantages of this approximation is that at high substrate concentration
the response approximates the saturation by substrate (See Figure 4.11). The general form
of the lin-log equation is given by:

Si
v = v, [é] (1 + Xi:egi In (S_f’)) (4.9)

where S is the reactant concentration and ¢ the elasticity (D.17). The summation is over all
reactants and effectors that might modulate the reaction rate (except the enzyme concentra-
tion). The rate law is always defined around some reference state where v, is the reference
reaction rate and S? is the reference reactant concentration.

As with the linear approximation (4.8), the utility of this method is that the elasticity val-
ues (D.17) (kinetic orders) can be estimated from the known thermodynamic properties of
the reaction, especially if the reaction is operating below saturation. If no thermodynamic
information is available, the elasticities may be set to the stoichiometries of the respective
reactants if necessary. In either case it is important to note the lin-log approximation is
only valid around the chosen reference state, but is much better (See Figure 4.11) than the
linear approximation. One possible drawback to the lin-log approximation is that at zero
reaction rate, the reactant levels are not necessarily at equilibrium (Figure 4.11). This can
lead to reverse reaction rates when the prevailing metabolite levels suggest otherwise. The
lin-log approximation is therefore not suitable when a reaction is close to equilibrium or
when metabolites levels are very low.

4.15. OF EXACTITUDE IN SCIENCE 99

1.5
Linear
p)
% 1 Lin-Log
a2
.§ Michaelis
g 05
"
0
0 1 2 3 4 5

Substrate Concentration, S

Figure 4.11 Linear, power law, and lin-log approximations to a Michaelis-Menten curve
around the reference point S, = 1; Vi, = 1; K;;, = 1. Dashed: Linear law. The drawback
of the lin-log approximation is that the curve does not go through zero.

4.15 Of Exactitude in Science

And finally a lesson to all model builders:

“On Exactitude in Science...In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City, and the map of the Empire,
the entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, and
which coincided point for point with it. The following Generations, who were not so fond of
the Study of Cartography as their Forebears had been, saw that that vast Map was Useless,
and not without some Pitilessness was it, that they delivered it up to the Inclemencies of Sun
and Winters. In the Deserts of the West, still today, there are Tattered Ruins of that Map,
inhabited by Animals and Beggars; in all the Land there is no other Relic of the Disciplines
of Geography.

Suarez Miranda, Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658

From Travels of Praiseworthy Men (1658) by J.A. Sudrez Miranda, 1946, translated by
Andrew Hurley

Further Reading

1. Davis PJ and Hersh R (1981) The Mathematical Experience. Houghton Mifflin Com-
pany. ISBN: 0-395-32131-X

100 CHAPTER 4. INTRODUCTION TO MODELING

2. Riggs DS (1979) Control Theory and Physiological Feedback Mechanisms. Waverly
Press, SBN: 683-07244-7

3. Sauro HM (2011) Enzyme Kinetics for Systems Biology. ISBN: 978-0982477311

Exercises

1. Which of the following best describes what a model is:

(a) an attempt to form an exact replica of reality.
(b) the truth about the real system.

(c) asimplification of the real world.
2. State the difference between a deterministic and stochastic model.
3. State the difference between a discrete and continuous model.

4. Suggest what modeling approach you would use for the following systems, i.e. con-
tinuous or discrete and determisititic or stochastic:
(a) The spread of a forest fire.
(b) Growth and spread of sand dunes.
(c) A line of people waiting at cash tills in a store.
(d) AM radio electrical circuit.
(e) A chess game where both players are computer programs.
(f) A tumor where individual cells secrete growth factors.
5. Figure 4.12 shows a three tank system similar to the two tank system in Figure 4.2.

Derive the differential equations that describes the rate of change of the heights, /1,
h 2, and h3.

6. State any assumptions or approximations you made in the previous question relating
to the water tank model.

7. List the three most desirable attributes of a model.
8. When we “validate” a model, which of the following do we most likely mean:

(a) We show that the model represents the truth about the real system.
(b) We increase our confidence in the model’s predictive power.
(c) We prove that the model is correct.

9. Two scientists are arguing about a model, one claims that the model is correct but the
other suggests that it is the best. Who is making the most reasonable claim and why?

4.15. OF EXACTITUDE IN SCIENCE 101

10.
11.

12.

13.

14.

15.

16.

Figure 4.12 Three tank model.

Explain the difference between accuracy and predictability of a model.

The authors of a published biochemical model claim that their model has been vali-
dated. What do they mean by this?

The author George Box is said to made a statement similar to: “all models are wrong,
but some are useful.”. What does he mean by this?

The transport of a solute across a membrane is given by the equation J = P4 (S, —
Sout). If P4 is expressed in cm s~ 1 and the transport rate in moles cm 257!, what
should the concentrations, Sj, and S,y be expressed in?

What is the difference between a state variable and a boundary variable in a biochem-
ical model?

Describe the state variables and types of parameter in the following model of a bio-
chemical pathway:

dSq

— =k1X, — koS

T 1Xo — k251

ds

d_t2 = k2S1 — (kaS2 — kaX1)

List the approximations you think were made in the above model.
Show that the following functions are nonlinear with respect to x:
(a) sin(x)
(b) e*
©) Vinx/(x + Km)

102 CHAPTER 4. INTRODUCTION TO MODELING

17. Linearize the following functions:
(a) 4x* +6x—10atx =1
) Vinx/(x + Kiy) atx =0and x = Ky,

18. In the equation v = V;, S/ (K, + S) where S is expressed in units of mol 17!, V},, in
mol 17! s71, and the reaction velocity, v in mol 171 s~1 what are the units for K,,?

19. In the previous question, if only the units for S are known, what can one say about
the units of K,,,?

Differential Equation Models

5.1 Introduction

In this chapter we will discuss how to solve the differential equations generated when we
build a biochemical model (3.8). At first this may seem unnecessary given that modern
software hides all the details and makes the effort so easy. However, it is still useful to
know the basic approach and the limitations of black box solvers so that if problems do
arise, one is in a better position to make an informed judgement on how to proceed.

5.2 Differential Equation Models

To begin, consider the simplest possible model, the first-order irreversible degradation of
reactant, S into product P:
S—>P

The differential equation for this reaction is given by the familiar form:

ds

i k1S (5.1
Our aim is to solve this equation so that we can describe how S’ changes in time. There are
at least two ways to do this: we can either solve the equation using algebraic methods, or
we can use a computer to obtain a numerical solution. To solve the equation using algebra
we first divide both sides by S:

as1

=k 5.2
dr S ! (5-2)

103

104 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

In differential calculus, the derivative of In y with respect to 7 is:

dlny dy1
dt dty
This means we can rewrite equation (5.2) in the following form:
dln S
=—k
dt !

Now integrate both sides with respect to d¢, that is:

dln S
dt = —k dt
/ dt lf

InS =—-kit+C

where C is the constant of integration. If we assume thatat? = 0, S = S,,thenIln S, = C.
Substituting this result into the solution yields:

InS = —kit +1nS,

S
In{ —) = —kqt
“(So) !

Raising both sides to the power of e and multiplying both sides by S, gives:
S = Spe kit (5.3)

Figure 5.1 illustrates one solution given a specific initial condition and value for the rate
constant. For simple systems or nonlinear system we linearize, it is possible to obtain
analytical solutions. However we are quickly confronted with the fact that for the vast ma-
jority of real problems, no analytical solution exists. In such cases we must use computers
to obtain numerical solutions.

Numerical Solutions

In the last section we saw how it was possible to solve a differential equation algebraically.
If the system of differential equations is linear, there are systematic methods for deriving
a solution. Most of the problems we encounter in biology however are non-linear and for
such cases algebraic solutions rarely exist. Because of this, computer simulation is often
used instead. Since the 1960s, almost all simulations have been carried out using digi-
tal computers. Before the advent of digital computers, analog computers were frequently
used. In these cases an analog of the system was built using either mechanical or more
commonly, electrical analogs of concentrations. Here we will focus on methods used for
digital computers.

The general approach to obtain a solution by computer:

5.2. DIFFERENTIAL EQUATION MODELS 105

10

0O 2 4 6 8 10 12 14 16 18 20
Time, t

Figure 5.1 Exponential decay from the equation: S = Syek1t where S, = 10,k; = 0.2.

1. Construct the set of ordinary differential equations, with one differential equation for
every molecular species in the model.

2. Assign values to all the various kinetic constants and boundary species.

(98]

Initialize all floating molecular species to their starting concentrations.

4. Apply an integration algorithm to the set of differential equations.

5. If required, compute the fluxes from the computed species concentrations.
6

. Plot the results of the simulation.

Step four is the most important and there exists a great variety of integration algorithms that
may be used. We will describe three common approaches to give a flavor of how they work.
Other than for educational purposes, it is rare for a modeler to write their own integration
computer code because many sophisticated libraries and applications already exist. As
such, we will focus on some of the approaches themselves and the various software tools
now available.

An integration algorithm approximates the behavior of what is, strictly speaking, a contin-
uous system on a digital computer. Since digital computers can only operate in discrete
time, the algorithms convert the continuous system into a discrete time system. This is why
digital computers can only generate approximations. In practice a particular discrete time
step size, h, is chosen, and solution points are generated at intervals of / until an upper time
limit is reached. As we will discover, the approximation generated by the simplest method
is dependent on the step size and in general, the smaller the step size the more accurate the
solution. However, since computers can only represent numbers to a given precision (usu-
ally 15 to 16 digits on modern computers), it is not possible to continually reduce the step

106 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

size in hopes of increasing accuracy. First, the algorithm will soon reach the computer’s
limits of precision and secondly, the smaller the step size the longer it will take to compute
the solution. As a result, we often make a trade-off between accuracy versus computation
time.

Let us first consider the simplest method, the Euler method, where the trade-off between
accuracy and computer time can be clearly demonstrated.

Euler Method

The Euler method is the simplest possible way to solve a set of ordinary differential equa-
tions (See E.5). Consider the following differential equation that describes the degradation

rate of a species, S

ds
— =—k;S
dt !

The Euler method uses the rate of change of S to predict the concentration at some future
point in time. Figure 5.2 describes the method in detail. At time #; the rate of change in S
is computed from the differential equation using the known concentration of S at #;. The
rate of change is used to compute the change in S over a time interval, %, using the relation,
h dS/dt. The current time, #; is incremented by the time step, 4, and the procedure is
repeated again, this time starting at #,. The method can be summarized by the following
two equations which represent one step in an iteration that is repeated until the final time
point is reached:

. dy(1)
y(it+h) =y)+h Th

thil =th + h (5.4

Figure 5.2 also highlights a problem with the Euler method. At every iteration there will
be an error between the change in S we predict, and what the change in S should have
been. This error is called the truncation error and will accumulate at each iteration. If the
step size is too large, this error can make the method numerically unstable resulting in wild
swings in the solution.

Figure 5.2 also suggests that the larger the step size, the larger the truncation error. This
would imply that the smaller the step size, the more accurate the solution. This is indeed
the case, up to a point. If the step size becomes too small, there is the risk that roundoff
error will begin to have a significant effect and will propagate at each step. In addition, if
the step size is too small, it will require a large number of iterations to simulate even a small
time period. The final choice for the step size is therefore a compromise between accuracy
and effort. A theoretical analysis of error propagation in the Euler method indicates that the
error accumulated over the entire integration period (called the global error) is proportional
to the step size. Therefore, halving the step size will reduce the global error by half. This

5.2. DIFFERENTIAL EQUATION MODELS 107

means that to achieve even modest accuracy, small step sizes are necessary. As a result, the
method is rarely used in practice. The advantage of the Euler method is that it is very easy
to implement in computer code or even on a spreadsheet.

S S

Slope: b Truncation Error

dsjdi [. T}/ I

™" True Solution R
AS =h.dS/dt

i T ,’/ ‘—;L—‘ /

Time Time

a) b b) 6

Figure 5.2 Euler Method. Starting at 1, the slope dS/dt at T is computed (Panel A).
The slope is used to project forward to the next solution in time step, &, to ¢, (Panel B).
The new solution at 7, is indicated by P. However the true solution is point R, located on
the solution curve at f,. Reducing the step size & will reduce the error between the exact
and projected solution, but will simultaneously increase the number of slope projections
necessary to compute the solution over a given time period.

The Euler method can also be used to solve systems of differential equations. In this
case all the rates of change are computed first, followed by the application of the Euler
equation (5.4). As in all numerical integration methods, the computation must start with
an initial condition for the state variables at time zero. The algorithm is described using
pseudo-code in Algorithm 1.

Example 5.1

Solve the decay differential equation (5.1) using the Euler method. Assume k; = 0.2 and the
concentration of S, and P are time = 0 is 10 and 0, respectively. Assume a step size &, of 0.4.
Form a table of four columns, write out the solution to three decimal places. The 4 column should
include the exact solution (5.3) for comparison.

108 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

Algorithm 1 Euler Integration Method. f;(y) represents the i’ h differential equation from

the system of ordinary differential equations.

n = Number of state variables
y; = i variable

fi(y) = rate of change at y
Set timeEnd

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1ton do

dyi = fi(y)

fori = 1ton do
Yi(t +h) = yi(t) + hdy;

currentTime = currentTime + &
end while

Time Numerical Solution (S) dS/dt Exact Solution
0 10 2 10

0.4 9.2 1.84 9.23

0.8 8.464 1.6928 8.52

1.2 7.787 0.01 7.87

Table 5.1 Solution to equation (5.1) using a step size of 7 = 0.4.

Figure 5.3 shows the effect of different step sizes on the Euler method. Four cases are
shown, in the worse case (& = 0.55) the solution is unbounded and the computer will
eventually crash with an overflow error. The second case (2 = 0.5) is where the result
is bounded, but the solution bears no resemblance at all to the actual solution. The third
case (h = 0.00625) shows that the solution is beginning to resemble the actual solution,
but irregularities appear near the start of the integration. The final case shows the actual
solution generated from a specialized integrator.

5.2. DIFFERENTIAL EQUATION MODELS 109

104 | h ‘= 0.55, ‘unbound‘ed 104 i‘z = 0.5,‘boundec‘1
2 [
”‘1mmmmmumuq
| A‘
| g
ol l‘mmmmuvmmm\l
0 g 1‘0 0 g 1‘0 1‘5 2‘0 25
t t
h = 0.00625, convergent Best solution
20 T T T 1 20 T T T 3
15 4 15} N
10 1 104, 8
5 | 5 |
0 0 5 1‘0 1‘5 2‘0 25 0 0 g 1‘0 1‘5 2‘0 25
t t

Figure 5.3 Effect of different step sizes on the Euler method using a simple linear chain of
reactions where each reaction follows reversible mass-action kinetics:

ki k3 ks k7
XO‘:‘SL Sl;‘Sz, Sz;‘S:;, S3‘:‘X1
ko kq ke

where kl = 0.45,k2 = 0.23,k3 = 0.67, k4 = 1.2,k5 = 2.3,k6 = 0.3,k7 = 0.73,X0 =
10, X; = 0,81 = 5,85, = 15,53 = 20. See text for details.

110 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

Modified Euler or Heun Method

As indicated in the last section, the Euler method, though simple to implement, tends not
to be used in practice because it requires small step sizes to achieve reasonable accuracy.
Furthermore, the small step size makes the Euler method computationally slow. A simple
modification however can be made to significantly improve its performance. This approach
can be found under a number of headings, including the modified Euler method, the Heun,
or the improved Euler method.

The modification involves improving the estimate of the slope by averaging two derivatives,
one at the initial point (dy(¢)/dt) and another at the end point (dy(¢ + h)/dt). In order
to calculate the derivative at the end point, the first derivative is be used to predict the end
point. The two slopes are then averaged and the average is used to predict the final predicted
y value. (Figure 5.4). This method is quite simple to implement in computer software and
is summarized by equations (5.5).

Figure 5.4 describes the Heun method graphically. A theoretical analysis of error propaga-
tion in the Heun method shows that it is a second-order method; that is, if the step size is
reduced by a factor of 2, the global error is reduced by a factor of 4. However to achieve
this improvement, two evaluations of the derivatives is required per iteration compared to
only one for the Euler method.

. dy(t)
yt+h)=y@E)+h I
h(d dy(t + h
Y +h) =y + 5(Z(tt) + y(td:r)) 5-5)

In+1 = In +h

Runge-Kutta

The Heun method described in the previous section is sometimes called the RK2 method
where RK2 stands for 2nd order Runge-Kutta method. The Runge-Kutta methods are a
family of methods developed around the 1900s by the German mathematicians, Runge and
Kutta. In addition to the 2nd order Heun method, there are also 3rd, 4th, and even 5th order
Runge-Kutta methods. For hand-coded numerical methods, the 4th order Runge-Kutta
algorithm (often called RK4) is probably the most popular among modelers. The algorithm
is a little more complicated because it involves the evaluation and weighted averaging of
four slopes.

In terms of global error however, RK4 is considerably better than Euler or the Heun method
and has a global error on the order of four. This means that halving the step size will reduce

5.2. DIFFERENTIAL EQUATION MODELS 111

a)

Figure 5.4 Heun Method. Starting at ¢, the slope A at T is computed. The slope is used
to predict the solution at point P using the Euler method. From point P, the new slope, B,
is computed (Panel A). Slopes A and B are now averaged to form a new slope, C (Panel
B). The averaged slope is used to compute the final prediction.

the global error by a factor of 16. In other words, the step size can be increased 16 fold
over the Euler method and still have the same global error. The method can be summarized
by the equations (5.6) which have been simplified by removing the dependence on time.

k1 :hf(yn)
k
kzzhf(Yn‘F?l)
k
k3=hf(Yn+72)
(5.6)
k4=hf(J’n +k3)
1
y(+B) = y(0) + ¢ (k1+2k2+2k3+k4)
Int1 =1In +h

Figure 5.5 shows a comparison of the three methods, Euler, Heun, and RK4 in solving the
Van der Pol equations. The Van der Pol systems of equations is a classic problem set often
used when comparing numerical methods. The equations model an oscillating system,
originally inspired from modeling vacuum tubes. At a later date it also formed the basis for
developments in modeling action potentials in neurons. Figure 5.5 shows that the Heun and
RK4 methods are very similar, at least for the Van der Pol equations, though this will not

112 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

always be the case. For this particular model the solution generated by the RK4 method is
very similar to the best possible solution obtained numerically. Notice how bad the Euler
method is in comparison.

Algorithm 2 Heun Integration Method. f;(y) is the i’ h ordinary differential equation.

n = Number of state variables
y; = i variable

Set timeEnd

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1tondo

ai = fi(y)

fori = 1ton do
bi = fi(y +ha)

fori = 1ton do L
yit +h) = yi(t) + 3 (a;i + b;)

currentTime = currentTime + &
end while

Variable Step Size Methods

In the previous discussion of numerical methods for solving differential equations, the step
size, h, was assumed to be fixed. This makes implementation straight forward but also
makes the methods inefficient. For example, if the solution is at a point where it changes
very little, then the method could increase the step size without loosing accuracy while at
the same time achieve a considerable speedup in processing time. Likewise, if at a certain
point in the integration the solution starts to change rapidly, it would be prudent to lower
the step size to increase accuracy. Such strategies are implemented in the variable step
size methods.

The approach used to automatically adjust the steps size may be simple or very sophisti-
cated depending on what level of performance is desired. The simplest approach is to carry
out two integration trials, one at a step size of 4, and another trial using two steps of size
h/2. The software then compares the solutions generated by the two trials. If the solu-
tions are significantly different, the step size must be reduced. If the solutions are about the

5.2. DIFFERENTIAL EQUATION MODELS 113

Algorithm 3 4th Order Runge-Kutta Integration Method.

n = Number of state variables
y; = i variable

timeEnd = 10

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1ton do

kii = hf(yi)

fori = 1ton do
kai = hf(yi +k1i/2)

fori = 1ton do
k3i = hf(yi +k2i/2)

fori = 1ton do
kai = hf(yi + kai)

fori = 1ton do L
yi(t +h) = yi@) + Z (k1i + 2 koi + 2 k3i + kai)

currentTime = currentTime + /&
end while

same, then it might be possible to increase the step size. These tests are repeatedly carried
out, adjusting the step size as necessary as the integration proceeds. This simple variable
step size approach can be easily incorporated into some of the more straightforward al-
gorithms, particularly the fourth order Runge-Kutta which is called the variable step-size
Runge-Kautta.

Another approach to adjusting the step size is called the Dormand-Prince method [36].
This method carries out two trials based on the fourth and fifth order Runge-Kutta. Any
difference between the trials is used to adjust the step size. Matlab’s ode45 implements the
Dormand-Prince method. Similar methods to Dormand-Prince include the Fehlberg! and
more recently the Cash-Karp method [24].

Many of these simple adjustable step size solvers are quite effective although they can be
slow especially for the kinds of problem we find in biochemical models. Specifically, there

Uhttp://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method

http://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method

114 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

25
— 20 -
& Euler
g 15 -
©
S 10 -
g Heun and RK4
e 5 |
S
5 0 ————— <]
& 50 5 10 15 20
Time
-10

Figure 5.5 Comparison of Euler, Heun and RK4 numerical methods at integrating the Van
der Pol dynamic system: dy1/dt = y; and dy,/dt = —y1+(1—y1y1)y2. The plots show
the evolution of y; in time. The RK4 solution is almost indistinguishable from solutions
generated by much more sophisticated integrators. Step size was set to 0.35.

is a class of problem called stiff problems which is common in biochemical modeling. Stiff
models require highly specialized solvers developed over the past four decades.

Stiff Models

Many differential equations encountered in biochemical models are referred to as stiff sys-
tems. The word stiff comes from earlier studies on spring and mass systems where the
springs had large spring constants and were therefore difficult to stretch. A stiff system is
often associated with widely different time scales, for example when the rate constants are
widely different in a biochemical model. Such systems may have molecular species whose
decay rates are very fast compared to other components. This means the step size must be
very small to accommodate the fast processes even though the rest of the system could be
accurately solved using a much larger step size. The overall result is the need for very small
steps sizes at a significant computational cost, in addition to rounding error as a result of
the small step sizes. Roundoff errors in turn can be amplified by the large time constants.
The net result are solutions which bear no resemblance to the true solution.

Most modern simulators will employ specific stiff algorithms for solving stiff differential
equations. Of particular importance is the SUNDIALS suite [32] and ODEPACK [71].
Sundials includes a number of very useful, well written, and documented solvers. In partic-
ular, the CVODE solver is very well suited for solving stiff differential equations. Sundials
is therefore widely used in the biochemical modeling community (for example by Jarnac
and roadRunner). Before the advent of SUNDIALS, the main workhorse for solving stiff

5.3. MATLAB SOLVERS 115

systems was the suite of routines in ODEPACK. Of particular note was LSODA which in
the 1990s was very popular and is still a valuable set of software (currently used in CO-
PASI).? The original stiff differential equation solver was developed by Gear [53] in the
1970s and is still used in Matlab in the form of odel5s.

5.3 Matlab Solvers

Although this isn’t a book about Matlab, it is worth mentioning how Matlab can be used to
solve differential equations. Matlab offers a range of solvers with the two most commonly
used being ode45 and odel5s.

The ode4b5 solver implements a variable step size Runge-Kutta method by using the Dormand-
Prince method. The basic syntax for ode45 is:

[t,y] = ode45(@myModel, [tO, tend]l, yo, [1, p);

where

myModel is the function containing the differential equations.

t0, tend are the initial and final values for the independent variable, 7.
yo is a vector of initial conditions.

p is the set of parameters for the model, and can be any size.

The empty vector in the call is where additional options can be placed.

For example, to solve the set of ODEs:

d

% =V, — k1)1
dy>

—— =k —k
pT 1)1 2)2

We would write the following .m file and load it into Matlab:

function dy = myModel(t, y, p)
dy = zeros (2,1);

vo = p(1);
k1 = p(2);
k2 = p(3);

dy(1) = vo - kixy(1);
dy(2) = kilxy(1) - k2*y(2);

‘We would then call the solver as follows:

21n some of our own work, we have noticed that LSODA can be much faster then CVODE.

116 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

p = [10, 0.5, 0.35]
y0 = [0, 0]
[t, y] = ode45 (@myModel, [0, 20], yO, [I1, p)

Although many problems can be solved using ode45, some stiff models will fail to give the
correct solution using this method. In these cases ode15s is recommended. odel5s is a
variable order solver and uses the well known Gear method [53]. Like ode45, odel15s is
also a variable step size method. ode45 might be faster than ode15s on simple problems,
but with today’s fast computers the difference is not great. Therefore odel5s is recom-
mended for all problems unless computing time is critical.

5.4 Python Solvers

Like Matlab, Python is a general purpose computing language. However, unlike Matlab,
Python is open source and freely available for anyone to use. Python offers a variety of ODE
solvers via the scipy package’. These include LSODA [71], an implicit Adams method [61]
(for non-stiff systems), 4th order adaptive step size Dormand-Prince and an eight order
adaptive step size Dormand-Prince [36]. The code below shows the Matlab code shown
in the previous section expressed using Python. The example uses the default LSODA
integrator.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

vo = 10
k1 = 0.5
k2 = 0.35

Declare the model
def myModel(y, t):

dy0 = vo - klxy[0]
dyl = kixy[0] - k2xy[1]
return [dyO, dyi]

time = linspace(0.0, 20.0, 100)
yinit = array([0.0, 0.0])
y = odeint (myModel, yinit, time)

Shttp://scipy.org/

http://scipy.org/

5.5. OTHER SOFTWARE 117

plt.plot(time, y[:,0], time, y[:,1]) # y[:,0] is the first column of y
plt.xlabel('t"')

plt.ylabel('y"')

plt.show()

5.5 Other Software

Matlab and Python aren’t the only software that can be used to solved differential equa-
tions. Mathematica is an example of commercial tool that can be used to solve differential
equations.

For those who require more control or who are unable to purchase a commercial tool, there
are many free applications and professionally developed open source software libraries
that can be used very effectively. Octave (http://www.gnu.org/software/octave/) is
an open source tool that is very similar to Matlab. Scilab (http://www.scilab.org/)
is another free Matlab like application. If you like programming in Python then Sage
(http://www.sagemath.org/index.html) is a good option. There are therefore many
alternative and free options to using Matlab.

For those who require much more control and higher performance, it is possible to write
your own code around the SUNDIALS C/C++ library which is available under the un-
restricted BSD open source licence. Within SUNDIALS is the CVODE library used by
many of the commercial tools. CVODE implements an advanced Gear like algorithm us-
ing a variable order and variable step size approach. It is well suited for stiff systems
and is the preferred method for those who need to write their own code. One final li-
brary worth mentioning is the GPL (GNU General Public License) licensed GSL library
(http://www.gnu.org/software/gsl/. Although very comprehensive, the GPL license
unfortunately puts critical restrictions on how the library can be used. Unless one has a real
need to use the GSL library, it is recommend that one employ the unrestricted SUNDIALS
suite.

Specialized Software

Simulating biochemical networks has a long history dating back to the 1940s [25]. The ear-
liest simulations relied on building either mechanical or electrical analogs of biochemical
networks. It was only in the late 1950s, with the advent of digital computers and the devel-
opment of specialized software tools [49], that the ability to simulate biochemical networks
became more widely available. In the intervening years up to 1980, a handful of other soft-
ware applications were developed [20, 21, 131] to help the small community of modelers.
In more recent years, particularly since the early 1990s, there has been a significant increase
in interest in modeling biochemical processes and a wider range of tools is now available to
the budding systems biologist. Many open source tools have been developed by practicing

http://www.gnu.org/software/octave/
http://www.scilab.org/
(http://www.sagemath.org/index.html
http://www.gnu.org/software/gsl/

118 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

scientists and are therefore freely available.

In this book we will be using the author’s modeling tool Tellurium [155]. Tellurium is well
suited for our purpose. It is a script based modeling application which makes it easy to
illustrate a modeling exercise.

Many tools do not offer readable text based renderings of models because they use either
a visual approach to modeling, such as JDesigner [12] or CellDesigner [88], or have a
graphical user interface such as COPASI [75] or iBiosim [122]. All these tools export and
import the standard modeling language SBML (See section G.1). However, because SBML
is written in XML, it is also difficult to display a model using SBML in a textbook.

Tellurium

Tellurium [155] is an integrated Python based environment for modeling in systems biol-
ogy. The current version (July 2014) integrates a number of libraries including libRoadRun-
ner (Simulator), libSBML (SBML support), libAntimony (Antimony support) and SBML2-
Matlab (SBML to Matlab converter). In addition Tellurium distributes a number of standard
Python packages such as Matplotlib (plotting) and NumPy (array support). All packages
are integrated using spyder2 (https://code.google.com/p/spyderlib/) which offers
a Matlab like experience for modelers.

Visually, Tellurium has two main windows (Figure H.1): a console where commands can
be issued and results returned, and an editor where control scripts and models are written.
The application also has a plotting window which is used when graphing commands are
issued.

Tellurium uses Antimony to let users describe biochemical pathways and Python coupled
with libRoadRunner to do simulations and other analyses. Models can also be imported
or exported as SBML. Many other capabilities are offered through libRoadRunner includ-
ing support for metabolic control analysis, structural analysis of networks, and stochastic
simulation. It has no explicit support for fitting as of yet. A more detailed description of
Tellurium is given in Appendix H. The following code shows the model we used previously
expressed using Tellurium:

import tellurium as te

r = te.loada ('"'
$Xo -> yi; vo;
yl -> y2; kilxyl;
y2 -> $waste; k2*y2;

10; k1 = 0.5; k2 = 0.35;
0; yv2 = 0;

Vo

yi
III)

https://code.google.com/p/spyderlib/

5.6. MOIETY CONSERVED CYCLES 119

m = r.simulate (0, 20, 100);
r.plot();

The first part of the code shows the model expressed using Antimony and loaded into
roadrunner while the second part show two commands to simulate and plot the results via
libRoadRunner.

Spyder for telluriur (Pythan 2.7) [E[=@]=]
Hil oo spis z2phpE BEOALHD- CHUsersihsauraiDocumentsitellurium-fies - 4 4
Editor - CALL & X Mariable explorer & x
3 [[P cxanpletpy [0 | @ unttedrpy [| @ umteaoy @ | [[p]i Hame Twe sz Value =]
1 e float 1 2.718281826459045 @
2model = '
3 J1: A -= B; RKL¥A - k2#E; euler_gamma float 1 0.5772156649815329 g
4 121 B -» C; k3B - kd¥C;
5 o floatss (oL g 2rrercil 8'000000 L @ 1 H
6kl =0.1; k2 = 0.02; : =
7 k3= 0.3 k4 = 0.04; model str 1 . *h - kon
I I e IL: A o= By KL% - k2E;
gt pi float 1 3.141592653589793 =~
10
i 11 rr = te.loadAntimonyModel (model}
12m = rr.simulate (0, 50, 100);
& 13 te.plotwithLegend (rr, mi;
14
1
\ Figure 1 [=o=
200+ BEV
10
— [B]
[A] [variable explorer | File explorer | Breakpoints |
8t — [C] & x
[x] oo00:36 [A
(default, Mow 10 2013, 19:24:18) [MSC v.1500 32 bit (Intel]] en win32
s . ‘copyright', "credits' or *license’ for more infarmation.
ladRurner 1.2.3, LibArtimony v2.0, sbmlZmatlab 1.2.2, TePlugins 1.0.14, MumPy 1.8.9,
1.3.1, and Tellurium 1.1.2 as 'te'
tific' for more details.
& (' C: fUsers/hsauro/Documents ftel lurium- files/untitledS.py', wdir=r'C:/Users/hsauro/D
Turium-files')
ferming censerved meiety conversion
2
o
0 10 20 30 a0 50
ry log IPython consols

Figure 5.6 Screen shot of Tellurium with simulation results.

5.6 Moiety Conserved Cycles

Any chemical group that is preserved during a cyclic series of interconversions is called a
conserved moiety (See section 3.8), Figure 5.7. Examples of conserved moiety subgroups
include species such as phosphate, acyl, nucleoside groups, or covalently modifiable pro-
teins. As a moiety gets redistributed through a network, the fotal amount of the moiety is
constant and does not change during the time evolution of the system. For any particular
subgroup, the total amount is determined solely by the initial conditions imposed on the
model.

There are rare cases when a ‘conservation’ relationship arises out of a non-moiety cycle.
This does not affect the mathematical analysis, but only the physical interpretation of the

120 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

O

[
"

Figure 5.7 Conserved Moiety in a Cyclic Network. The blue species (larger symbols) are
modified as they traverse the reaction cycle, but the red subgroup (small circle) remains
unchanged. This creates a conserved cycle where the total number of moles of moiety
(small circle, red subgroup) stays constant.

conservation relationship. For example, in Figure 5.8 the constraint B — C = T applies
even though there is no moiety involved.

Figure 5.8 Conservation due to stoichiometric matching. In this system, B—C = constant.

The presence of conserved moieties is an approximation introduced into a model, however,
over the time scale in which the conservation may hold, their existence can have a pro-
found effect on the dynamic behavior of the model. For example, the hyperbolic response
of a simple enzyme (in the form of enzyme conservation between E and ES) or the sig-
moid behavior observed in protein signalling networks is due in significant part to moiety
conservation laws [101, 78].

Figure 5.9 illustrates the simplest possible network which displays a conserved moiety. The
total mass, S1 + Sz, is constant during the evolution of the network.

The system equations for the simple conserved cycle are easily written as:

dSl—v v
dt = U1 2
dS,

= VUy — V1

dr

5.6. MOIETY CONSERVED CYCLES 121

A B

Figure 5.9 Simple Conserved cycle. The dotted lines signify negligible levels of synthesis
and degradation. Thus, over short time scales, S; + S> = constant.

From these equations it should be evident that the rate of appearance of S; must equal the
rate of disappearance of S», that is dS1/dt = —dS,/dt. This means that whenever S;
changes, S must change in the opposite direction by exactly the same amount. During a
simulation the sum of S; and S, will therefore remain unchanged. This is a characteristic
of a moiety-conserved cycle.

Computationally, we only need to explicitly evaluate one of the differential equations be-
cause the other can be computed from the conservation relation. The system can therefore
be reduced to one differential and one linear algebraic equation compared to the two differ-
ential equations in the original formulation.

S =T -8
dS
— =V —
7 1— V2

The term T in the algebraic equation shown above refers to the total amount of S and S5.
This value is computed from the initial amounts of .S; and S5 at the start of a simulation.

The conservation can be seen in the stoichiometry matrix as linear dependencies among the
matrix rows. Let us look at an example where there are dependencies between the rows.
Consider the cyclic pathway shown in Figure 5.11 with the corresponding stoichiometry
matrix shown in equation 5.7.

—1 1
N:[; _1] 5.7)

Note that there is one row dependency in the stoichiometry matrix. Multiplying the second
row by -1 gives the first row.

What this means is that given the amount for either S or S5, it is possible to compute

122 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

10

8
=
g
2 6
E Si
: 4 —
o
@)

2

0

0 10 20 30 40

Time

Figure 5.10 Simulation of the simple cycle shown in Figure 5.9. The total moiety remains
constant at 10 concentration units. Model: S1 -> S2; ki1xS1; S2 -> S1; k2xS2; S1 =
10; k1=0.1; k2=0.2.

Figure 5.11 Simple cycle.

the other. That is, the total mass in the cycle is fixed, S; + S» = T. Conservation con-
straints such as these can have profound effects on network behavior [108]. In addition,
they affect certain numerical procedures* and should be eliminated by computer software
whenever possible [154]. Most modern software apply this operation before proceeding to
solve model equations. For certain types of analysis, such as computing the steady state,
bifurcation analysis, and certain optimization methods, eliminating the redundant species
is critical. These topics will be covered in more detail in a separate book.

5.7 Exploiting Fast Processes

Chapter 4 discussed some of the simplifications that are often made when we construct a
computer model. One simplification involves aggregating reaction steps. Typical examples

4In particular, the Jacobian matrix becomes singular thereby preventing the calculation of Bifurcation curves
and computing the steady state.

5.7. EXPLOITING FAST PROCESSES 123

include the use of Michaelis-Menten or Hill rate type kinetics. In the majority of these
cases, the implicit assumption is that the processes inside the aggregate are much faster then
processes outside. As noted already in this chapter, numerical instabilities can arise when
a model has very different times scales, where some parts of the model are much slower
or faster than other parts. There are different ways to take advantage of fast processes to
simplify models; here we will consider two.

Equilibrium Assumption

The first approach assumes that a reaction with fast forward and reverse rates is always very
close to equilibrium. We can illustrate this with a simple example. Consider the pathway
shown in Figure 5.12. The two differential equations for this system are:

dA r

— = —k1A|1—

ar e (Keq)
dB r
—:klA(l—)—k3B
dt Keq

The rate law representing the middle reaction between A and B is a modification of the
usual mass-action rate law, k1 A — ko B, where k, has been replaced by the equilibrium
constant, K4, and the mass-action ratio, I". See section 2.6 for the derivation.

— s A——B—
ke kg

Figure 5.12 Fast reaction sandwiched between two slower reactions.

Let us assume that the middle reaction between A and B is very fast, that is, k; and k; are
much larger compared to v, and k3. In this situation the middle reaction can be consid-
ered to be very close to equilibrium. In other words, the mass-action ratio I" approaches
the equilibrium constant such that the ratio of A and B is largely tied to the equilibrium
constant. Rather than integrating A and B individually, we can define the dynamics of the
system in terms of a new variable, the total, 7 = A + B, which can change. Part of the
justification for this is that any change in 7" will result in an equal proportional change to
A and B (See Exercise).

The differential equation for the total, T', can be obtained by summing the two separate
differential equations:
dT d(A+ B) _
dt dt
Note that the concentration of B (and A) is no longer a state variable and must be computed
separately from the equilibrium ratio and total. Since we are assuming that A and B are in

vo - k3B

124 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

equilibrium, we can compute the equilibrium value for B given the relations:

Keq ==

N o W

A+ B =

such that when combined, we get the following:

Once we have computed B, A can be computed using 7' — B. To implement this numeri-
cally, we solve the following set of equations:

1+ Keg
A=T—-B
dr
— = — k3B
di Vo 3

The equilibrium models can now be compared with the full model. When k5 and k, are
large, we expect the equilibrium approximation to closely match the full model. The Tel-
lurium script shown in Listing 5.1 implements two models, one using the equilibrium as-
sumption and another which does not. Both models are run at the same time to compare
them.

import tellurium as te
import pylab

Comparing the full model with an approximation
based on the equilibrium assumption
r = te.loada ('''

// Model using the equilibrium assumption

// Note the use of := which represents a simulation rule
B := T*Keq/(1+Keq) ;
A :=T - B;

$s -> T; vo - k3%*B;

// The full model

$s -> Af; vo;

Af -> Bf; k1xAf - k2x*Bf;
Bf -> $w; k3*Bf;

T = 103

5.7. EXPLOITING FAST PROCESSES 125

Af = 3.33333; Bf = 6.66666;
Keq = 2; vo = 0.5;
k3 = 0.1; k1 = 1;
k2 = k1/Keq
'll)

result = r.simulate(0, 100, 200, ["time", "Af", "Bf", "A", "B", "T"])
r.plot(ylim=(0,10), x1im=(0,100))

Listing 5.1 Script for Figure 5.12.

Figure 5.13 shows the results of running the Tellurium script (Listing 5.1) assuming that the
middle reaction is so fast, we can treat it as if it were constantly very close to equilibrium.
Notice that the two model simulations are almost indistinguishable. Only three lines are
shown, the top curve is the total, 7. The middle line plots species B and is in fact two over-
lapping lines, one for the approximation and another for the full model. The bottom line
follows species A and again consists of two overlapping lines. In this case the equilibrium
assumption can be used without compromising accuracy in the simulation.

10
Q
T
T 8
w-\
~ 6\ B
&
g o
<
> S~— A
2
0 20 40 60 80 100

Time

Figure 5.13 Simulation for model in Figure 5.12 where the rate constants, k; and k, are
high and equal 1000 and 500, respectively. In this case both models coincide indicating
that the approximation is good. Upper curve is T, middle curve B, and lower curve A.
Tellurium model in Listing 5.1.

What if the middle reaction is not very fast, but comparable to the other steps in the path-
way? In this situation we can no longer assume it is at equilibrium so if we run the simu-
lation, we obtain the graphs shown in Figure 5.14. Interestingly, the concentration of B is

126 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

unaffected. This is because B is independent of k1 and k5 since at steady state:

dA

T Vo 1+ Bk2

dB

— = Aky — Bk, — Bk3; =0
pT 1 2 3

Solving for the steady state solution for A using dA/dt = 0 and inserting this into the
second equation, dB/dt = 0, yields:
Vo
Bgs = —
SS k3
In contrast, A as computed by the approximation, diverges from the expected trajectory.
Two important points are worth making. The first is that if we use the equilibrium approx-
imation inappropriately, the time trajectories diverge. More problematic is that the final
steady state value for A is also different. The equilibrium approximation should therefore
be used carefully.

10

Variables, T, A and B
(@)
/
oo
|

2 | | | |
0 20 40 60 80 100

Time

Figure 5.14 A rerun of the simulation shown in Figure 5.13 but this time we slowed down
the middle reaction so we no longer assume it is in equilibrium. Notice the concentration
of A diverges from the expected solution so that the approximation is no longer valid.
ki1 = 1;kp = 0.5. Curves from the top, 7', B (equilibrium solution), B (true solution), A
(equilibrium solution), B (true solution). Tellurium model in Listing 5.1.

Quasi-Steady-State Assumption

Another way to model fast reactions is to use the quasi-steady-state assumption instead
of the equilibrium assumption. In this approximation we assume that the dynamics of A4 is

5.7. EXPLOITING FAST PROCESSES 127

fast compared to B. For example, the processes that affect A maybe faster than those that
affect B. We can express the rate of change of 4 in Figure 5.12’s model:

dA
o = vy, — Ak + Bk>

20

15

Variables
>
T
|

O | | | |
0 20 40 60 80 100

Time

Figure 5.15 Simulation of the model shown in Figure 5.12 assuming the quasi-steady-
state assumption for A. Note that the trajectories converge, a characteristic when using the
steady state assumption. From the top, curves represent: B (quasi-steady-state solution),
B (true solution), A (quasi-steady-state solution), A (true solution). k1 = 1000, Tellurium
model in Listing 5.2.

import tellurium as te
import pylab

Comparing the full model with an approximation
based on the quasi-steady-state assumption
r = te.loada ('''

Ass := (vo + k2xB)/k1;

$s -> B; vo - k3*B

$s -> Af; vo;

Af -> Bf; ki1xAf - k2x*Bf;
Bf -> $w; k3x*Bf;

B = 6.66666;

Af = 3.33333; Bf = 6.66666;

vo = 1.5;

k3 = 0.1;

// Use k1 = 1000 to obtain a better approximation
ki =0.1;

Keq = 2;

128 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

30

20— |

Variables

10 |- a

0 | | | |
0 20 40 60 80 100

Time

Figure 5.16 Same simulation as in Figure 5.15 except that the reactions surrounding A are
too slow to assume a quasi-steady-state approximation. In this case we see considerable
divergence in the transients but still see correct convergence at steady state. From the
top, curves represent: A (quasi-steady-state solution), B (quasi-steady-state solution), B
(true solution), A (true solution). k1 = 0.1, note that ko = k1 /K4, Tellurium model in
Listing 5.2.

k2 = k1/Keq;

lll)

result = r.simulate(0, 100, 200, ["time", "Af", "Bf", "Ass", "B"])
r.plot(ylim=(0,30), x1im=(0,100))

Listing 5.2 Script for Figure 5.12.

Let us assume that A reaches steady state much faster than B such that we can set the
equation dA/dt to zero and solve for A. We call this assumption the quasi-steady state

assumption. > The steady state solution to A is:
Vo + kZB
A = —

SS kl

Given that the rate of change of B is:

dB
— = Ak1 — Bk, — Bk
57 1 2 3

we can rewrite this equation by inserting the steady state concentration, Ay to obtain:

a2 o 2 _ Bk, — Bk
7 ke 1 2 3

SThose familiar with Michaelis-Menten kinetics will have seen this approximation used in deriving the Briggs-
Haldane relationship.

5.7. EXPLOITING FAST PROCESSES 129

which upon simplification reduces to the remarkably simpler solution:

dB
— =V, — k2B
dt [4 2
To model this system we need to solve the two equations:
Agg = —————
SS kl
dB
— =v,— k2B
dt o 2

In Figure 5.15 where the reactions are fast enough that the quasi-steady state assumption is
reasonable, we see that both simulations follow each other closely. In contrast, Figure 5.16
shows that when the reaction reactions are too slow, the quasi-steady state assumption
breaks down and both simulations diverge quite considerably. In both cases however, all
trajectories coverage to the same steady state. This highlights one of the characteristics of
the quasi-steady state assumption; the steady state is faithfully reproduced when assuming
quasi-steady-state. This also suggests that using Michaelis-Menten like kinetics when the
quasi-steady-state assumption is applied is reasonable, especially if the modeler is only
interested in the final steady state.

Further Reading

The two most popular books on numerical analysis are by Press and Burden and are in-
cluded here for reference. Both books can be purchased second-hand at reasonable prices.
The content in the Press book has not changed significantly between editions so any edition
is useful. The main problem with the Press book is that the source code has very strict li-
censing rules making the code difficult to reuse for projects. However, the book is excellent
at explaining how various algorithms work and for this reason alone it is worth purchasing.

1. Burden and Faires (2010) Numerical Analysis. Brooks Cole, 9th Edition. ISBN-10:
0538733519

2. Ingalls B (2013) Mathematical Modeling in Systems Biology: An Introduction, MIT
Press. ISBN: 978-0262018883

3. Pahle (2009) J Biochemical simulations: stochastic, approximate stochastic and hy-
brid approaches. Briefings in Bioinformatics 10(1), 53-64

4. Reich, J.G. & Sel’kov, E.E. (1981) Energy metabolism of the cell. A theoretical
treatise. Academic Press, London, ISBN-13: 978-0125859202

5. Press, Teulolsky, Vetterling and Flannery (2007) Numerical Recipes. Cambridge
University Press, 3rd Edition ISBN-10: 0521880688

130

CHAPTER 5. DIFFERENTIAL EQUATION MODELS

6. Sauro, HM, and Bergmann FT (2009) Software Tools for Systems Biology in Sys-

tems Biomedicine: Concepts and Perspectives, edited by Edison T. Liu, Douglas A.
Lauffenburger. ISBN 978-0-12-372550-9

For the budget conscious buyer I highly recommend the Dover edition:

1. Dahlquist and Bjorck (2003) Numerical Methods. Dover Publications ISBN-10:

0486428079

Exercises

1. Implement the Euler method in your favorite computer language and use the code to

solve the following two problems. Set initial conditions: S7 = 10,52 = 0. Set the
rate constants to k1 = 0.1; k, = 0.25. Investigate the effect of different steps sizes,
h, on the simulation results.

a) dSl/dt = —k15;

b) dSl/dZ = —k1S871; dSz/dl‘ =k1S1 — k25>

In section 4.4 a model of two water tanks with water flowing from one tank to another
was described. The model comprised of two differential equations that described how
the heights of water in each tank changed in time. Given the equations for the model,
enter them into a software tool of your choice to answer the following questions:

a) Plot the rate of outflow, Q», as a function of the height of water, /; at a given
resistance, K.

b) Assuming that Q1 and Q4 are fixed and we start with both tanks empty, what do
you expect to happen over time as water flows in?

¢) Write out the differential equations (ODEs) that describe the rate of change in the
tank water levels, i1 and /5.

d) Build a computer model of the tank system. Assign suitable values to the param-
eters in the model and run the simulation to plot the height of water in the tanks over
time. Assume both tanks are empty at time zero.

e) Investigate the effect of increasing and decreasing the resistance parameters, K
and K5 on the model.

The following model shows oscillations in S; and S at a step size of 7 = 0.044
when using the Euler method. By using simulation, show that these oscillations are
in fact an artifact.

5.7. EXPLOITING FAST PROCESSES 131

cell = '"!
$Xo -> S1; kixXo;
S1 -> S2; k2x%S1;
S2 -> $X1; k3*S2;

Xo = 10; S1 = 0; S2 = 0;
k1 = 23.4; k2 = 45.6; k3 = 12.3;

4. Find out what differential equation solvers the Python SciPy Package supports.

5. Construct a model of the following system using Tellurium.

ka

> S > SH >
VO k-l k3

Let the reaction associated with the positive feedback (k1) be governed by the fol-
lowing rate law:
ki1S1(1 +¢ST)

All other reactions are governed by first-order kinetics except the first reaction which
has a constant rate of v,. Set the constants to the following values: v, = 8;¢ =
1.0;k;1 = 1;kp = 5;k3 = 1 and ¢ = 3. Study the effect of changing v, on the
dynamics of the system.

6. Download the model BIOMDO0O00000010 from Biomodels and load it into Tellurium.
Run a simulation of the model.

7. Given a system at equilibrium, A = B, with equilibrium constant, K4, and total
mass in the system to be T = A + B, show that a change §7 in the total results in
equal proportional changes to A and B.

8. Using the model in Figure 5.12, compare the full model with an approximation that
assumes the middle reaction has higher rate constants than the rate constants in the
surrounding reactions.

132 CHAPTER 5. DIFFERENTIAL EQUATION MODELS

Stochastic Models

6.1 Stochastic Kinetic Models

So far we have learned how to run simulations of continuous models described using ordi-
nary differential equations. However, as mentioned in Chapter 4, there is a strong case in
some situations to model reaction systems using a discrete stochastic approach.

It has been shown [40, 126] experimentally that stochasticity is endemic in gene regulatory
networks, particularly in prokaryotic organisms where the number of transcription factors
can be in the low tens of copies or fewer. The stochasticity in protein expression is a result
of the many molecular events that occur between transcription and translation. For example,
when the number of transcription factors (or RNA polymerase) is very small, the random
binding and unbinding to the operator and promoter sites leads to random transcription
events such that transcription acts in an on/off manner with bursts of mRNA production
followed by periods of silence. This is called the random telegraph model [92]. Translation
itself contributes to stochasticity given that the number of mRNA transcripts may be small.
A single mRNA strand can result in many proteins being produced before it degrades. The
kinetics of protein synthesis may therefore be quite different compared to what is described
by a simple deterministic model.

Individual reaction events can play a dominant role in determining the evolution of the
system. Since the time at which a reaction occurs is a random event, simulating reac-
tion events becomes stochastic. In addition, since we’re dealing with individual reaction
events, we must keep track of exact molecule numbers rather than a number representing
a continuous concentration value. The companion book, ‘Enzyme Kinetics for Systems

133

134 CHAPTER 6. STOCHASTIC MODELS

Biology’ [150], provides a formal and informal description of the theory and algorithms
behind stochastic simulations. Here we will only cover the formal description. The most
common approach to stochastic simulation is to use the Gillespie method for simulation
which we will describe here.

6.2 Stochastic Kinetics

Basic Definitions

In stochastic reaction kinetics the symbol ¢4t is often used to describe the probability that
a reactant molecule will react in the next time interval, §¢. This means that ¢ (without the
8t) is the average probability that a reactant will react per unit time, and can be considered
a probability or stochastic rate constant.

¢ét = the average probability that a particular reactant molecule will react in the next
time interval, §7, where ¢ is the average probability that a reactant molecule will react
per unit time. If the reaction is second or third-order, then ¢4t refers to the probability
of a particular combination of reactant molecules reacting in the next time interval, §¢.

Note that the ¢§¢ refers to a particular reactant combination that can react. For a first-
order reaction, a single molecule can react, or for a second-order reaction, two molecules
must meet to react. When we have a population of molecules, ¢§¢ must be multiplied by
the total number of reactant combinations in order to obtain the probability of a reaction
occurring within the entire population in §z. For a simple first-order reaction, the number
of combinations is the number of reactant molecules. Thus, the probability that a reaction
will occur in a population in the next time interval, &z, is:

hcét

where A is the number of distinct molecular reactant combinations, or in the case of a first-
order reaction, the actual number of reactants (Figure 6.1). To illustrate this further, let’s
say we have four reactant molecules and they react via a second-order reaction. The number
of ways (combinations) the four pairs can meet up is 4 x 4 = 16. Therefore h = 16.

OoaQoaoQoaQeoe .

cdt + cdot + cdt + cdt + cdot ... =hcdt

Figure 6.1 Number of combinations for a simple first-order reaction. Upper row represents
individual molecules.

6.2. STOCHASTIC KINETICS 135

h = the number of distinct molecular reactant combinations for a given reaction at time
t.

hcdt = the probability that a reaction will occur in a population of molecules in the
next time interval, §z.

For reactions other than first-order, / is more complicated. For a second-order reaction
involving two distinct species, say X and Y, the number of combinations is XY . For
a second-order reaction that is a dimerization of identical molecules, X, the number of
combinations is X (X — 1)/2. For a zero-order reaction, the number of combinations is one.
Table 6.1 gives a list of different reactions and the corresponding number of combinations.

Reaction Number of reactant combinations (%)
— X (zero order) 1

X —>Y Xg

X+Y —> Xa Ya

X+X— Xq (xg —1)/2

X+Y+Z72 — Xa Va Za

X +2Y — Xa Ya (Ya—1)/2

3 — Xq(xqg — 1)(xqg —2)/6

Table 6.1 Number of combinations (%) for different elementary reactions. x4, yq, and z,4
represent the number of molecules.

The term /¢ is analogous to the deterministic reaction rate. In the stochastic literature it is
often called the propensity function or the average rate. /¢ itself is not a probability since
its value can exceed one, and its units are molecules per unit time. As indicated before, the
term c is analogous to the deterministic rate constant and is sometimes called the stochastic
rate constant.

The average rate for a first-order reaction is therefore given by:
XqC

where & has been substituted with x, (Table 6.1).

Relationship of ¢ to Deterministic Rate Constants
For a first-order reaction the deterministic rate, v, is given by:

v=kX

136 CHAPTER 6. STOCHASTIC MODELS

where X is the concentration of molecule X. In the following calculations we must recall
that for a species with a given concentration, X, in a given volume, V', the number of
molecules is represented as:

Xqg = XNJV

where x, is the number of molecules and N4 is Avogadro’s number. With this in mind, the
rate of reaction in molecules per unit time is given by:
kXNAV = kx,
Since the stochastic rate is also in units of molecules per unit time, cx, this means:
cxg=kxg, . c=k
In other words for a first-order reaction, the deterministic rate constant and the stochastic

rate constant are identical.

For a second-order reaction a similar analysis yields a different result. Consider a second-
order reaction involving two dissimilar molecules, X and Y. The deterministic rate is given
by:

v=kXY

where X and Y are the concentration of species X and Y, respectively. The rate in terms
of molecules per unit time is given by:

Ya
Ny

where x, and y, are the molecule numbers for species X and Y. Note that y, = Y N4V,
thatis ¥ = y,/(N4V). From Table 6.1 we know that the average rate of a stochastic
process in molecules per unit time is ¢x, V4, therefore:

CXqYa = kx Ja
aya aNAV
and thus:
k
c= ——
N4V

Note that the stochastic rate constant is inversely related to the volume. This makes sense
because the larger the volume, the less likely a molecule of X and one of ¥ will meet.

Example 6.1

What is the relationship between the deterministic and stochastic rate constant for the irreversible
reaction:
2X - Y

6.3. TIME TO REACTION 137

The deterministic rate law is given by v = kX? where X is the concentration of species X. The
rate in terms of molecules per unit time is given by:

KNsAXVX = kx,X = kx2/(NaV)
From Table 6.1 we see the stochastic rate is given by c¢x,(x, — 1)/2 so that
kx2/(NaV) = cxa(xq —1)/2

Therefore:
2kx,

T DNV

For large x,, the term (x, — 1) can be approximated by x, so that:

2k
c=——
NaV

Although the previous definitions give us the probability of a reaction occurring in a §¢
window, they do not tell us when a reaction is likely to occur. That is, if we start a clock
at time zero, when is a reaction likely to take place? This question is addressed in the next
two sections.

6.3 Time to Reaction

Assume we have ten molecules than can undergo a decomposition reaction. How can we
describe this system knowing that individual molecules will react at random times? If we
start a clock at time, ¢, (Figure 6.2), at what point in the future might one of the molecules
react?

Consider a time line starting at time zero that extends into the future (Figure 6.2). With this
in mind, what is the chance of a reaction occurring in the interval time ¢ + d¢ if we started
monitoring the system at time zero?

To answer the question it is easier to first ask the opposite question. What is the probability
that a reaction will not occur in both intervals, 0 — ¢ and ¢ to ¢ + dt ? To answer, let us split
the question into two parts. In order for there to be no reaction in the interval 0 — ¢ + dt,
no reactions should occur in the two subintervals 0 — t and t — t + dt.

Let us designate the probability of no reaction in the first interval by p(0, ¢), and for the
second interval, p(¢,¢t + dt). Since we assume independent events, the probability of no
reaction in the entire interval, 0 — ¢ + dt is the product:

P20, +dt) =p(0,¢) p(t,t + dt)

To continue further we can expand the second term p(z, ¢ +dt) and assume that the reaction
occurs at a propensity of a. Over a time interval 7', the reaction will occur a7 times. If

138 CHAPTER 6. STOCHASTIC MODELS

p(0, t) p(t, t + dt)

1 1 1
T T

ty t

dt
Probabilty of no event occuring between 0 to t + dt =

(0, t) X p(t, t + dt)
Figure 6.2 Stochastic time line.

the interval is made shorter by dividing it up into N subintervals, the chance of a reaction
occurring in any one of these intervals is a7/ N . If we make the time interval small enough,
say dt, then the probability of a reaction occurring in df time will be adt. The probability
of a reaction not occurring in this interval is therefore 1 — adf. We can now write the
probability equation as:

p0,t +dt) =p(0,t) (1 —adt)

Rearranging gives:
P(0,t +dt) —p(0,1) = —p(0,1) adt

Dividing both sides by §¢, we obtain the differential equation:

dp(0.1) _

—75(0,¢
7 p(0,1)a

Now solve for p(0, ¢) by integrating the differential equation and using the observation that
at time zero, no reaction has occurred so p(0) = 1:

2(0,t) = e %

Recall this is the probability of a reaction not occurring in the interval O to 7. That is, if we
let ¢ increase, p(0, ¢) tends to zero; that it the longer we wait, the more likely the reaction
will occur. The probability of a reaction occurring at ¢, p(¢), is the probability of it not
occurring in the interval O to ¢, times the probability that the reaction will occur in the
interval ¢ to dt:
p()dt =p(0,1) p(t,t + dt) = p(0,1)adt

That is:

pt) =ae ™ (6.1)

This equation describes a probability distribution function (pdf) for ¢ (note that p(¢) is
positive and the area under the curve is one). As with all pdfs, the area under the curve is the
probability. For a given probability we could in principle sweep out the corresponding area,

6.3. TIME TO REACTION 139

left to right, and locate the time on the x-axis where the sweep ends. It is simpler however
to integrate the equation (6.1) to generate the cumulative probability function, P (¢), which
is the probability as a function of time. Integration of (6.1) yields:

Pity=1—e% (6.2)

Equation (6.2) can be rearranged so that ¢ is on the left-hand side:
1
t=—1In(l1—-P@)) (6.3)
a

We can now assign a uniform random number to P (¢) and compute a possible time when
the reaction will occur. If we did this repeatedly, the times would be distributed exponen-
tially. Since the value of P(¢) is drawn from a uniform random number distribution, the
distribution of numbers in 1 — P(¢) is no different from P(¢). Therefore we can simplify
equation (6.3) and rewrite it as:

= ~Linpay
a

Using the log addition rule, remove the negative sign and rearrange the equation to:

=t (!
‘E“(m)

or more simply, there P(¢) is replaced with r:

1 1
t::—ln(—) (6.4)
a r

This is the equation that is often presented in the literature but for computational purposes,
the former is more efficient as it avoids the division operation.

= L) 6.5)
a

In practice, to simulate a simple decomposition reaction, we would first generate a uniform
random number, set it to P (¢), and compute the corresponding time, ¢. After this, we reduce
the number of reactant molecules by one to signify a decomposition has occurred. We’d
also increment our time line by ¢, then continue by computing another ¢ from the equation.
The reaction rate (or propensity function), a, must be recomputed for each iteration. Note
that the smaller the propensity a, the larger the ¢ computed from the equation. This makes
sense because a lower reaction rate corresponds to fewer reactants and since there are fewer
reactants, we will likely have to wait longer before another reaction occurs. Likewise, if
there are many reactants, the reaction rate is likely to be higher and correspondingly, the
time until the next reaction shorter. If there are large numbers of reactants, say in the

140 CHAPTER 6. STOCHASTIC MODELS

thousands, this simulation method is quite slow because the time intervals at each iteration
will be very small, requiring many steps for the simulation to evolve over time.

Equations (6.4) and (6.5) describe part of a well known algorithm called the Gillespie
Stochastic Simulation Algorithm or the Gillespie SSA for short [57, 56]. The method
described here is also called the Direct Method because it calculates the time to the next
simulation directly. Other implementations include the First Reaction Method [57] and
the more efficient Next Reaction Method [55], however these are beyond the scope of this
chapter. An excellent article that describes all three approaches is provided by McCollum
etal [112].

The full Gillespie SSA can also address systems with multiple reactions. The extension
from one to multiple reactions is surprisingly simple and will be described briefly in the
following section.

6.4 Running Stochastic Simulations

There are many variants on the Gillespie method, some are faster and some are approx-
imate. The review by Pahle [128] covers many of these variants and is well worth con-
sulting. There are a number of software tools that support stochastic simulation, examples
include COPASI [75], Dizzy [140] and Jarnac [148]. For Python users StochPy1 is highly
recommended and comprehensive, offering many facilities for stochastic simulation. Of
these, COPASI, Jarnac, and StochPy have releases in 2014 and actively support SBML
or text based languages such as Jarnac or PySCeS. Manninen et al. [105] reviews some
of these software tools. In the deterministic world we have a multitude of easy to use
software libraries (such as sundials and odepack), but libraries for stochastic solvers are
virtually nonexistent. One possible option is StochKit>. Although quite comprehensive,
using the StochKit library is not easy, certainly not as simple as the differential equation
solvers. There is an interesting blog® by Mario Pineda-Krch that describes his experience
with using StochKit.

Given the theory presented in the last section, we summarize the basic Gillespie algorithm
as:

1. Initialize t = ¢,, x = Xx,, ¢, and end of simulation time, ?,,,,
2. Compute h depending on the nature of the reaction (Table 6.1)
3. Evaluate propensity function, a = hc

4. Draw one uniform random number, rq

5. Determine the time, T when the next reaction will take place using:

Thttp://stochpy.sourceforge.net/
Thttp://engineering.ucsb.edu/"cse/StochKit/
Shttp://www.r-bloggers.com/vanilla-c-code-for-the-stochastic-simulation-algorithm/

http://stochpy.sourceforge.net/
http://engineering.ucsb.edu/~cse/StochKit/
http://www.r-bloggers.com/vanilla-c-code-for-the-stochastic-simulation-algorithm/

6.4. RUNNING STOCHASTIC SIMULATIONS 141

T=——1In(ry)
a

6. Determine the new state: t =7+ 7tand x = x — 1
7. Reached end of simulation, ¢ > #,,,,?

8. No, got to step 2

9. Yes, finished

Algorithm for Simulating the Stochastic Kinetics of a Single Reaction.

Extending the Gillespie SSA to systems with multiple reactions is straight forward. In
addition to computing when a reaction will fire, the full Gillespie SSA also considers which
reaction will fire. If we have a system of v reactions and wish to determine which reaction
will fire, first sum up the propensity functions, &y, ¢y, :

v
R = Zhvicvi

i=1
Now normalize each propensity function dividing by R:
n; = hjci/R

Intuitively the method arranges the normalized propensities in the form of a pie chart, where
the size of an individual pie wedge, n;, is equal to the size of the normalized propensity.
Now imagine throwing a dart at the pie chart. Whatever pie wedge the dart lands on is the
reaction to be fired in the next iteration. This means larger pie wedges are more likely to
be selected than thinner ones, or in other words, reactions with larger propensities are more
likely to fire than those with smaller propensities. A possible algorithm for implementing
this scheme is shown below (written in a pseudo code). The code works its way through
each pie wedge. The function uniformRandomNumber () returns a uniform random num-
ber between zero and one. In this code the reactions are numbered from one, but it could
easily be modified to index reactions from zero if deemed more convenient.

r = uniformRandomNumber ()
Reactions index from 1 to number(OfReactions
Propensities index from 1 to numberOfReactions

if r <= n(1) then
Reaction[1] fires
else
begin

142 CHAPTER 6. STOCHASTIC MODELS

for i = 2 to numberOfReactions do
if (r > n[i-1]) and (r <= n[i]) then
begin
Reaction[i] fires
exit
end
end

Although the above algorithm is relatively easy to understand, it is not very efficient. A
more efficient alternative is given below. This version doesn’t normalize the propensities
but instead scales the random number to the sum, R, of the propensities, then walks through
the propensity list until the scaled random number exceeds the accumulating propensity
value. This method avoids normalizing every propensity value and instead only involves
simple additions. This code could be easily implemented in a language such as Python
(www.python.org).

accumulate = 0
i=0
scaledRandomNumber = uniformRandomNumber () *R
while accumulate < scaledRandomNumber do
begin
i=1i+1
accumulate = accumulate + n[i]
end;
Fire the ith reaction

6.5 Events at Regular Intervals

Equation (6.5) describes how time intervals for reaction events are computed. The intervals
are irregular due to the selection of a uniform random number each time a time interval
is computed. Generating data on an irregular grid can however be inconvenient. It is
possible to modify the algorithm so than the time axis increases in a more regular fashion.
Figure 6.3 illustrates how stochastic events at irregular intervals can be arranged to lie on
a regular time grid. The method works by moving simulated events nearest a vertical grid
line to the grid line itself. Other reaction events are ignored. Reaction events nearest a grid
line can be moved to the grid line because we know with certainty that there are no events
between the nearest event and the grid line, hence at the grid line, the number of molecules
will correspond to the nearest event in the past. This way an irregular set of events can be
realigned onto a regular grid.

An example will make this more clear. The rows of data (Table 6.2) correspond to data
generated from the Gillespie SSA Algorithm starting with 20 molecules. Note that the time
intervals are irregular as expected from the Gillespie SSA.

www.python.org

6.6. STOCHASTIC TRAJECTORIES 143

Number of Molecules

d
—
3 @0
—

2 eo0 |@

- >
1 o| o

— >
12 3 4 5 6 Time

Figure 6.3 Technique for generating stochastic events on a regular grid. Simulated points
nearest a grid line (light markers) are moved (arrow) to the nearest grid line in the future.
Other data points (dark markers) are ignored. Such a technique is useful when averaging
a large number of trajectories. The average number of molecules can be calculated at each
grid point.

A regular grid is set to an interval of 0.5 and the raw data shown in Table 6.2 is grided. For
example at grid point 1.0, the event closest to this grid point in the past is the reaction event
that occurred at time 0.81, corresponding to 9 molecules. We therefore assert that at time
1.0, there were 9 molecules remaining. This method is applied to each grid point, with the
results summarized in Table 6.3.

6.6 Stochastic Trajectories

One crucial point regarding the Gillespie SSA method is that a trajectory produced from
one simulation represents only one of many possible trajectories. If we were to run the
same simulation a second time, we would observe a slightly different but related trajectory.
This is the nature of stochastic processes. Figure 6.4 shows ten repeated simulations of
exactly the same system, with the same initial conditions and stochastic rate constant. As
one can see from the graph, each trajectory is slightly different. It is possible to combine
these trajectories into a single averaged trajectory. To do this easily we arrange the output
from the simulation onto a regular grid.

Once on a grid, it is now easy to compute the average and variance of a series of repeated
simulations. As an example, the trajectories shown in Figure 6.4 are redrawn in Figure 6.6

144

CHAPTER 6.

STOCHASTIC MODELS

Time 0 0.052 0.1 0.16 0.21 0.24 0.31
Molecules 20 19 18 17 16 15 14
Time 041 0.5 052 056 081 1.2 1.47
Molecules 13 12 11 10 9 8 7
Time 1.58 1.59 1.71 222 275 342 484
Molecules 6 5 4 3 2 1 0

Table 6.2 Data from a Gillespie SSA run.

Time 0
Molecules 20

05 10 15 20 25 30 40 5.0
12 9 7 4 3 2 1 0

Table 6.3 Result of gridding data from Table 6.2.

using a grid interval of 1.0.

import tellurium as te

te.loada ('''
$Xo -> S1; ki1x*Xo;
S1 -> S2; k2x%S1;
S2 -> $X1; k3*S2;

r =

Xo =
ki

BOg, & = 03 S2
0.2; k2 = 0.4;

lll)

result =
r.plot()

=o;
k3 = 2;

r.gillespie (0, 30)

Listing 6.1 Script for Figure 6.7.

Listing 6.1 shows a Tellurium script that generated the plots shown in Figure 6.7. The key

line in the script is:

m = r.gillespie (0, 30)

This takes two arguments. The first and second arguments set the time start and time end
for the simulation. There is an optional third argument which can be used to set a fixed time
step (output is then on a grid) and an optional forth argument which sets the columns in the
matrix that will be returned. Note that species amounts have been set to integer values
because we are now dealing with discrete molecules.

6.6. STOCHASTIC TRAJECTORIES 145

& (o)
] o

Number
of Molecules Remaining
[\
S

Time (ms)

Figure 6.4 Multiple simulations of the same irreversible decomposition reaction, X — Y
showing different trajectories. The stochastic rate constant is 0.3 ms™!. Initial number of
molecules is 60.

start = 0; dt = 1;

// Retrieve number of rows in input matrix
events = rows (m);

endTime = m[events,1];

// Compute length of the output matrix, out
len = trunc(endTime - start)/dt + 1;

out = matrix (len, 2);

gridTime = 0;

=1

for i = 2 to events do

begin

while m[i,1] >= gridTime do
begin
out[j,1] = gridTime;
out[j,2] = m[i-1,2]
=it
gridTime = gridTime + dt;
end;

end;

Figure 6.5 Griding code: Modified from Wilkinson, Stochastic Modeling for Systems Bi-
ology, Figure 6.10, ISBN: 978-1584885405. The code accepts a matrix, m from a Gillespie
SSA run, where the first column is time and the second column the number of molecules.
Indexing of matrices is from 1.

146 CHAPTER 6. STOCHASTIC MODELS

60
3 40 | :
2 3
£ 3
Z, =
T 20| :
0 | —— . - |
0 2 4 6 8 10

Time (ms)

Figure 6.6 Mean of 10 trajectories together with the standard deviation indicated around
each time point. Computed using a grid size of 1.0.

S1 S2

40

30

Time

Figure 6.7 Stochastic simulation using Tellurium. Upper curve S1, lower curve S»

6.6. STOCHASTIC TRAJECTORIES 147

As with continuous simulations, it is possible to carry out a number of separate runs where
other events are imposed in between the runs. For example, we might want to decrease
one of the rate constants by a factor of six at a certain time point in the simulation and
then carry the simulation on as before. Listing 6.2 shows one simulation being carried out
from O to time 30. At time 30 one of the rate constants is decreased six fold, then the
simulation is started up again, but this time setting the time start to the end time of the
previous simulation. Finally, both matrices from the two runs are merged and the entire
simulation plotted.

import tellurium as te
import numpy

r = te.loada ('''
$Xo -> S1; k1 * Xo;
S1 -> S2; k2%S1;
S2 -> $X1; k3%S2;

Xo, 2 B0g Sil, = 03, $2 = O3
k1 0.2; k2 = 0.4; k3 = 2;
T)

ml = r.gillespie(0, 30)
r.k1 = r.k1/6
m2 = r.gillespie(30, 60)

Merge the two data sets
result = numpy.vstack((ml, m2))
te.plotWithLegend(result)

Listing 6.2 Script for Figure 6.8

Further Reading

In recent years a small number of books have emerged and are geared towards stochas-
tic modeling for the average modeler. Brian Ingall’s new book Mathematical Modeling
in Systems Biology: An Introduction, is a very good start, followed by the 2nd edition
of Wilkinson’s book Stochastic Modeling for Systems Biology. The text Stochastic Ap-
proaches for Systems Biology by Ullah and Wolkenhauer covers other areas such as ex-
perimental aspects in cellular noise. Both the Ingalls and Ullah books are quite reasonably
priced. Wilkinson’s book is more mathematically orientated, but I recommend all three.

1. Ingalls B (2013) Mathematical Modeling in Systems Biology: An Introduction, MIT
Press. ISBN: 978-0262018883

148 CHAPTER 6. STOCHASTIC MODELS

S1 S2

30

20

10

—

25 30 35 40 45 50 55 60

o

Time

Figure 6.8 Stochastic simulation using Tellurium (Script 6.2) showing how an event can
be superimposed between two consecutive simulations. Upper curve Sy, lower curve S».

2. Wilkinson D (2011) Stochastic Modeling for Systems Biology 2nd Edition, Chap-
man & Hall/CRC Mathematical & Computational Biology (Book 44), ISBN: 978-
1439837726

3. Ullah M and Wolkenhauer O (2011) Stochastic Approaches for Systems Biology,
Springer, ISBN: 978-1461404774

Exercises

1. Write a Python script to implement the Gillespie direct method.

2. Modify the Python script to allow simulations to be generated on a regular grid. Run
multiple trajectories and compute the average trajectories using the grid data.

3. The deterministic rate constant for the reaction 2X — is equal to 0.5 mM~! s~1. If
the volume of the compartment in which the reaction takes place is 10 mm3, what is
the value for the equivalent stochastic rate constant?

How Systems Behave

7.1 System Behavior

How do systems behave and how does that behavior come about? As we proceed through
the book we will encounter many different types of system behavior. At this stage however,
it is worth describing the states that are fundamental to all systems. These states fall into
three groups: (Thermodynamic) equilibrium, steady state, and transients. In the liter-
ature the terms equilibrium and steady state are often used interchangeably, but here they
will describe two very different states.

The simplest and arguably the least interesting state is equilibrium, or more precisely, ther-
modynamic equilibrium.

7.2 Equilibrium

Thermodynamic equilibrium, or simply equilibrium, refers to the state of a system when
all forces are balanced. In chemistry, thermodynamic equilibrium is when all forward and
reverse rates are equal. This also means that the concentration of chemical species are
unchanging and all net fluxes are zero. Equilibrium is easily achieved in a closed system.
For example, consider the simple chemical isomerization:

ki
A=B (7.1)
ko

149

150 CHAPTER 7. HOW SYSTEMS BEHAVE

Let the net forward rate of the reaction, v, be equal to v = k1A —k, B. The rates of change
of A and B are given by:

dA dB
a d
The equilibrium constant for this system is:
Beq k 1
K = —— = —
“ Aeq k2

At equilibrium, dA/dt and dB/dt equal zero, that is Ak; = Bk,, or v = 0. We can
derive the analytical solution for 4 and B as follows. Given that the system is closed,
we know that the total mass in the system, A 4+ B, is constant. This constant is given by
the sum of the initial concentrations of A and B which we define as 4, + B,. Note that
Ao + B, = A(t) 4+ B(t) is always true. We assume the volume is constant and set to unit
volume, allowing us to state that the sum of concentrations is conserved. The differential

equation for A is given by:
dA

— =kyB—kiA
7 2 1
Before solving this equation, let us replace B by the term A, + B, — A. This yields:
dA
o = kado +kaBo — koA — k1A = ka(Ao + Bo) — Alky + k2)

The easiest way to solve this equation is to use Mathematica or Maxima. The Mathe-
matica command is DSolve[A’[t] == k2 (Ao + Bo) - A[t] (k1 + k2), A[0] ==
Ao, A[t], t], where A[0] == Ao sets the initial condition for the concentration of A4 to
be A,. By implication, the initial condition for B, is (4y + By) — Ap = Bo,. The result of
applying the Mathematica command yields the following solution:

A1) = (Ao + Bolky e~kitkiy, Lo
k1 + ko ki + ka

The first term on the right-hand side of the equation is independent of time and equals
the equilibrium concentration of A. This term is also a function of the total mass in the
system (A, + B,), which means that the equilibrium solution is independent of the starting
concentrations so long as the total remains the same. Starting conditions such as 4, =
I; B, =9o0r A, = 6; B, = 4 will lead to the same equilibrium concentrations.

The second term is time dependent and describes the evolution of the system when the
initial concentrations of A and B are not set to the equilibrium concentrations. The initial
concentrations are set in the term vipitizy Which is the reaction rate, v, at ¢ = 0. The second
term also has an exponential component which approaches zero as time goes to infinity.
Given this, at infinite time we are left with the first term which equals the concentration of
A whendA/dt = dB/dt = 0.

7.2. EQUILIBRIUM 151

10

Concentration, 4 or B

0 0.5 1 1.5 2 2.5 3
Time, ¢

Figure 7.1 Time course for equilibration of the reversible reaction in model 7.1 where
ki = 1,ko = 0.5, A4, = 10, B, = 0. The ratio of the equilibrium concentration is given
by k1/k,. Tellurium Listing: 11.1.

At equilibrium the reaction rate can be computed by substituting the equilibrium concen-
tration of A and B into the reaction rate, v = ko B — k1 A. Note that the equilibrium
concentration of A4 is given by:

A — (Ao + Bo)kz
4 k1 + k2

and for B, by subtracting A4 from A, + B,. When the A.; and B, relations are substi-
tuted into v, the result is:
v=20

From this long-winded analysis, it has been determined for the closed reversible system,
at infinite time, the concentrations of A and B reach some constant values and that the net
rate, v is zero. Note also that the ratio of the final concentration for A and B equals the
equilibrium constant. The system is therefore at thermodynamic equilibrium.

In biochemical models it is often assumed that when the forward and reverse rates for a
particular reaction are very fast compared to the surrounding reactions, the reaction is said
to be in quasi-equilibrium. That is, although the entire system may be out of equilib-
rium, there may be parts of the system that can be approximated as though they were in
equilibrium. This is often done to simplify the modeling process.

Living organisms are not themselves at thermodynamic equilibrium; if they were, they
would technically be dead. Living systems are open so that there is a continual flow of
mass and energy across the system’s boundaries.

152 CHAPTER 7. HOW SYSTEMS BEHAVE

7.3 Steady State

The steady state, also called the stationary state, is where the rates of change of all species,
dS/dt, are zero while at the same time the net rates are non-zero, that is v; # 0. This
situation can only occur in an open system, one capable of exchanging matter with the
surroundings.

Thermodynamic Equilibrium versus Steady State

Thermodynamic equilibrium (or equilibrium for short) and the steady state are distinct
states of a chemical system. If we consider a system where every part is in equilibrium,
we can be sure of two things: the species concentrations are not changing, and there
are no net flows of mass or energy within the system or between the system and the
environment. A system in equilibrium must therefore have the following properties:

Si

forall i: =0

vi =0

where v; is the net reaction rate for the i reaction step. When a biological system
is at equilibrium, we say it is dead. Thermodynamically we can also say that entropy
production is at zero and has reached its maximum value.

The steady state has some similarities with the equilibrium state. Species concentrations
are still unchanging, however there are net flows of energy and mass within the system
and with the environment. Systems at steady state must therefore be open and must
continuously dissipate any gradients between the system and the external environment.
This means that one or more v; s must be non-zero.

The steady state is defined when all dS; /dt are equal to zero while one or more reaction
rates are non-zero:

Si

forall i: =0

v; #0

Thermodynamically, we can also say that entropy production of the system at steady
state is lower than the entropy production in the environment. In some of the literature
the terms equilibrium and steady state are used interchangeably resulting in possible
confusion. In this book, the word equilibrium will be used to refer to a system at
thermodynamic equilibrium, not at steady state.

To convert the simple reversible model described in the last section into an open system,

7.3. STEADY STATE 153

we need only add a source reaction and a sink reaction as shown in the following scheme:

Vo kl k3
Xo —> A k: B —> (7.2)
2

In this case simple mass-action kinetics is assumed for all reactions. It is also assumed that
the source reaction, with rate v,, is irreversible and originates from a boundary species, X,
where X, is fixed. In addition, it is assumed that the sink reaction with rate constant k3,
is also irreversible. For the purpose of making it easier to derive the time course solution,
the reverse rate constant, k, will be assumed to equal zero. We will also set the initial
conditions for A and B to both equal zero. The mathematical solution for the system can
again be obtained using Mathematica:

1 —ekut
A(t) = v,———
0 = v
(7.3)
kl (1 — e_k3t) + k3 (e_klt — 1)
B(t) =
#) = v ks (k1 —k3)

As t tends to infinity, A(¢) tends to v,/kq, and B(t) tends to v,/ k3. In addition, the
reaction rate through each of the three reaction steps tends to v,. This is confirmed by
substituting the solutions for 4 and B into the reaction rate laws. Given that v, is greater
than zero and that A and B reach constant values within sufficient time, we conclude that
this system eventually settles to a steady state rather than thermodynamic equilibrium.

The system displays a continuous flow of mass from the sink to the source. This can only
continue undisturbed so long as the source material, X,, never runs out, and that the sink is
continuously emptied. Figure 7.2 shows a simulation of this system.

At steady state, the rate of mass transfer across a reaction is called the flux, or J.

In some cases we can calculate the steady state in a different way. For example, in Fig-
ure 7.2 we used the simplified model:

Vo k3

k
X, 54 B3 (7.4)

The differential equations for this system are:

154 CHAPTER 7. HOW SYSTEMS BEHAVE

- A
= 0.4
<
g B
Z 02
= .
3
=
5)
@)

0

0 1 2 3 4 5 6
Time, ¢

Figure 7.2 Time course for an open system reaching steady state in model 7.4 where
vo = L,ky =2,k = 0,ks = 3,4, = 0,B, = 0. X, is assumed to be fixed. The
Tellurium model: 11.2.

Now set the rates of change to zero:

0=kiA—k3B

With two equations and two unknowns, A and B, we can solve for A and B to obtain:
A =vo/k1
B = Vo / k3

In most cases we cannot solve the equations because they will be nonlinear and so must
revert to computer simulation or specialist software (such as Tellurium) to compute the
steady state. The script below shows a model in Tellurium where we solve for the steady
state using the command p.ss.eval.

import tellurium as te

rr = te.loada ('''
$Xo -> A; vo;
A -> B; k1xA;
B -> $X1; k3*B;

// Set up the model initial conditions
Xo = 1; X1 = 0;
vo 0.5; k1 =

0.2; k3 = 0.3;
lll)

7.4. TRANSIENTS 155

Evaluate the steady state

Evaluate returns a number indicating how far we are

from the steady state solution. A number less that 1E-6
is a good indicator that it has found the steady state.
rr.steadyState()

print rr.A, rr.B

Output follows:
Steady State values: 2.5 1.66667

Another special characteristic of steady states is that they can be classified as either stable
or unstable. We will revisit this concept in much more detail in later chapter. Suffice to say
that stable steady states are those where transients converge on to the steady state, while an
unstable steady state is where transients diverge. We will talk more about the properties of
the steady state in Chapter 11.

7.4 Transients

Another simple behavior that a system can show is a transient. A transient is usually the
change that occurs in the species concentrations as the system moves from one state, often a
steady state, to another. Equation (7.3) shows the solution to a simple system that describes
the transient behavior of species A and B. Figure 7.2 illustrates the transient from an initial
condition, in this case from a non-steady state condition, to a steady state. A periodic (such
as an oscillation) or a chaotic system may be considered a transient, one that is unable to
settle to a fixed steady state. In the case of a system showing periodic behavior, the transient
repeats itself indefinitely at regular intervals. In a chaotic system, the transient never repeats
the exact same trajectory and will continue indefinitely.

7.5 Setting up a Model in Software

There are many software tools both free (including open source) and commercial that one
can use to build models of cellular networks. In this book we use Tellurium [114], a
software tool written by the author and collaborators. As we have seen Tellurium is a
script-based tool where one enters a model as a text file. The model is then compiled,
run, and the results displayed. Because Tellurium is based on Python more advanced
users can develop their own sophisticated analysis. A brief introduction on how to use
Tellurium is given in Appendix H. For those who wish to use other tools such as CO-
PASI (http://www.copasi.org), CellDesigner (http://celldesigner.org/), or even
Matlab (http://www.mathworks.com), it is easy to convert Tellurium files into standard
Systems Biology Markup Language (SBML) or Matlab scripts (See Appendix H) so that
models can be loaded into the simulation tool of choice.

http://www.copasi.org
http://celldesigner.org/
http://www.mathworks.com

156 CHAPTER 7. HOW SYSTEMS BEHAVE

7.6 Robustness and Homeostasis

Biological organisms are continually subjected to perturbations. These perturbations can
originate from external influences such as changes in temperature, light, or the availability
of nutrients. Perturbations can also arise internally due to the stochastic nature of molec-
ular events, or by natural genetic variation. One of the most remarkable and characteristic
properties of living systems is their ability to resist such perturbations and maintain very
steady internal conditions. For example, the human body can maintain a constant core tem-
perature of 36.8°C £0.7 even though external temperatures may vary widely. The ability
of a biological system to maintain a steady internal environment is called homeostasis, a
phrase introduced by Claude Bernard almost 150 years ago. Modern authors may also refer
to this behavior as robustness, although this word is used in many other contexts.

There are a number of mechanisms used in biology to maintain homeostasis. Perhaps
the most common is negative feedback. This is where the difference between the desired
output, and the actual output is used to modulate the process that determines the output. For
example, if the output is lower than the desired output then the process will increase the
output. Such systems are found at multiple levels in a living organism, including subcellular
processes such as metabolism and multicellular processes that control, for example, the
level of glucose in the blood stream. The field of control and regulation in biochemical
systems is large and growing, and the topic will be reserved for a separate book.

Further Reading

1. Klipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005) Systems Biology
in Practice, Wiley-VCH Verlag.

2. Steuer R, Junker BH (2008) Computational Models of Metabolism: Stability and
Regulation in Metabolic Networks, Advances in Chemical Physics, Volume 142, (ed
S. A. Rice), John Wiley & Sons, Inc.

3. Stucki JW (1978) Stability analysis of biochemical systems—a practical guide. Prog
Biophys Mol Biol. 33(2):99-187.

Exercises

1. Describe the difference between thermodynamic equilibrium and a steady state.

2. Write out the differential equations for the system 4 — B — C where the reactions

7.6. ROBUSTNESS AND HOMEOSTASIS 157

rates are given by:

U1 :klA—sz
(%] =k3B—k4C

Find the concentrations of A, B, and C when the rates of change are zero: dA/dt =
0,dB/dt = 0,dC/dt = 0. Show that this system is at thermodynamic equilibrium
when the rates of change are zero.

3. What do we mean by the phrase quasi-equilibrium?

4. Find the mathematical expression that gives the steady state levels of 4 and B in the
following network:

k k k
&%AﬁBi (7.5)
2

Assume that X, is fixed, and that all reactions are governed by simple mass-action
kinetics.

5. Consider the following model, use a software tool of your choice to visualize the
time evolution for the following system, simulate for 5 time units. At time zero, set
x =1 and y = 2. Simulate for 30 time units.

4% _ o5 - 0.4y
dt

YD _05x+ 1.5y
dt

Given the model from the previous question, compute the steady state in two ways:
1) Simulating the model for a very long time; 2) Determine algebraically the steady
state. Compare the two solutions.

6. Given the model from the previous question, explore how perturbations in x and y at
steady state behave.

7. Use a software tool of your choice to visualize the time evolution for the following
system, simulate for 5 time units.

dx

2 —255x—4.4
dt o 4
d

D sx 4215y

dt

158 CHAPTER 7. HOW SYSTEMS BEHAVE

Appendix

See Appendix H for more details of Tellurium.

// Simulation of a simple closed system

import tellurium as te

Simulation of a simple closed system
r = te.loada ('''

A -> B; k1 * A;

B -> A; k2 x B;

A = 10; B = 0;
k1 = 1; k2 = 0.5;

1)
result = r.simulate(0, 6, 100)
r.plot()

Listing 7.1 Script for Figure 7.1.
// Simulation of an open system

import tellurium as te

Simulation of an open system
rr = te.loada ('"'
$Xo -> S1; vo;
S1 -> S2; ki1xS1 - k2x%S52;
S2 -> $X1; k3*S52;

vo = 1
k1
LN)

I
&~
S
I
S
&
I
Ny

result = rr.simulate(0, 6, 100)
r.plot()

Listing 7.2 Script for Figure 7.2.

Multicompartmental Systems

8.1 Multicompartment Systems

It is easy to think of a biological cell as a well mixed compartment and base our models
around that premise. However, anyone who has looked through a microscope at a drop of
pond water and observed swimming protists will quickly realize that many cells are highly
structured and compartmentalized. In eukaryotic cells the most obvious compartments
are the nucleus, mitochondria, chloroplasts, and a wide variety of enclosed spaces serving
different functions. In all these cases, movement of material occurs from one compartment
to another, sometimes active (requiring energy) and sometimes passive. Additionally, all
the compartments have widely different volumes. This chapter will briefly look at how to
build models involving multiple compartments with differing volumes.

8.2 Simple Diffusion

Let us start by considering the simplest possible example, the reversible and passive diffu-
sion of solute from one compartment of volume Vj to another compartment of volume V;
(Figure 8.1).

Let us assume that the volume in compartment two is ten times the volume of compartment
one. This means that as mass moves from V; to V,, the mass will be diluted in the large
volume of V5. To illustrate this, consider that in compartment V; and V> we have 5 mM
of solute. We will also assume that the volume of V7 is 1 liter, and the volume of V5

159

160 CHAPTER 8. MULTICOMPARTMENTAL SYSTEMS

A

S —1— 5

|41 Va

Figure 8.1 Two compartment model with volumes V7 and V5. S; and S, diffusion pas-
sively across the membrane with area, A.

is 10 liters. Let us now move 2 mmoles of solute from compartment V; to V5. The new
concentration of solute in V1 will be 3 mM. In V5 the total number of moles of solute before
the transfer was 50 mmoles (5 mM in 10 liters). During the transfer, we added 2 mmoles
to V> resulting in a total amount of solute of 52 mmoles in V. The concentration of solute
in V5 is therefore 52/10 = 5.2 mM. This tells us that while the concentration in V; changed
by 40%, the concentration change in V, was only 4%.

These calculations show that we must take into account the different compartment volumes
when we move mass from one compartment to another. In the following we will use the
symbol / to represent length, and ¢ to represent time. One of the basic discoveries in the
science of diffusion was Fick’s first law. This states that the diffusion rate (or flux) of
a compound, S, from a region of high concentration to a region of low concentration, is
proportional to the concentration gradient:

ds
dx

This equation describes the rate of movement of compound across an infinitely thin window
of a given area at a position x across the diffusion flow. The negative sign ensures that the
flux is positive when the concentration gradient is negative, that is declining left to right.
J4 is the flux in units of moles /=2 ¢t~ (moles per unit area per time), D4 the diffusion
coefficient has units of /2 ¢! (area per unit time), S is the concentration and dS /dx the
concentration gradient in units of moles /=3 /=1, That is, moles per volume per length,
denoted moles /4.

Ja=—Dy

If the zone or window of diffusion has a finite width §, we can approximate Fick’s law

using:
Sout - Si

Jag=—Dy 5

or

JA = PA(Sin - out) (81)

where Py equals D4/§ and is called the permeability coefficient with units of length per
unit time (often cm s~ ! in the literature). We assume here that the permeability is the same

8.2. SIMPLE DIFFUSION 161

on both sides of the membrane. The units of flux at this stage are moles per unit area per unit
time (moles /=2 t~1). S,,; and S;, refer to the concentration of solute outside and inside
the compartment. To obtain the total amount of mass that moves from one compartment to
another we must multiply the flux, Jy4, by the cross-sectional area of the membrane, thus:

J =AJy

where J is the total amount of substance crossing the membrane and A the area of the mem-
brane. If this substance is moving into a volume, V, then the rate of change of concentration

in the compartment is given by:

as J

a vV
The negative sign indicates that mass is leaving the compartment. We can now write the
differential equations for the two compartment model:

s, J dS, _J

dr v dt W

where the total flux, J, is given by:

J = AP4(S1 — S») (8.2)

Let us define the amount of S; and S5, as follows:

ny=51" ny =SV,

where n] and n, are the amounts of S; and S, respectively. We can then write the differ-

ential equations as:
dn 1 d nyp

dr T dr

Recall that J is a function of concentration so we can rewrite J as:

J = APy(n1/V1 —na/V2)

The differential equations are now only in terms of amount. To get the concentration at any
time during the simulation, we simply take the current amount of mass in the compartment
and divide by the compartment’s volume. The key then to dealing with multicompartmental
systems is to describe the rates of change in terms of amounts rather than concentration,
and to continuously recompute concentrations as needed by dividing the amount by volume.
We can also show that the result is thermodynamically consistent. To test this we set the
flux (8.2) to zero:
AP4(S1—82) =0

That is S1 = S». Since we are dealing with simple diffusion, we expect at thermodynamic
equilibrium for the two concentrations to be equal, which they are. Note also that the units
are consistent, with the units for A being /2, for V;: I3, P4: [t~!, and for S, : mol /3.

162 CHAPTER 8. MULTICOMPARTMENTAL SYSTEMS

Example 8.1

A thin membrane has a cross-sectional area of Imm. On one side of the membrane is a solute of
concentration 2 mM, and on the other a concentration of 0.2 mM. If the permeability coefficient for
the solute is 2 x 10™* cm s~!, compute the amount of mass that is likely to move across the entire
surface of the membrane every second.

We will use equation (8.2) to compute the flux. It is important to ensure that all the units are
consistent. Given that the permeability coefficient uses cm for length, we will use cm as the length
unit. The area of the membrane is 0.1 x 0.1 = 0.01 cm™2. The concentrations are expressed in
moles per liter, and one liter is one thousandth of a cubic meter. A cubic meter equals 1,000,000
cm?, therefore a liter must be 1000 cm?3. Our concentrations of 2 mM and 0.2 mM can therefore be
expressed as 0.002 mmoles per cm?, and 0.0002 mmoles per cm?, respectively.

The flux of mass across the membrane can therefore be computed as:

J =0.01 x2x 1073 (0.002 — 0.0002) = 3.6 x 1078 mol s~

Listing 8.1 shows how one can use Tellurium to model a simple diffusion transport across
a thin membrane.

import tellurium as te
import pylab

r = te.loada ('''
compartment V1 = 1, V2 = 10;
var S1 in V1;
var S2 in V2;

S1 -> S2; Axk1x*S1;
S2 -> S1; Axk2x%S2;

S1 = 10; S2 = 0;
k1 0.4; k2 = 0.4; A =1,
lll)

result = r.simulate(1, 40, 100)
r.plot (x1im=(0, 40))

Listing 8.1 Script for multicompartment model with simple diffusion.

Figure 8.2 shows the results of the simple compartment simulation. Note that the concen-
trations converge to the same level because the equilibrium constant across the membrane
is one. However, the total amount of mass in each compartment is different due to the
difference in volumes.

In Tellurium the adjustment for compartments of different volumes is automatic. To set up
a multicompartment model in Tellurium, two things must be done. One must first declare

8.3. MEMBRANE TRANSPORTER PROTEIN 163

10 10
)

Z 38 8
e

“n 6 6
el
=
<

o 4 4
o
=y

2 2 2
o?

0 0

0 10 20 30 0 10 20 30 40
Time time

Figure 8.2 Simulation of simple diffusion of a solute from one compartment to another.
Left graph shows changes in concentration, right graph shows changes in amounts. Upper
lines on the left of each graph is S;. Tellurium script 8.1.

what compartments are present in the model, in this case V1 and V5, line 2 in Listing 8.1.
Next we specify what compartments the species are located in, line 3. After that we specify
the transport rates in units of moles transported per second, which represents the total trans-
port across the membrane. Consequently, the rate law is multiplied by the total membrane
area since the base units for the transport process will be in moles per second per unit area.
The units of the solute, S; and S must be in concentration.

8.3 Membrane Transporter Protein

Let us consider a more complex example where a solute, S, is transported through a protein
pore (and hence saturable) and appears on the other side of the membrane as S,. Instead of
using Fick’s law, we must consider using a saturable Michaelis-Menten like rate law. Let
us assume that the concentration of protein pores on the membrane is given by:

ne

A

where 7, is the number of protein pores, A the area of the membrane, and e the moles of
pores per unit area. The rate of catalysis will be proportional to the concentration of pores
on the membrane. Since most pores are saturable, that is at high enough concentration of
solute the rate of transport through the pores reaches a maximum, we can write that the rate
of transformation in moles (amount) per unit area per unit time (the flux, J4) is given by a
generic saturable rate equation such as:

e =

kySy—krSa

Jg=e
1+ S1/Km + S2/Km2

164 CHAPTER 8. MULTICOMPARTMENTAL SYSTEMS

where k¢ and k;, are the forward and reverse rate constants such that k¢ /k, = Keq. As

such we can write:
Sl - SZ/Keq

S1/Km1 + S2/ Kma

There are many variants on this basic equation depending on the specific mechanism but
for many systems it can serve as a first approximation. Given the units for J4, e, and the
rate term, the units for k¢ are mol / 3 t=1. If the transporter is simply allowing passage of
solute from one side of the membrane to the other, the Ky is likely to be unity.

JA:ekf1+

A
S1 Sh

V1 V2

Figure 8.3 Two compartment model with volumes V; and V5. S and S» move through
saturable protein pores in the membrane.

The total flux across the membrane, Jy4, is given as before:

J =AJy
The total flux will equal the following:
dny dny
—=-J —=J
dt dt

This means that the rate of change of concentration of S; and S5 is given by:
dsS; J dS, J

dr Vi dt W

Figure 8.2 shows a Tellurium script that represents the transporter model. A few things are
worth reviewing in greater detail. By default, Tellurium solves all differential equations in
terms of amounts per unit time. This means there is no need to explicitly adjust volume sizes
in any equations. Instead, we define the compartments we need using the vol keyword,
and then indicate which species is in which compartment. All volume adjustments are
automatic. Tellurium stores levels of species as amounts and converts to concentrations
on an as needed basis, e.g. when a concentration is specified in a rate law. This makes it
straight forward to build multicompartment models using Tellurium.

Figure 8.4 shows the results of the simulation. In this case the volume ratio is 1 to 10.
Notice how the concentration of S starts at 21 but ends up at 1 in the first compartment,
and 2 in the second compartment. We can check mass conservation by summing up the
mass in each compartment. The total mass at time zero is 21 x 1 = 21. The total mass at
the end of the runis: 1 x 1 4+ 2 x 10 = 21. Therefore the mass has been conserved.

8.4. THREE COMPARTMENT MODEL 165

Name Symbols Units

Net Flux J mol ¢!
Flux Ja mol /=2 ¢!
Area A 12

Volume \" 13
Concentration S mol /73
Transporter e mol [2
Rate Constant ky mol /3 ¢!

Table 8.1 Units for transporter model. / represents length; S reactant; ¢ time.

import tellurium as te

r = te.loada ('''
compartment V1, V2;
var S1 in V1, S2 in V2;
S1 -> S2; Axkx(S1-S2/Keq)/(1 + S1/Kml + S2/Km2);

Vi =1; V2 = 10;
i, = 2ilg
A=1; k=1;
Kml = 0.5; Km2 = 0.5; Keq = 2;
ED
result = r.simulate(0, 200, 100)
r.plot()
print "Total Mass = ", r.Sl*r.V1 + r.S2xr.V2

Listing 8.2 Script for multicompartment model with transporter.

8.4 Three Compartment Model

One final example uses three compartments of decreasing volume. The equilibrium con-
stants for the transport across each membrane equal unity.

import tellurium as te
import pylab

r = te.loada ('''
compartment V1, V2, V3;
var S1 in V1, S2 in V2, S3 in V3;

166

CHAPTER 8. MULTICOMPARTMENTAL SYSTEMS

S1 S2
25
zoﬁ\\\\
:157
= T \
g]
£ 10 \
4)10,
<9
g]
g]
o \
5 ‘\\\‘
] ———
O —Ff A T T T T T T T
0 20 40 60 80 100 120 140 160 180
Time

200

Figure 8.4 Simulation results of a membrane transporter. Upper line on left is S; and

lower line on left is S5.

141

S

V>

Sy <=5

1>v3

Figure 8.5 Three compartment model with volumes Vi, V5, and V5. S1, S», and S3 move
through saturable protein pores in the membrane.

S1 -> 82; Axk1*(S1-S2/Keq)/(1 + S1/Kmil + S2/Km2) ;
S2 -> S83; A*k2*(S2-S3/Keq)/(1 + S2/Kml + S3/Km2) ;

Vi = 100; V2 = 10; V3 = 1;
i, 2 103
A =1; k1 = 100; k2 = 25;
Kml = 0.5; Km2 = 0.5;
Keq = 1;

URRD)

result = r.simulate(0, 20, 100);

r.plot(x1im=(0,20) ,ylim=(0,15))

print "Total Mass =

", r.Si*xr.V1l + r.S2*r.V2 + r.S3*r.V3;

Listing 8.3 Script for multicompartment model with three compartments, each compart-
ment getting progressively smaller (Figure 8.5).

Figure 8.6 shows the time course behavior for the three compartment model. Note that the

8.4. THREE COMPARTMENT MODEL 167

15
» 10
2
=
3
>
5 — 5
—S,
— S5
0
0 1 2 3 4 5

Time

Figure 8.6 Simulation results of a membrane transport involving three compartments. Vol-
umes are 100, 10, and 1, respectively. Notice how the concentration in the first compartment
hardly changes. Upper curve is S, middle curve S, and lower curve S3.

concentration of Sy (upper curve) hardly changes and that all three curves converge to the
same concentration. This is due the fact that we assumed that both equilibrium constants
were equal to 1.0.

Further Reading

There are surprisingly few books on compartmental analysis in systems biology. Most
books focus on pharmokinetic modeling, and it takes a little effort to translate the pharmoki-
netic formalism into a systems biology one. I list three books here, the most useful being
the Neame and Richards book which can be obtained easily on the second-hand market.
Atkins is a small book but one I consider a classic. For more advanced students Atkins also
offers a painless introduction to the use of Laplace transforms for solving linear differential
equations.

1. Atkins, GL (1969), Multicompartment models for biological systems, Methuen Lon-
don, SBN: 416 13820 9 (SBN is not a typo)

2. Jacquez, JA (1985). Compartmental analysis in biology and medicine. Ann Arbor:
University of Michigan Press. The third edition (1996) is available from http://
www.biomedware . com or directly from http://tinyurl.com/msh54u6.

3. Neame, KD and Richards TG (1972). Elementary kinetics of membrane carrier trans-
port. New York: Wiley. ISBN: 0-470-63078-7

http://www.biomedware.com
http://www.biomedware.com
http://tinyurl.com/msh54u6

168 CHAPTER 8. MULTICOMPARTMENTAL SYSTEMS

Exercises

1. The figure below shows a system of two compartments with volumes V; and V5.
There are three membrane transporters, Py, P>, and P3 and three cytosolic reactions,
Ry, Ry, and R3. Write out the differential equations that describe the changes in
amounts of A, B, C, and D. Assume simple facilitated diffusion for the transporters
and irreversible first-order kinetics for the reactions. Build a computer model of the
system and investigate how the output fluxes at R, and R3 are influenced by the
difference in volume between V; and V5.

(Vz)
Pq
Vi P2
A B
’ ‘ 4-0—,
1
P
C D 3
Rzl 1 R3
_ AN J

For example, assign reasonable values to all the rate constants in the model, set the
two volumes to unity (V7 = V> = 1), and compute the two output fluxes. Now
increase V> ten fold while keeping all other parameters the same. What happens to
the R, and R3?

Fitting Models

9.1 Introduction

In constructing computational models (Chapter 4) of biochemical systems, we make choices
about what reaction steps, regulatory interactions and molecular species to include. Given
these choices, how good is the model? Does the model adequately describe existing knowl-
edge about the system? Can the model make useful predictions? Some of the model param-
eters might be estimated experimentally but many will be unknown. How can we estimate
these parameters and how well can they be estimated? Such questions fall under the um-
brella of model fitting. In this chapter and the next we will consider these questions.

Questions we will consider in this and the next chapter:

1. Can we determine the values for the unknown parameters in the proposed model
from the experimental data, for example using optimization methods? This is
termed system identification.

2. Does the model reasonably represent the known experimental data, i.e. is the
model a good fit?

3. What confidence do we have in the fitted parameters?

4. Can the fitted model make new and useful predictions?

169

170

CHAPTER 9. FITTING MODELS

To start, let’s briefly state what it means to fit a model.

Fitting a model means adjusting the parameters of the model until the behavior of the
model matches some known experimental data.

Experimental Data

Model

Y

Fitting

N

Parameter
Estimates

Parameter
Confidence

Goodness
of Fit

Nt/

Fitted Model

:

Cross-validation

Figure 9.1 Fitting models to data.

Figure 9.1 describes some of the outcomes of fitting a model to data. In particular, we can
answer the question how well the model describes experimental data. We can also obtain
estimates for the parameters in the model and how much confidence we have in the fitted
parameters. Finally we can cross-validate. This is where we hold some data back and ask
the fitted model to try to predict this data. In this chapter we will focus on fitting models
to experimental data, and the use of different optimization methods. Fitting models is an
active area of research and we can only cover a limited area of this important topic.

9.1. INTRODUCTION 171

Optimizing Parameter Values

To understand how the fitting process works, consider a simple model:

k
S; 3 s,

We start an experiment with an initial amount of S; and observe the change in S as it reacts
to form S». Figure 9.2 shows both a solid curve representing a simulation of the model, and
four experimental data points for the concentration of S;. The first data point at time zero
represents the initial concentration of S; which we assume is error free. Measurements are
collected at time points 0.5, 1, 2, and 3.5. The e; terms represent the difference between the
experimental data point and the simulation curve. Fitting is the process where we attempt
to adjust the parameters of the model (k1 in this case), such that the difference, e;, between
the simulation curve and the data points is minimized.

10

e Experimental Data Point

S1, Concentration

Time

Figure 9.2 Model curve and experimental data plotted on the same graph. The solid line
is the simulated model, the points represent experimental data. The experimental data has
errors, e;, such that they do not exactly match the model curve. Model fitting attempts to
minimize the e; terms by adjusting the model parameter values.

Let us indicate the experimental data points using the symbols, x; and y;, where x; is
the independent variable time and y; the dependent variable. Assume there are N data
points. We will indicate the model using the expression f(x;;pi...pm), Where p; is
the ith parameter in the model. That is, for a given set of parameters and time point x;,
the function f will return the corresponding model y;” value. If the model is a set of
differential equations, we would run a simulation in order to obtain the value of y;" at x;.
The fitting procedure will attempt to minimize the difference between the model f and the

172 CHAPTER 9. FITTING MODELS

data points, that is minimize:
yi — f(Xi; p1- .. pm)

Because the difference between a data point and the model may be positive or negative
depending on the error in the data point (See e, for example in Figure 9.2), we take the
square of the difference to make the term positive:

i — (i3 p1--. pm))?

This difference only corresponds to one data point, and we should be considering all data
points when trying to fit the model. Therefore we sum up all the differences and attempt to
minimize the total sum, that is:

N
Y 0i— f&iipr-.. pm))?

i=1

We can take this one step further and reason that the most uncertain data points should
contribute less to the sum compared to those which have been measured more precisely.
We therefore weight each difference by the standard deviation, o, that corresponds to that
data point. This assumes that we have some measure of uncertainty, if we don’t we set the
weight to one:

N

2 _ yi— f(xispr... pm\”
x —Z(-) ©.1)

i=1

The above equation can also be expressed in the following equivalent form to emphasize
the weighing in terms of the variance, 0-2:

N

2= 0 SO o1 pm)?

i=1"1

This equation is called the weighted chi-square sum of squares' and can vary between
zero and infinity. If the model is a set of differential equations, the f function is a list of
data points from a simulation run. For example, using the previous model let us assume
the parameter k is set to -0.95. Table 9.1 shows an example of computing the chi-square
given some data points and results from a model run.

An important variant on the chi-square is the reduced chi-square (9.2) which is used when
looking at the quality of the fit and estimating the confidence in the fitted parameter. We
will return to this topic later.

I'The notation 2 is possibly misleading. The 2 is not the square of a quantity y and is why the term chi-
square is used rather than chi-squared. The 2 is simply to remind us of the square on the right-hand side of
the definition.

9.1. INTRODUCTION 173

Time Data Point Point from Model Difference Difference Squared

0 10 10 0 0

0.5 7.9 6.2 -1.68 2.8

1 2.1 3.87 1,77 3.12

2 0.5 1.5 1 1

3 0.6 0.58 -0.02 0.00046
Sum = 6.92

Table 9.1 Calculating chi-square. Assume we have no variances with the data points,
therefore the weighting is one. y? is the sum of the right most column and equals 6.92. The
reduced chi-square, szeduced’ is6.9/(5/1) = 1.3.

N
1 1
2 — § . 2
Xreduced = N_P o2 (i — f(xl'a P1---Pm)) 9.2)

i=1 1

N is the number of data points and P the number of parameters to be fitted in the model.
The difference N — P is called the degrees of freedom. This measure gives insight into
whether a model is over-fitted in the sense that we have an overly complicated model that
we are fitting to limited data.

Maximum Likelihood Justification - Optional

In this section we will justify the use of y? as a means to estimate the unknown parameters.
This section may be omitted on first reading. The previous section discussed using the
difference between a data point and a simulated point, squaring the difference to eliminate
negative terms and summing and weighting all data points to estimate the quality of our fit.
This sounds quite reasonable, but is there a more theoretical justification for this approach?
The question is, how can we be sure this particular definition of the y? leads to the best
parameter estimates for the experimental data? Is there another formula to make more
accurate estimates?

The answer to this question lies in using maximum likelihood, an approach developed by
Fisher [3] between 1912 and 1922. Maximum likelihood is a method that asks the question,
given a set of data and associated model with unknown parameters, p;, what are the most
likely values for the parameters? Very briefly, the method works by first computing the
likelihood function which describes the likelihood of a set of parameters, p, given the data,
x, often denoted:

L(plx)
If we change the parameters for a given set of data, the likelihood, L, will change. What
set of parameter values maximizes the likelihood? The way to find a maximum is to find

174 CHAPTER 9. FITTING MODELS

the point where the derivative of the function of interest is zero, and the second derivative is
negative. The maximum likelihood can therefore be found by differentiating the likelihood
function with respect to the parameter, setting the derivative to zero, and solving for the
parameter. To make matters simpler, the log of the likelihood is often differentiated, that is
we differentiate:

In(L(p|x))

and then determine p from:
dInL(p|lx)
ap N
A fuller account of maximum likelihood is given in Appendix F, together with a proof that
shows that the sum of squares when minimized does indeed yield the most likely estimates
for the parameter values. It is therefore true that the original, intuitive reasoning matches
the more formal approach. The formal derivation also gives the limits on the use of x2. In
particular, the maximum likelihood derivation assumes that the errors in the experimental
data are normally distributed and independent (See Appendix for a refresher, F).

0

When using the sums of square to find the best parameters for a model, it is assumed
that the experimental data points are normally distributed and independent.

9.2 Optimization Algorithms

A brute force method for fitting a model is to run a simulation of the model many times
with random parameter values until we find a set of parameters that gives us simulation
data that matches the experimental time series. One problem with this approach is that we
spend a great deal of time coming up with random parameter values in the hopes that at
least one set will match the experimental data. This however is unlikely, and the brute force
method is rarely used in practice. Instead, special search algorithms have been devised,
called optimization algorithms, to search for the best set of parameters in a systematic
way.

Optimization is an iterative process. It involves making an initial guess for the parameters,
pi, computing the y? value, and using a rule that adjusts the parameter values such that the
x2 is reduced in the next iteration. This procedure is repeated many times until the y2 can
no longer be reduced, at which point the iteration stops. If the fit was successful, the model

should be able to reproduce the experimental data given the final set of parameters.

One way to imagine this process is to consider a two parameter system where the x2 de-
scribes a surface. Figure 9.3 shows such a surface, also called a fitness landscape. The
z-axis is a measure of the y2, and the x and y axes are two parameters we wish to estimate.
As the two parameters are varied, y? changes, sometimes to high values and sometimes
to low values. The low values are the ones of interest, ideally at the lowest possible y2

9.2. OPTIMIZATION ALGORITHMS 175

value, called the global minimum. We can see that the surface is quite complicated with a
number of hills and valleys. This is often the case when fitting a model.

To start the optimization process we select, possibly at random, values for the two parame-
ters. Let us assume we started the optimization at the top of the tallest hill. What we seek is
the lowest point on the surface. An obvious strategy is to move down the hill until we reach
the lowest point. However if we did this we wouldn’t necessarily reach the lowest point, but
an intermediate low point called a local minimum (most likely point M, or My). However
if we started on the near side of the second peak and moved down the hill, we would reach
the deepest point or global minimum at M.. Depending on the surface complexity, it can
be difficult to find the global minimum because it is easy to find a local minimum first. See
Figure 9.4 for examples of common issues. A great variety of approaches have therefore
been devised to solve this problem. The next section will describe five common methods
employed to find optima. To make the notation more compact we will sometimes refer to
¥2 using the symbol €.

Highest Hill

Local Minima

Figure 9.3 Example of a fitness landscape showing multiple minima (M, and Mp) and a
global minimum at M,. The vertical axis represents x2, and the x and y axes the parame-
ters. The plot shows how y? changes for different parameter values. The function used to
plot the surface is: 3(1 —x)? exp(—x2 — (y + 1)2) = 10(x /5 —x3 — y°) exp(—x? — y?) —
1/3 exp(—(x + 1)* — y?).

176 CHAPTER 9. FITTING MODELS

fa's's)

3

a) Best Case ¢) Neutral Area
w /W\a/
b) Local Minimum d) Minima Close Together

e) Overshoot

Figure 9.4 Problems encountered in different fitness landscapes. Vertical axis is the objec-
tive function.

Gradient Descent

Gradient descent is one of the simplest methods for finding a minimum. It is not recom-
mended for practical use but serves as a basis for understanding more sophisticated gradient
descent methods such as the Levenberg-Marquardt method.

The gradient descent method moves in the steepest direction that reduces the sum of squares.
A one dimensional problem is the easiest to explain. Consider an objective function, f(x),
such as 2x2 4+ x — 3 where we wish to find the value for x than minimizes the function®. A
plot of this equation yields the parabola shown in Figure 9.5. The gradient descent method
starts by picking an initial starting point, x,, and uses the slope (also called the gradient) at
that point to move to a lower point on the curve, A. This is repeated until the slope is below
some preset threshold. The key to implementing a robust gradient descent is the choice of
how the step size factor « is computed, which we will come back to shortly. The pseudo
code for a one dimensional gradient descent using a fixed « is shown in Algorithm 4.

The method can be easily scaled to multidimensional systems where the objective func-

2We’re not trying to find solutions to the equation when f(x) is zero, rather the smallest value of f(x).

9.2. OPTIMIZATION ALGORITHMS 177

f(z) /

a df/dx

a df/dz

Figure 9.5 Gradient descent in one dimension. The method starts with an initial guess at
X, and uses ad f/dx to compute position A, from which it can start again at point B. « is
the step size factor. This is repeated until the slope is less than some small number. If the
step size is too big, there is a chance the search will overshoot. The key to implementing a
robust gradient descent is in the choice of step size factor, o and how it should be varied as
the calculation proceeds.

tion is now a function of more than one parameter (See Appendix E.6), for example,
f(x1,x2,...,x,). We define the gradient vector as:

9 b r
Vf(xl,xz,...,xn)z[f(xl’xz’ ,xn), f(x1, X2, ,Xn)’m]

0x1 0x2

Changing the parameters in a single iteration now becomes:

8f(X1,xZ,...,Xn)
3)(1
X X
! ! 0f(x1,X2,...,Xn)
X2 X2
= . — o BXQ
Xndpg1 Xnl, af(x1,x2,...,Xn)
L 0xy, _

In vector format the expression can be succinctly written as:

Xp4+1 = Xu —aV f(Xp)

178 CHAPTER 9. FITTING MODELS

Algorithm 4 One dimensional gradient descent. x, represents the starting point for the
method. This algorithm uses a fixed «. This is a naive description because it does’t deal
with the case where the solution does not converge.

Initialize starting point to x,
Initialize the step factor
Initialize slope threshold €
f(x) is the objective function

. df
while o abs ax > e do

X

af

Xo = XO - O[E
end while

Figure 9.6 shows the gradient descent in a two dimensional system. The search vectors are
always perpendicular to the contours. When « is too big, the search can overshoot as seen
in the third vector.

One advantage of the gradient descent is that it is straight forward to implement. It suffers
however from a number of issues. As mentioned previously, the main problem is what
value to set the step factor, «. If the factor is too large, the iteration will overshoot the
minimum, and in the next iteration it will backtrack, possibly overshooting the minimum
again. Reducing the step size can help avoid this effect but if too small, the method takes
too long to reach the minimum. A common modification to accommodate these difficulties
is to add a mechanism to adjust « as the search progresses. A crude but effective way
to adjust « is to try different values in order to find one that results in a reduction in the
objective function. This will help avoid overshoots and reduce the number of steps required
to reach the minimum. This technique and its variants are called line searching because the
algorithms attempt to search along the gradient descent direction looking for a point that
reduces the objective function. A modification that includes a simple line search is shown in
Algorithm 5. However, these modifications are not very helpful near the minimum, because
the gradient is likely to be shallow resulting in very small steps. This means that although a
simple gradient descent will initially converge quite rapidly, as it approaches the minimum
the rate of convergence will slow considerably.

All gradient descent methods find the nearest minimum which is quite likely to be a local
minimum for a complex model. Gradient descent methods, including more elaborate ones
such as the Levenberg-Marquardt, should be used in conjunction with other methods that
are better at finding global minima.

9.2. OPTIMIZATION ALGORITHMS 179

0 0.5 1 1.5 2

Figure 9.6 Gradient descent in a two dimensional system. Note that the third search vector
overshoots.

Gauss-Newton Method

The gradient descent method described in the last section is general in the sense that the
objective function can be in any form including a sums of squares. An alternative method
for finding minima that is specially designed for systems where the objective function is
a sum of squares, is the Gauss-Newton method. This method relies on the assumption
that we can approximate the surface near the minimum using a quadratic function in the
parameters. That is, near the minimum we assume that the objective function looks like a
parabolic bowl. To obtain this approximation we use the Taylor series to expand the residual
function (9.1), x2 to second order about py, where §p = p — po (See Appendix E.6):

1
X2(p) =y +pld+ 3 spT Hsp 9.3)

where d; = 0x?/dp; and H is called the Hessian and has elements defined by:
82 XZ
 pip

ij 9.4)

H describes the curvature of the surface. At the minimum the derivative of (9.3) will equal
zero. The minimum of the surface can therefore be found by differentiating expression (9.3)

180 CHAPTER 9. FITTING MODELS

Algorithm 5 One dimensional gradient descent with a simple line search. x,, represents the
starting point for the method.

Initialize starting point to x,
Initialize threshold €
f(x) is the objective function

. (df)
while abs | —) > e do
dx

d

o

I
TS

while f(x, —ad) > f(x,) do
a=u/2
end while

Xo = Xp —otd
end while

with respect to §p7 , and setting the result to zero:

0=d+Hodp 9.5)
This is a linear system of equations which can be solved for p:
sp=-Hld

From this we obtain an update to the parameter p using p:

Prkr1 =pr—H 'd (9.6)

As with gradient descent this is an iterative algorithm requiring repeated evaluations of the
Hessian. In practice we don’t compute the inverse of H but determine §p using a standard
linear equation solver algorithm. One potential inefficiency is computing the Hessian. This
is a matrix of second derivatives which in general are expensive in computer time to esti-
mate accurately. To improve the efficiency let’s look at this problem from a different point
of view. Leaving out the weights, o, and without loss of generality, let 2 be written as,
see (9.1):

2@ =Y rZ(p)

i=1

3Note: d(8p” H 8p)/dspT = 2H §p

9.2. OPTIMIZATION ALGORITHMS 181

where r; is the residual y; — f(x;; p1 ... pm). To simplify the notation let us designate
x2(p) using the symbol f(p). The derivative of f(p) with respect to p; is given by:

af (p) _ 22”1‘({’) or;

pj = apj
For all p; we can write the above in matrix form:
Ve =2J@) rp) =d 0.7

V f(p) is a column vector of dx%/dp;, that is d in equation (9.6), J(p) is the Jacobian
matrix of derivatives dr; /dp; and r(p) a column vector of r; (p) terms.

The Hessian, H, can be computed by differentiating V f(p):

3*ri (p)

VZf(p)r =H
dpropy

9% f(p) — i (p) 3ri(p) | -
IprIpi Z I Opi ; i(®)

This expression can be reexpressed in matrix form as:

H=2Jp)"Jp) +2)_ ri(V?ri(p)
i=1

Near the minimum the residuals, r;, will be small and therefore the second term can be
ignored, resulting in a simplified Hessian:

H=2Jp) Jp) (9.8)

In this form the Hessian is much easier to compute, no second derivatives are required.
Only the first derivatives in the Jacobian need be estimated. We can insert the various
terms ?? into equation (9.5):

0=d+Hép
0=2JP)7 r(p) +2I)TI(P)S p
0=Jm7 rm) +I@) IP)Ssp

Rearranged we obtain the version that is often to be seen in the literature (we’ve dropped
the (p) for clarity) :

Jysp=-J"r (9.9)
This is a linear set of equations which can be solved for §p which in turn can be used to
update the parameter values (See (9.6)).

Equation (9.9) constitutes the update strategy for the Gauss-Newton method. A number
of points are worth mentioning. The method depends on an approximation of the Hessian

182 CHAPTER 9. FITTING MODELS

which is only true near the minimum. Therefore the Gauss-Newton should not be used far
from the minimum because it will likely fail to converge to the solution. This is in contrast
to a gradient descent method where there is no requirement to be close to the minimum, so
long as there a downward slope that can reach the minimum. A further problem with the
Gauss-Newton method is the need for J7 J to have full rank, this is required so that (9.9) can
be solved for p. Rank deficiency will occur when there are correlations between parameters
due to insufficient data. This is related to the identification problem. However, one of the
chief advantages of the Gauss-Newton method is its very rapid convergence properties.

Levenberg-Marquardt

In the last sections we discussed two approaches to finding the minimum. One approach
(gradient descent) involved moving down the fitness landscape until we reached the mini-
mum. One problem with this method is that in steep sections of the landscape the algorithm
tends to move quickly while in more gradual inclines, the algorithm tends to move too
slowly and convergence can take much longer. In the second approach, the Gauss-Newton
method will only converge if the search is already close to the minimum, at which point
convergence is very rapid.

These two methods appear complementary where each solves issues the other method has.
It therefore seems natural to combine the methods, exploiting rapid descent far from the
minimum using gradient descent and moving to the Gauss-Newton method when close to
the solution. This is how a method called the Levenberg-Marquardt method works. The
Levenberg-Marquardt employs a weighted mixture between the two types of searches [109,
137]. The first is a gradient search followed by a Gauss-Newton method.

In the first phase the method uses gradient descent so that we descend down the error surface
in a direction opposite (a positive gradient would take us uphill) to the local gradient. For
the (k + 1) iteration, the parameters p; are changed according to:

Pr+1 = Pr — pd (9.10)

2
where the gradientd = aaip, and p is the step size.

As we get closer to the minimum, we switch strategies and use the Gauss-Newton method.
The combined approach can be described by equation (9.11) where the value of u is used
to move from one strategy to the other:

Pi+1 =pc— (H+1p)"'d O.11)
If p is large, the equation behaves as a gradient descent method (9.10):
Pk+1 ~ Pk — pd
As p decreases, the method moves to the Gauss-Newton method:

Pii1 ~pr —H 'd

9.2. OPTIMIZATION ALGORITHMS 183

One last modification is necessary before we have the full Levenberg-Marquardt method.
When using gradient decent, we are not using the curvature, H. Marquardt suggested that
some benefit could be obtained by incorporating the curvature during gradient decent. This
means the step size can vary since the curvature changes and hence the algorithm can take
longer steps in regions where the gradient is less, for example in a long shallow valley.
In addition, the method is less likely to overshoot the minimum. The final Levenberg-
Marquardt equation is given by:

Pk+1 = pr — (H+ diag(H)p) "' d (9.12)

Where diag(H) represents a matrix that just contains the main diagonals of the Hessian.
The algorithm starts by using gradient descent. If the error can be reduced, meaning it is
successful, it increases . This starts to shift the method towards using the Gauss-Newton
method. If the error increases then the w is reduced in value and the method shifts to using
the gradient descent method. This process is continued until the change in x2 is a very
small number. A common strategy for changing u is:

1. Start p with a value of 100 (uses the gradient descent initially)

2. If the new chi-squared is bigger than the previous chi-squared, then . = p x 10 (that
is the method becomes more gradient descent like)

3. If the new chi-squared is less than or equal to the previous chi-squared, then u =
/10 (that is the method becomes more Gauss-Newton like)

4. Goto 2

There are more sophisticated control strategies for changing w that can be used if neces-
sary [62].

Overall the Levenberg-Marquardt method has proven very successful approach. Its main
drawback is that the method tends to find the nearest minimum which could easily be a
local minimum. The method is therefore sensitive to starting conditions. For the surface
shown in Figure 9.3, if we start on the highest hill, the Levenberg-Marquardt will most
likely find the nearest minimum, M,, which is a local minimum not the global minimum.
The Levenberg-Marquardt is better suited when combined with other methods. If a good
starting point can be found, the Levenberg-Marquardt can take over and rapidly find the
global minimum.

There are a number of freely available open source implementations of the Levenberg-
Marquardt method. There are two GPL licensed solvers, GSL* and levmar’. To avoid the
distribution restriction of the GPL licence, the Imfit library® is highly recommend (licensed

“http://www.gnu.org/software/gsl/
Shttp://users.ics.forth.gr/~lourakis/levmar/
Shttp://joachimwuttke.de/Imfit/

http://www.gnu.org/software/gsl/
http://users.ics.forth.gr/~lourakis/levmar/
http://joachimwuttke.de/lmfit/

184 CHAPTER 9. FITTING MODELS

under FreeBSD License). The author has used this library with great success. The author
has also written a free implementation in C#, which is available upon request. There are
also a variety of Java versions available on the Web, a search using Levenberg-Marquardt
java will locate many of them. Scripting languages such as R, Python (scipy package), and
Matlab also support implementations of Levenberg-Marquardt. COPASI implements the
Levenberg-Marquardt method as well.

Simplex or Nelder and Mead

The Levenberg-Marquardt method requires the calculation of derivatives during each itera-
tion which can be slow and not always easy. The following and remaining methods do not
require derivatives which means they can be easier to implement. Moreover they are better
at avoiding local minima and are more likely to find the global minimum.

The simplex method, as described by Nelder-Mead [123], is a robust search method (i.e.
it is generally tolerant of noisy data), in which the objective function, in our case x2, is
computed at several test points. The test point with the highest value for y? is replaced by
another point which has a lower value for y,.

In a parameter space of P dimensions, a P + 1 dimensional geometrical object is created,
called a simplex, with its vertices initialized to some starting values. The P + 1 vertices
of the simplex are the points at which the objective function is evaluated. The simplex
evolves by first trying to replace the worst point with a new point using either reflection,
expansion or contraction. Each of these possibilities lies along a line that passes through the
centroid of the simplex (Figure 9.7). Reflection is tried first. If the reflected result is better,
then the reflection is expanded. If the reflected point is worse, then instead of a reflection
a contraction is employed. If all three operations fail to reduce the objective function, a
contraction along all faces towards the best point is carried out (Figure 9.8). This process
is summarized below:

e The simplex reflects the worst point through the opposite face to a new point.

o [f the reflection results in a better point, i.e. lower error, it is further stretched in that
direction (expansion).

o If the reflection results in a worst point, then abandon the reflection and contract the
worst point towards the opposite face of the simplex.

o If all the above fails, then contract along all faces towards the best point.

Figure 9.9 illustrates a simplex search involving multiple reflections, extensions and con-

tractions’.

"Modified from http://mathfaculty.fullerton.edu/mathews/n2003/neldermead/
NelderMeadMod/Links/NelderMeadMod_lnk_5.html

http://mathfaculty.fullerton.edu/mathews/n2003/neldermead/NelderMeadMod/Links/NelderMeadMod_lnk_5.html
http://mathfaculty.fullerton.edu/mathews/n2003/neldermead/NelderMeadMod/Links/NelderMeadMod_lnk_5.html

9.2. OPTIMIZATION ALGORITHMS 185

worst

Figure 9.7 Nelder and Mead Algorithm: The worst point is either reflected (then expanded
if the reflection is successful) or contracted along a line that passes through the simplex
centroid. Thick lines represent the original simplex.

worst

best

Figure 9.8 Nelder and Mead Algorithm: If reflection, expansion and contraction fail to
improve the objective function, the entire simplex is contracted towards the best point.

By successively evolving the simplex according to the previous rules, the simplex slowly
makes its way along the error surface®. The shape of the simplex adapts to the landscape,
stretching and contracting. The simplex method can be quite successful unless the initial
starting point is a very poor guess. The simplex can be assumed to have converged, either
when it has converged to a very small region, or when there is no significant improvement
in the error from one iteration to the next. The simplex method has the potential to find
the global minimum because it can sample multiple points at once on the fitness surface.
However, it can easily get trapped in a local minimum if the simplex is too small. Simulated
annealing which is described in the next section avoids this scenario. In practice the simplex
method should be repeated many times with different starting positions. The method is
described in pseudocode below.

1. Let n equal the number parameters, x; that we wish to fit

8See https://www.youtube . com/watch?v=HUqLxHfxWqU for an animated example.

https://www.youtube.com/watch?v=HUqLxHfxWqU

186 CHAPTER 9. FITTING MODELS

Reflection

Contraction

Reflection
=\

A=

Contraction _A
72>

Contraction

Reflection

Initial Simplex
Reflection

Figure 9.9 Nelder and Mead Algorithm: Example trace of a simplex looking for the mini-
mum. The initial simplex is in bold.

2. Set the tolerance € to decide when to exit the algorithm.
3. f(x;) is the value of the objective function at x;.

4. Initialize the parameters to random values or values that might be considered in the
region of the optimum.

5. Order: Order f(x;) low to high (low being the best):
fx) = f(x2) = ... f(xnt1)

6. Centroid: Compute the centroid of the simplex, x = (3>_x;)/(n + 1)
7. Reflect: Reflect the worse vertex over the centroid to give x;, using:
Xrp =X + (X — Xp41)
If f(x1) < f(x+) < f(xp) then replace the worst: x,+1 = X. Goto step 3

8. Expand: if f(x,) < f(x1) (i.e the reflection improved things) then compute expan-
sion:

Xe =X + y(x, — X)
If f(xe) < f(x;) then (If the expansion improved things)

replace x, 41 with x.. Return to step 3
else (Just keep the reflection)

replace x,41 with x,. Return to step 3

9.2. OPTIMIZATION ALGORITHMS 187

9. Contract: If there was no improvement during the reflection, then f(x;) > f(xn)
then there are two possibilities.

10. Outside: If f(x,) < f(x;) < f(xn+1) then (i.e. f(x;) is better than f(x,+41))
Xoc = X + B(x, — X)

If f(xoc) < f(x;) then replace x,+1 With x4, and return to step3 otherwise goto
Shrink

11. Imside: If f(x;) > f(xp+1) then
Xic = X + (xp41 — X)
if (f(xic) < f(xn), replace x, with x;. and goto 4 otherwise goto Shrink

12. Shrink: Shrink the simplex towards x1: x; = x1 + %(xi — x1) and return to 3
(i=2,3,....n+ 1.

13. If f(xn+1) — f(x1) > € then return to 3, else terminate.

Implementations of the simplex algorithm are available from a number of sources. The
GPL GSL library http://www.gnu.org/software/gsl/ has an implementation. An
unrestricted licence version is available from http://www.mikehutt.com/neldermead.
html, and the author has a C# version available upon request. One advantage of the sim-
plex method is that it is not very difficult to implement (unlike the Levenberg-Marquardt
algorithm). Most scripting languages, including Scipy for Python’ and Java, have imple-
mentations available. COPASI also implements the Nelder and Mead method.

Simulated Annealing

The simulated annealing method derives its name from thermal physics where the mini-
mization of € is equivalent to the way a system, such as a metal, reaches its lowest state
as it slowly cools [87]. At a given temperature, the atoms of the metal collide with each
other so that the energy of the system is continually being redistributed. As the temperature
is slowly reduced, the atoms begin to form a crystalline structure and eventually reach the
minimum energy state. The metal has to be cooled slowly, or else pockets, where the metal
is in a higher energy state than neighboring regions, can form. The idea has been used to
implement an optimization algorithm called simulated annealing. For optimization prob-
lems the algorithm works in the following way: given an initial state i, which in our case
would be a set of parameters, the system jumps to another state i + 1, with the Boltzmann
probability:
(€i — €i+1)

exp —T (9.13)

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

http://www.gnu.org/software/gsl/
http://www.mikehutt.com/neldermead.html
http://www.mikehutt.com/neldermead.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

188 CHAPTER 9. FITTING MODELS

where T is the temperature. For example if €; ;1 is lower than ¢;, the expression will al-
ways be greater than one, so we will always jump to the new solution. However if €; 41
is bigger then ¢;, the probability of accepting the new state is less than one and it is pos-
sible to actually accept the worse state, effectively going uphill. Going uphill may seem
counterproductive, but it allows the algorithm to potentially jump out from local minima
and eventually find the global minimum. The higher the temperature the more likely the
algorithm will move uphill, therefore the temperature is slowly lowered so that the chance
of going uphill reduces.

At a given temperature the system must be given enough time to sample all the configu-
rations which are accessible using equation 9.13. There is no simple way to design tem-
perature scheduling (i.e. temperature as a function of time/iterations) and several methods
exist depending on the problem at hand. One way is to follow the algorithm as described
in [109, 137], where the authors consider an adaptation of the simplex method. The author’s
own experience with this approach has been successful. COPASI implements a version of
simulated annealing.

Fitness

Figure 9.10 In the simulated annealing algorithm, jumps can be towards or away from a
minimum. This allows the algorithm to move away from local minima.

The basic simulated annealing algorithm is described in the code below:

1. Initialize parameter values, p
Initialize the temperature, T
Calculate the chi-square, ¢;, at the
current parameter values p;

Make small random changes, Ap to p;
Set pi+1 =p; + Ap

Calculate the new chi-square, €;4;
Calculate Ae = €j41 —€;

If Ae <0 then accept the new state
If Ae >0 then

w N

© 00 N O O

9.2. OPTIMIZATION ALGORITHMS 189

Generate uniform random number, u
If u <e 2T then
Accept state
else
Restore previous state, p;
20. Reduce the temperature, T =T —¢r
21. If T <0 or exceeded Max Iterations then
exit
21. Goto to Step 3.

The GPL GSL library'® has an implementation of simulated annealing and has been suc-
cessfully used by the author. An unrestricted licensed version in C# is available'! and a C

version'Z.

Genetic Algorithm

A genetic algorithm (GA) is an optimization technique that mimics natural evolution. GAs
are motivated by natural biological processes such as selection, crossover and mutation.
The Schema theorem of Holland [58] addresses these intuitive notions, and demonstrates
that these operations serve to increase the fitness of a population. In our case we will
consider real value coded GAs, where the ‘genes’ are real with nonnegative kinetic param-
eters. We start with a random population of individuals where an individual is a model
with a given set of parameters, i.e. ‘genes’. The fitness of each individual in the population
is measured by its chi-square value. Various approaches are employed to decide which
individuals will be carried over to the next generation. Only a proportion of the popula-
tion survives this transition so the population needs to be rebuilt back to its original size.
It is the process of rebuilding, via replication and mutation of the survivors, that results
in new individuals. Such new individuals could, by chance, have improved fitness. This
process repeats over a number of generations. COPASI implements a genetic algorithm
optimization method.

Selection

There are various ways in which selection can takes place, these include elitism, tournament
selection, or roulette wheel selection. In tournament selection random pairs of individuals
are made to play a tournament and the winner is decided based on which is fitter. This
ensures that even bad individuals can get selected into the next generation and helps prevent
premature convergence. Elitism is where the top 20% or more of the fittest individuals are
passed on to the next generation. Roulette selection is where the probability of picking out

Onttp://www.gnu.org/software/gsl/
Uhttp://www.codeproject.com/Articles/13789/Simulated- Annealing-Example-in-C
2 http://www.cs.sunysb.edu/~skiena/algorist/book/programs/

http://www.gnu.org/software/gsl/
http://www.codeproject.com/Articles/13789/Simulated-Annealing-Example-in-C
http://www.cs.sunysb.edu/~skiena/algorist/book/programs/

190 CHAPTER 9. FITTING MODELS

an individual from the population is based on the fitness of the individual. One or more of
these strategies can be used to pick the next generation.

Crossover

Some GAs use crossover as a means to shuffle variation between individuals in a popu-
lation. In crossover, two parents exchange genetic material. This mechanism offers the
chance to bring two favorable traits together into one individual. Crossover also serves to
spread beneficial mutations over a population.

The selected parents can be crossed over [70] using an arithmetic mean defined in the
following way. Assuming we represent the parents as:

p1=(pi.pi.pi...) and pa=(py.p3. p3.-..)

where the pij term is related to the j™ parameter in the i parent. The crossover between
p! and p? will generate two children, 81 and f5, such that:

Bi = Aipi + (1= Ai)ph
Bh = diph + (1 —1i)p}
where A is a uniform random number between -0.5 and 1.5. The wider range allows a larger

region of parameter space to be explored as new points may lie outside the line joining the
parents.

9.14)

Mutation

Mutation is a vital part of any GA as it is the one technique that allows entirely new traits
to enter into the population. For a random number of individuals, one parameter, p*, will
be randomly selected and changed according to:

P =2z Prax (9.15)
where z = random [0, 1], is uniformly distributed, and p,in 4 15 the maximum possible
value of the i component of the parameter set. We must of course ensure that p;,, . is
finite.

General Scheme

An example scheme is shown in Figure 9.11 and a flowchart describing tournament selec-
tion is given in Figure 9.12.

The operations of crossover and mutation occur with certain adjustable probabilities. How-
ever the mutation rate is generally a small number, < 0.05. Mutations allow the system to

9.2. OPTIMIZATION ALGORITHMS 191

[Initial Population]

\

Select Fittest

Yes
Reached o
Stopping Criteria?
*No
Reproduce
and Mutate

Figure 9.11 Basic flowchart for a genetic algorithm, though many variants exist.

explore new regions, whereas crossovers spread these mutations over the population. If the
mutation rate is very high, large regions will be explored. However individuals may not
survive into the next generation because the search is much too exploratory and not enough
information about the landscape has been exploited by crossovers.

Once there is little improvement in the fitness from one generation to the next, the compu-
tation can be stopped.

Differential Evolution

The final optimization method to discuss is the differential evolution (DE) algorithm. Like
the genetic algorithm optimization method, DE is an evolutionary type method developed
by Storn and Price in 1996 [166]. DE has a number of key advantages, it is relatively
simple to implement, it is fast, does not use derivatives, and is easily parallelized. DE uses
mutation as the search mechanism by linearly combining individuals in a population in an
attempt to create fitter offspring. This results in a remarkably effective method.

The basic algorithm is:

1. Create space for two populations, one a working population
and a second temporary store for recording new individuals
in the population loop.

2. Create a working population where individuals have randomly
assigned parameter values.

w

. Start a generation loop.
4. Start a loop for all /i individuals in the working population

192 CHAPTER 9. FITTING MODELS

Select Fitness: Tournament Selection

—| Pick a Random Paa

}

Pick Best of Pair | —| DeStPairfo
Next Generation

Yes Any More
Pairs to Pick?

iNo

Figure 9.12 Tournament selection is one strategy used for selecting individuals for the next
generation.

5. Create an i*® mutant linear combination from three
randomly selected individuals.
6. Copy the ith mutant into the temporary population

store depending on random crossover, else copy over
the i*® individual from the working population.
7o Continue to the next individual in the population.
Copy the temporary store to the working population.
Next generation, stop if fittest is better than a threshold value.

© 00

In this scheme an individual in a population is a vector containing the values for the param-
eters of the model. If for example a model has twelve parameters to fit, then an individual
is a vector of size twelve. The key to the method is computing a linear combination of
individuals to produce a new candidate, or mutant individual. The linear combination is
given by:

new candidate = x; + F(x2 — x3)

where x1, x2 and x3 are individuals randomly drawn from the population and F' is called
the mixing factor. In practice the x terms are vectors so that the linear combination is a
vector calculation. The second part of the algorithm must decide whether the mutant will be
passed to the next generation or not. This is done by combining, via crossover, the mutant
with another individual from the population. In practice the algorithm iterates through every
individual in the population, for example at the i " individual, create a linear combination to
generate a mutant and combine the mutant via crossover with the i individual. If there is
no crossover the i " individual is kept for the next generation. All mutants that went through

9.2. OPTIMIZATION ALGORITHMS 193

crossover are compared to the corresponding i ™ individual in the original population, if the
crossover individual is fitter then it is copied to the next generation, otherwise the original
is kept.

There are a number of variations on the basic DE algorithm. One variant is to use islands.
This allows multiple populations to evolve independently with a limited degree of migration
between islands and allows alternative solutions to be explored while at the same time
solutions may be merged leading to further improvements. In the appendix (Listing 9.3) a
Python implementation of island based differential evolution is given and an example that
uses the code to fit an oscillatory model is provided in the example section.

A more detailed description of the algorithm is described in the listing shown below. Rules
of thumb have been devised for setting mutation and cross-over probabilities and these are
listed below and in the Python code in the appendix (Listing 9.3).

Set crossover rate: CR = 0.6
Set the mixing factor: F = 0.8
Set number of parameters B
Create an initial random population of individuals
Create space, u to hold the potential new population
Iterate through each individual, x;, in the population
Pick three unique individuals, a, b and ¢ from the population
(i should not be a choice for the random number)
Compute a mutated individual using: mutant =c + F(a —b)
Compute a trial individual, u, from the mutant by crossover:
Generate a randomIndex between 1 and P
For each parameter, j
Generate a uniform random number, r;
if r; <CR or (i = randomIndex)
Uu;; = mutant;

(<2 NN U U

~N O

else
Ujj = Xi
8. Continue to the next individual Xx;4;, in the population
9. For all i, if the fitness(u;) > fitness(x;) then x; = u;.
10. Increment the generation number
11. Sort the population, is the fittest individual less than tolerance?
No, then goto 4

Although relatively simple, differential evolution has turned out to be a remarkably effec-
tive approach. Of all the methods described, differential evolution and simulated annealing
are probably the most effective. As with all optimizer methods, they should be repeated
many times in order to order to try to locate the global minimum.

194 CHAPTER 9. FITTING MODELS

4
=1 3 : Il... oy) n " Ch n "
9 am " - .I.l. " - [] " []
§ ["u alg = - [" "

5 7 '
=}
o) n
© o
0
0 2 4 6 8 10
Time

Figure 9.13 Simulated experimental data.

Combining Global and Local Search

Some optimization methods are considered local, whereas others are global. The Levenberg-
Marquardt is considered a local method because given a starting point, it can usually only
find the nearest minimum. Other methods such as genetic algorithms or simulated anneal-
ing are considered global because they tend to search across the entire fitness landscape,
sampling many regions.

Combining a local search within a global search algorithm is a very attractive possibility.
A global search can be used to provide an initial seed point. The search will converge to a
point where a local search can then begin. One strategy is to conduct a global search and
take the two best individuals and use them as initial conditions for a local search. The two
individuals resulting from the local search are put back into the main population and the
entire procedure starts again. This can be repeated until the population has converged.

Optimization Example

To illustrate the use of optimization, let us consider fitting data to a simple model that
displays oscillatory behavior. We will use a simple oscillator model which arises from
positive feedback and is based on the Heinrich model [67]. The model was simulated
and random noise added to the time series to produce noisy data which we will call the
experimental data. This data is shown in Figure 9.13. Noise was drawn from a Gaussian
distribution with mean zero and a standard deviation of 10% of the y value.

9.2. OPTIMIZATION ALGORITHMS 195

10!

Fitness

10°

1071

0 50 100 150 200 250 300
Generation

Figure 9.14 Plot showing the progress of the optimization using differential evolution.

Smaller numbers indicate a better fit. The fitness was plotted on a log axis to illustrate the
very small number of steps that were taken after the initial large drop in fitness.

The following model was fitted to the experimental data:

d

= po—yi= (D + ps (52))
dy

d_t2 = (p1yD) (1 + pa(y2)) — y2ps

Differential evolution was used to fit the model because it was found to be the most effective
method for this problem. It is worth noting that the Levenberg-Marquardt method was
unable to fit this model to the data. A genetic algorithm based optimizer could fit the
model, but only about 20% of the time.

In the differential evolution method, parameters were randomly assigned between 0 and 10
for each individual in the population. Only thirty individuals for the population were needed
to achieve a successful fit. Four parameters were fitted, pg, p1, p4 and pe. The Python code
for this computation is given in the Appendix at the end of the chapter (Listing 9.3).

Figure 9.14 shows the progress of the fitness during the optimization. The smaller the
number, the better the fit. At the beginning the fitness dropped rapidly. The fitness data
was plotted on a log y-axis to show the number of smaller steps taken near the end of the
optimization. The result of the fit, superimposed on the simulated experimental data, is
shown in Figure 9.15. The fit has managed to capture the correct dynamics even though the
data is very noisy. As mentioned before other optimization algorithms such as Levenberg-
Marquardt and even the genetic algorithm found this model difficult to optimize. In prac-
tice, a variety of fitting methods should be tried until a satisfactory fit is obtained. Some-
times a method that works well in one data set can fail on data sets for other models.

196 CHAPTER 9. FITTING MODELS

=
.8
E
=
3
[=
o
@)
1 o -~ |
TR T e
,,
/
0 | | | |
0 2 4 6 8 10

Time

Figure 9.15 Simulated experimental data and fitted curve: Fitted parameters (actual in
brackets): po = 6.77(7), p1 = 1.01(1), ps = 1.26(1), pe = 5.11(4.96).

9.3 Model Fitting Software

There are a number of biochemical modeling applications that support curve fitting of dif-
ferential equation models. The most popular tools in this category (in alphabetic order)
include COPASI'3, PottersWheel'#, SBSI'®, and VCell'®. COPASI in particular has an
extensive set of parameter fitting algorithms and a number have been mentioned already.
For Matlab users, PottersWheel is probably the best choice. There is also a long standing
set of software and parameter optimization code by Peter Kuzmic who can provide expert
consultancy on parameter fitting (http://www.biokin.com/).

9.4 Using Python to Fit Data

Python has good support for optimization and data fitting via the SciPy'” extension. SciPy
supports the optimize package'® which in turn implements a number of optimization algo-
rithms including the Nelder and Mead simplex and Levenberg-Marquardt. A script that fits
a simple model is shown in Listing 9.1 where a Michaelis-Menten equation is fitted to data.

13http://www.copasi.org/
4http://www.pottersvheel.de/
Bhttp://www.sbsi.ed.ac.uk/
16 http://wuw.vecell.org/
17www.scipy.org

Bhttp://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

http://www.biokin.com/
http://www.copasi.org/
http://www.potterswheel.de/
http://www.sbsi.ed.ac.uk/
http://www.vcell.org/
www.scipy.org
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

9.4. USING PYTHON TO FIT DATA 197

from scipy import *

from scipy import optimize

Declare the experimental data

x = array([0, 10, 20, 50, 100, 200, 400])
y = array([O, 9, 10, 17, 18, 20, 19])

Define the objective function
def residuals (p):

[vmax,Km] = p

return y - vmax*x/(Km+x)

Fit the model to the data
output = optimize.leastsq (residuals, [10, 10])

Listing 9.1 Python Script to Fit Data.

When the script is executed, the variable output will contain the values for the fitted Viax
and K;, which in this case is 20.745 and 15.408, respectively. The y data was generated
using a Vipax = 20 and K, = 15 with added noise to simulate experimental error.

One important point worth noting is that the leastsq routine expects a routine called resid-
uals to return the differences between the data and the model. In orther words, there is no
need to square and sum up the residuals to compute the chi-square directly. In general, the
residuals routine will compute the following component of the sum of squares:

yi — f(xi, p)
o

We can go further and plot the results of the fit using the code in Listing 9.2:

def peval(x, p):
return p[0]*x/(p[1]+x)

Vmax,Km = 20,15
yTrue = Vmax*x/(Km+x)

import matplotlib.pyplot as plt

plt.plot(x, peval (x, output[0]), '--', x, y, 'o', x, yTrue,
'r', x, residuals(output[0]), 'r~', markersize=10)

plt.title('Least-squares fit to noisy data')

loc=10 means center the legend

plt.legend(['Fitted Curve', 'Noisy Data',
'Underlying Function', 'Residuals'], loc=10)

plt.show()

Listing 9.2 Python Script to Fit Data.

198

CHAPTER 9. FITTING MODELS

The Python leastsq uses a modified Levenberg-Marquardt algorithm from the minipack
Imdif routine.

20 Least-squares fit to noisy data

15¢

10f - - Fitted Curve
® ® Noisy Data
— Underling Function

51 A A Residuals
4
op 1
~ 50 100 150 200 250 300 350 400

Figure 9.16 Results from Python fitting code, comparing the fitted model to the underlying
actual model.

Further Reading and Online Resources

1.

Berendsen HJ. (2011) A Student’s Guide to Data and Error Analysis. Cambridge
University Press. ISBN: 978-0-521-13492-7

Draper NR and Smith H (1998) Applied Regression Analysis. 3rd edition. Wiley
Series on Probability and Statistics. ISBN-13: 978-047117082

. Johnson ML, Faunt LM (1992) Parameter estimation by least-squares methods. Meth-

ods in Enzymology, 210, 1-37.

. Johnson ML (1994) Use of Least-Squares Techniques in Biochemistry. Methods in

Enzymology, 240, 1-22.

. Mendes P and Kell DB (1998) Parameter Estimation in Biochemical Pathways: A

Comparison of Global Optimization Methods. Bioinformatics, 14(10), 869-883.

9.4. USING PYTHON TO FIT DATA 199

Exercises

1. Create a simple linear chain model of four steps and three species:

XO—>Sl—>S2—>S3—>X1

Assume that X, and X; are boundary species. Choose nonlinear reversible rate
laws for the reactions, assign suitable values to the parameters, and set the initial
conditions for S7, S», and S3 to zero. Run a simulation to obtain time course data
for the three species. Add noise to the simulated data and treat this data as your
‘experimental data’. Fit the experimental data to the model and see how well your
parameter estimates agree with the original model. Try different fitting methods
such as simplex, Levenberg-Marquardt, etc. to investigate how well each method
performs. In addition, investigate different starting points for the parameter values
when using the Levenberg-Marquardt and Nelder and Mead Method.

Appendix

import random

import sys

from datetime import datetime
import scipy.integrate

import numpy

import matplotlib.pyplot as mplot

class DiffEvo(object):
def __init_ (self, dy, yO0, t, expected):
self. DY = dy

200 CHAPTER 9. FITTING MODELS

self.YO = y0

self T =t

self.Expected = expected
self.Islands = []

return

def Createlsland(self, population_size, vector_length, min_val, max_val):
island = []
for i in range(population_size):
island.append(self.CreateRandomMember(vector_length, min_val, max_val))
self.Islands.append(island)
return

def CreateRandomMember(self, vector_length, min_val, max_val):
v = [round(random.uniform(min_val, max_val), 7) for i in range(vector_length)]
f = self.GetFitness(v)
return Member(v,f)

def CreateTrialMember(self, original, samples, CR=0.6, F=0.8):
o = original.Vector
a = samples[0].Vector
b = samples[1].Vector
¢ = samples[2].Vector

new_vector = []
for i in range(len(o0)):
if random.random() <= CR:
v = round(a[i] + F *x (b[i] — c[i]), 7)
if v>0:
new_vector.append(v)
else:
new_vector.append(o[i]/2.)
else:
new_vector.append(o[i])
new_fitness = self.GetFitness(new_vector)
return Member(new_vector, new_fitness)

def GetFitness(self, vector):
obs = scipy.integrate.odeint(self.DY, self.YO, self.T, args=(vector,), mxstep=1000)
sum_of_squares = 0.
for i in range(len(obs)):
for j in range(len(obsli])):
if self.Expected[i][j+1] == O:
0.
else:
sum_of_squares += ((obs[i][j] —
self.Expected[i][j+1])/ self.Expected[i][j+1]) ** 2
return sum_of_squares

def SortlslandsByFitness(self):
for island in self.Islands:
island = sorted(island, key=lambda o: o.Fitness)

9.4. USING PYTHON TO FIT DATA

201

return

class Member(object):
def _ init__ (self, vector, fitness):
self.Vector = vector
self Fitness = fitness
return

def dY(y, t, p):

dy0 = p[0] — y[0] = 1. — (p[1] * y[0] — O. * y[1]) = (1. + p[4] * y[1] ** 4)

dyl = (p[1] * y[0] — 0. % y[1]) * (1. + p[4] * y[l1] *x 4) — y[l] * p[6]
return [dy0O, dyl]

def PlotResults(de):
best_members = [x[0] for x in de.Islands]

solution = scipy.integrate.odeint(de.DY, de.YO, de.T, args=(best_members[0].Vector,))

exp_t = [de.Expected[i][0] for i in range(len(de.Expected))]
exp_y0 = [de.Expected[i][1] for i in range(len(de.Expected))]
exp_yl = [de.Expected[i][2] for i in range(len(de.Expected))]

solution][:,0]
solution|:,1]

obs_y0
obs_yl

mplot.plot(exp_t, exp_y0, 'bo’)
mplot.plot(exp_t, exp_yl, 'go")
mplot.plot(de.T, obs_y0)
mplot.plot(de.T, obs_yl)
mplot.xlabel('Time")
mplot.ylabel('Unknown")
mplot.show()

return [exp_t, obs_y0, obs_yl]

file = open('expdata.txt','r")

data = []

for line in file:
d = line.replace(\n',").split(" ')
d = [float(x) for x in d]
data.append(d)

GENERATION_COUNT = 0
MAX_GENERATIONS = 200
FITNESS_THRESHOLD = le—6
PARAMETER_COUNT = 7

202 CHAPTER 9. FITTING MODELS

SP = 3
RP = 3
MT = range(ND)[1:] + [0]

print('Starting DE search.")
clock = datetime.now()

DE = DiffEvo(dy=dY, yO=[1., 0.], t=numpy.linspace(0., 10., 50), expected=data)

[DE.Createlsland(30, 7, 0., 10.) for i in range(NI)]
for island in DE.Islands:
assert len(island) > 3

while True:
GENERATION_COUNT += 1

for island in DE.Islands:
samples = [random.sample(island, k=3) for i in range(len(island))]
trial_values = [DE.CreateTrialMember(island[i], samples[i]) for i in range(len(island))]

for i in range(len(island)):
if trial_values[i].Fitness < island[i].Fitness:
island[i] = trial_values[i]

DE.SortIslandsByFitness()

top_members = [x[0] for x in DE.Islands]
for member in top_members:
print('Fitness: {0}'.format(round(member.Fitness,3)))

if GENERATION_COUNT >= MAX_GENERATIONS or
min([x[0].Fitness for x in DE.Islands]) < FITNESS_THRESHOLD:
top_members = [x[0] for x in DE.Islands]
for member in top_members:
print('Fitness: {0} Vector: {1}'.format(round(member.Fitness,3), member.Vector))
break

print('Done optimizing.")
print('Optimization time: {0}'.format(datetime.now()—clock))

PlotResults(de=DE)

print(‘'Done.")

Listing 9.3 Differential Evolution Code by Wilbert Copeland, Dept of Bioengineering,
2014. User will need to supply a text file containing columns that represent time and the
two variables

10

Parameter Estimation

10.1 Introduction

The last chapter discussed the use of various optimization techniques to fit a model to a set
of data. In this chapter we will go one step further and investigate ways to assess the quality
of the fit and confidence in the parameters.

10.2 Analysis of Residuals

When a model has been fit to a set of data, the difference between a model prediction and
the corresponding experimental data point is called the residual. Figure 9.2 in the previous
chapter shows a plot of a fitted curve and the corresponding experimental data used to fit
the model. The e; terms are the residuals. One of the easiest ways to assess the quality of a
fit is to examine the residuals. In fitting data to a model we make a number of assumptions
(as required by Maximum likelihood, see section 9.1) about the experimental data. The first
is that the experimental uncertainties in the data are normally distributed, and the second
that the errors are uncorrelated (i.e. independent). Any departure from these assumptions
means the residuals will show a pattern that is not accounted for by the model. Even
assuming that the experimental data is well behaved, an incorrect model can also result in
systematic trends in the residuals. Examination of the residuals is therefore an easy and
informative way to assess the fit.

Figure 10.1 shows a typical residual plot. This was obtained by fitting the model S1 — Sa,
assuming an irreversible first-order reaction kinetic law with a single unknown kinetic con-

203

204 CHAPTER 10. PARAMETER ESTIMATION

2 loSl
IS2
1 o ™ ° -
= o °
5 u = u
S of
Z o ©
R o © = " o =
—1
| |
o
-2]
0 2 4 6 8 10
Data Point

Figure 10.1 Residual plot data fitted to a simple irreversible decay model of S} into S».

stant, k1. For the purposes of the demonstration, the model was fitted to a set of synthetic
noisy data generated from a simulation using a known value of k1. The synthetic data was
then used to recover the value of k; by using the Levenberg-Marquardt fitting method. If
the model is a good fit to the data, we expect the residuals to be normally distributed about
a mean of zero.

If the model is a good fit to the data, we expect the residuals to be normally distributed
about a mean of zero.

If a pattern is observed in the residual plot, it can mean a number of things: 1) the model is
incorrect; 2) one or more assumptions about the distribution of errors in the experimental
data is violated; 3) there may be one or more very unusual outliers in the experimental
data set. The plot in Figure 10.1 hints at a possible pattern with the residuals increasing,
suggesting the variance in the experimental data is increasing. The most damning patterns
are where the residuals follow a linear or nonlinear relationship and are not randomly dis-
tributed. This will usually imply an incorrect model.

Plotting residuals is therefore an effective way to investigate how well the model fits the
data. Sometimes it can be difficult to spot trends in a residual plot and one very practical
way to test whether the residuals are normally distributed (implying no systematic pattern)
is to construct a normal probability plot [120, 167]. We can construct a probability plot
by first ranking the residuals in increasing order such that:

e <ep<ez3<..<eg <..<ey

where e; is the i residual value. We next compute the percentile value for the i’ h residual

10.2. ANALYSIS OF RESIDUALS 205

68.2%

95%

99.7%

Frequency

2.3 15.9 50 84 97.7 Percentiles

21% A3.6% 34.1% 34.1% 13.6%, 2.1%

-3 -2 —1 0 1 2 3
Standard deviations

Figure 10.2 The normal distribution showing percentiles, z-scores and areas. Modified
from http://johncanning.net/wp/?p=1202.

using:

i—0.5
n

P; = (10.1)
For example, if we have 20 ranked residuals, then the percentile for the 10th residual is
0.475. That is, 47.5% of the residuals fall below the 10th residual. We can think of the
percentiles as representing the cumulative area (or probability) under a normal curve (or
any other distribution we wish to test) from which we can compute the corresponding z-
values. That is, for a given area under a normal curve with mean zero, what is the value on
the x axis?

For example, an area of 0.5 will yield a z-score of zero because we are at the center of
the normal curve, while an area of 0.25 will give a z-score of -0.68 (See Table F.3). If the
residuals are sampled from a normal distribution, we would expect the trend in the ranked
residuals to follow the same trend as the z-scores. The plot should be a straight line. The
easiest way to test this is to plot the ranked residuals against the z-scores. Out of interest
we can plot the residuals in Figure 10.1 in a probability plot shown in Figure 10.3. Note
that the points lie reasonably on a straight line with perhaps the last two points showing
some deviation. Overall there doesn’t appear to be any major problem.

We can generate a probability plot using Excel. In the first column enter the ranked residual
data. In a third column, enter number 1 to n where n is the number of residuals. In the
fourth column compute the percentiles using equation 10.1. In the second column use the
built-in Excel function NORM. S. INV to convert the percentile values in the fourth column to
z-scores. Finally, plot the first and second column as a scatter plot to yield the probability
plot, see Figure 10.4.

Since the residuals are the deviations of the observations away from fitted values, in an

http://johncanning.net/wp/?p=1202

206 CHAPTER 10. PARAMETER ESTIMATION

.Sl
) e nS,

Ranked Residual
| |
[]

-2
-2 =15 -1 =05 0 0.5 1 1.5 2
Z-score

Figure 10.3 Residual data from Figure 10.1 reploted as a probability plot. A linear rela-
tionship indicates that the residuals are most likely sampled from a normal distribution.

ideal case we would expect the residuals to vary randomly about zero, and their spread
to be almost the same across the plot. If the points in the plot lie on a curve rather than
fluctuating randomly, it is an indication that the zero mean assumption is invalid. If the
residuals exhibit a pattern, i.e. increase or decrease in magnitude with the fitted values,
this can suggest either systematic changes to the data variances or trends generated by a
bad model. A plot of residuals against fitted values may sometimes also reveal points with
unusually large residuals. These points are potential outliers, that is, data points for which
the model is not appropriate. The presence of outliers in the data sets may significantly
influence the estimation of model parameter values. It is therefore important to identify
those points and correct them whenever possible, or delete them from the raw data sets.
However, in some cases outliers may actually aid in improving our knowledge about the
system under consideration. One should do a detailed investigation before rejecting outliers
(see [9]).

Standardized Residuals

Given that residuals can potentially vary over a wide range of values, it is sometimes conve-
nient to normalize the residuals before plotting. If the residuals are well behaved we expect
them to be distributed with a mean of zero and standard deviation, o, often depicted using
e; ~ N(0,0;). One possibility is to scale each residual by its standard deviation. This is
akin to calculating the z-score for a normally distributed variate (See section F.6) where in
this case we assume the mean is zero. However, we don’t have access to these standard
deviations, so instead we normalize each residual with respect to the standard deviation of
all the residuals. We therefore define the standardized residual as:

(4]
S; = —
o

10.3. y2-GOODNESS OF FIT TEST 207

RECE I - Microsoft Excr

m Hame Insert Page Layout Formulas Data Review View Team

H 3 :;E:';y' Calibri AN = =g » Sweetet Tenerl i }5‘ %
Pule o) e B L | H-A-| E=E S| EE | GEMergesCenter~| $ v % v | %% 'f;r':"‘i't‘t""n";' o

Clipboard Font Alignment Number Styles
A13 - %]
| A | 8 (& D 0 E G H 1] K L M

1 |Residual z-score Percentile
2 | -1.97507 -1.57059 1 0.058139535 *
3 | -1.41857 -1.03146 2 0.151162791
4 | -0.65963 -0.6929 3 0.244186047
5 | -0.59103 -0.42009 4 0.337209302 4 *
6 | -0.55675 -0.17578 5 0.430232558 /
7 | -0.33537 0.058327 6 0.523255814 ."/ *
8 | 0.155918 0.295723 7 0.61627907 T T ; & T
9 | 0.245941 0.551348 8 0.709302326 5 =2 =L5 = /ﬁ? 45 = 13
10| 0.397358 0.849957 9 0.802325581 *
11| 0.347883 1.255486 10 0.895348837 b2 i
12 | 1.256465 2.269206 11 0.988372003 -
13 |
14|
15 4
16

Figure 10.4 Using Excel to compute probability plots. See main text for details.

where:

Standardized residuals are expressed in units of standard deviations. Thus a standardized
residual of one indicates that the residual is one standard deviation away from the mean
(zero in this case). For a well behaved set of residuals, we expect that 95% of the time,
the residuals will lie roughly between the limits 2 and -2. If more than 5% of standardized
residuals are greater than 2, then this should raise some concern. If only one observation is
found beyond the 95% range, this could also suggest that the data point is an outlier.

10.3 y2-Goodness of Fit Test

If the residuals show no unusual trends, the next step is to carry out a goodness of fit test.
Recall that the reduced x? is given by:
P1-- - pm)’
2

1 & (i — S
N—PZ o

i=1 i

x:

(10.2)

where N — P is the degrees of freedom. The value of x? is determined by a number of
factors. The two most interesting to us are:

1. The normally distributed errors in the experimental data.

208 CHAPTER 10. PARAMETER ESTIMATION

2. The choice of model used in the fitting.

The purpose of a goodness of fit test is to distinguish between these two contributions. If the
x? is significantly influenced by the model, then the model must be suspect. If the model is
a good fit, we expect the model will contribute little to 2. With a good fit we expect that
x2 will only be influenced by errors in the experimental data. Given this, it should be clear
that a goodness of fit test will only work if uncertainty in the experimental data is known.

x?2 is the ratio of the squared deviations from the expected values divided by the variance
of the experimental data. The numerator is therefore a measure of the spread of the ob-
servations around the fitted value! and the denominator the expected spread. If the model
makes little or no contribution to the numerator, that is the model is a good fit, then the two
measures of spread should be roughly equal. That is:

i = S pi-pm)®
4 ~

0;

1

Summing over all i terms we expect x? to be approximately N .

N o _ . 2

=3 (yi f(xz,zl - Pm))” (103)
i=1 i

However this ignores the degrees of freedom and more precisely we expect the reduced

chi-square to be equal to:

A= p2/v =1

where v degrees of freedomis: v = N — P.

In summary, the closer x? is to one, the more likely the model fits the data. In this situ-
ation most of the variation we see in y2 must originate from errors in the experimental
data.

Two questions remain: what if 2 < 1, and how can we decide whether a given value for
x? represents a good fit or not? To address the first question; if y?2 is less than one, then it
suggests either the errors in the experimental data are overestimated or more worrying, the
data is possibly fraudulent, in a sense, too good to be true. A sz < 1 therefore suggests a
problem with the data rather than the model.

The second question is, how do we decide whether a given value of y? means we have a
good fit or not? Consider the thought experiment where we repeat the fitting process multi-
ples times using new experimental data for each fit. In the process we will obtain multiple
x2 values. Assuming that the experimental data is sampled from a normal distribution
(which we have assumed so far), the y2 values will by definition be distributed according
to a chi-square distribution.

Recall: 0 = 1/N Y (x; — p)?

10.3. y2-GOODNESS OF FIT TEST 209

v=1

0.4 v=2
v=4

—_— p =8

0.3 —=12

0.2

Figure 10.5 Chi-Square distribution for different degrees of freedom.

Probability density

Some y? values will be smaller and others larger but according to the y, distribution with
v degrees of freedom, the sample of y2 values will have a mean of v and variance of 2v.
By chance it is possible that a given experimental data set will result in a larger y2. Using
x? tables we can estimate this likelihood. If the likelihood is small, it means that the x?
value is unlikely to have come only from variation in the experimental data. Instead it is
more likely that the y? value is not due to variation in the experimental data, but instead
due to our application of a bad model. This is a subtle argument and will illustrate it further
with an example.

Assume that with 10 points and two parameters (v = 10 — 2 = 8), we obtain a reduced
chi-square of 20. This is a high value and is the result of variation in the data and/or a
potentially poor model. The question is which? Using a table of chi-square values, we find
that the likelihood of obtaining this value or greater is 0.01. This means that the y? value
could only occur through random fluctuations in the experimental data 1% of the time.
This is rare, therefore the major contribution to the x? is likely to be a poor fit to the model.
Given this we conclude that the model must be rejected.

As with all statistical tests, the fact that a goodness of fit test rejects a model does not mean
we have shown the model to be incorrect. There is still a chance, albeit small, that we have
made an error and rejected a model that is more than adequate at explaining the data. We
will return to this issue in a later section.

Comparison of Models

It is possible and quite likely that two candidate models fit the same set of experimental
data. Is there anyway to decide which is the most plausible? If the two models have the

210 CHAPTER 10. PARAMETER ESTIMATION

same number of parameters, then a simple comparison of the two y2 values is probably
sufficient. In general, the model with the smallest chi-square is the better model. What if
the number of parameters are different? In this case a statistical test can be carried out to
determine which model to select.

Overfitting

One could reason that of the two models, the model that results in the lowest y? is the better
fit. However this is not necessarily the case. Imagine a model, m 1, that has ten parameters
to fit and another model, m,, that has only two parameters to fit. Let us assume that the
x2 for m; was 0.5 and the x2 for m, was 0.8. At first glance it would seem that m; is the
better fit because it has a lower y,. The danger here is that because m1 has ten parameters
to adjust, it might be possible to adjust the parameters such that the model solution will
go through every experimental data point resulting in a lower y2. This effect is termed
overfitting.

It is much better to compare the reduced x2 (equation 9.2) value because this takes into
account the number of parameters we fit. Let us assume that we had ten points to fit to the
model. The reduced)(2 for mq will be 0.5/(10 - 9) = 0.5, while the reduced Xz for m, will
be 0.8/(10 —2) = 0.1. After taking into account the number of parameters in each fit,
mo has the lower)(2 and therefore we conclude that m is the better fit to the experimental
data. To check on the plausibility of a given model, we can therefore compare the reduced
chi-square.

Consider two models, M1 and M>, where M| has p; parameters and M», p, parameters
such that M has fewer parameter than M, (p; < p2). In both cases we fit the model to
the same set of data and obtain the y? values which we will call X% and X%- A model with
more parameters is likely to fit the data better than a model with fewer parameters simply
because more parameters gives us more flexibility. The question to consider is whether the
additional parameters lead to a significantly better fit. That is, is the likelihood of obtain-
ing)(% the same as obtaining X% given the known errors in the experimental data? If it is
unlikely then we pick the simpler model since there is no reason to select the more compli-
cated model. We can answer this question by comparing the difference in the variance with
the variance of the more complicated model.

The usual test for comparing variances (and therefore)(2 values) is the F-test (see sec-
tion F.9).? In this case we will be comparing the difference in variance in the simple model
to the variance of the model with the additional parameters, that is [37]:

_ (x1—x3)/(p2— p1)
x3/(n — p1)

The null hypothesis, H,, is that the more complicated model M> does not provide a sig-
nificantly better fit that the simpler model, My, i.e. the simpler model is adequate. We

f

2The difference)(% -)(% is also distributed as a y? distribution with po — p; degrees of freedom.

10.4. ESTIMATING CONFIDENCE INTERVALS 211

M, M,
x> 105 6.7
p 5 8

will reject the hypothesis if the F statistic is greater than a critical value such as 0.05, and
consider the more complicated model a better fit. For example, assume the following data
for two models where the number of data points is 20 (n = 20). The first model, My,
has 5 parameters and the second model, M», 8 parameters. The test for rejecting the null
hypothesis is:

Reject Hy if f > F(0.95,v1,v2)

The degrees of freedom for the numerator term, v; is 8 — 5 = 3 and for the denominator
term, v, = 20 — 8 = 12. Given v and v, the critical value from a F-test table at 5% is
3.49. In order to reject the null hypothesis, the F value must be greater than 3.49. Given
the data in the table, the f value can be computed as:

e (10.5-6.7)/3 1.267 _
O 67/12 0 0.446

2.84

Since f < 3.49 we accept the null hypothesis which means that the simpler model is an
adequate model to describe the data. Out of interest, what if the fit to the more complicated
model was a little better with a)(% = 4.5. In this case, f is now computed to be:
10.5—-4.5)/2 2
f = # = — = 6.667
4.5/13 0.3
Since f is now greater than the critical value of 3.49, we reject the hypothesis and propose
that the more complicated model is a better fit to the data. What happens if we increase the
complexity of the model even more, for example the new model has 12 parameters instead
of 87 If we assume that the X% is unchanged, the new f value is computed to be:

f=122

We accept the null hypothesis. This shows that simply increasing the number of parameters
will not necessarily increase the significance of the fit.

Once again it should be emphasized that these tests do not indicate that one model is more
correct than another, simply that one of the models is a less likely description of the data
than the other.

10.4 Estimating Confidence Intervals

If the residuals show no unusual trend, and the model is a good fit, we can now consider how
confident we are in the fitted parameters. This confidence will depend on how the errors

212 CHAPTER 10. PARAMETER ESTIMATION

in the experimental data propagate into the parameter estimates. There will therefore be
some uncertainty in the values for the parameters and in turn in the model predictions. For
example, it is important to know whether a fitted K, with a value of 5.0 has an uncertainty
of £0.2 or +4.8.

We can describe the uncertainty using confidence limits, that is, the likelihood for a param-
eter value to be found within a given confidence limit such as 95% of the time. Intuitively
this means if one were to repeat the same experiment many times and each time fitted the
experimental data to the model, we would find that 95% of the time the fitted parameters
would lie within the indicated range.

The uncertainty in a parameter p, that is the variance O'I%, can be estimated by calculating
how each individual data point, x;, influences the parameter through the data point’s vari-
ance, O’iz. The following expression, derived in Bevington [13], is an approximation but can

be used to compute the parameter variances:

2
o) = [af(aa—i) } (10.4)

By evaluating the derivative, dp/dx;, we find that (Details in [13], page 154) the covariance
matrix (See F.4) can be obtained from the inverse of the Hessian (9.4), H:

Cov=H"!

From this an estimate for the standard deviation in the parameters can be found on the main

diagonal of the covariance matrix:
op, &/ (H);! (10.5)

Assuming a large sample size and for a confidence level of 95%, it can be shown that the
quoted limits po =+ §p, are given by:

pi = £1.96\ /()1 - > (10.6)

Recall that € /(N — P) is the reduced chi-square term 9.2. For small sample sizes (<30),
the value 1.96 can be replaced by a value obtained from the Student’s t distribution at 95%.
It is important to note that the estimates given by equation (10.6) are an approximation.
Studies indicate that these estimates generally underestimate the actual confidence limits.
This is due to a number of assumptions, in particular, we assume that the experimental
noise is normally distributed and that the experimentally measured data points must be
independent observations. In addition, we assume that the number of data points collected
is sufficient to give a good random sampling of the uncertainties in the data, and that the
linear approximation (10.4) when deriving (10.5) holds true. For very nonlinear models
this is unlikely to be the case. The chance of inaccuracies in the uncertainty estimates is
therefore quite likely.

10.4. ESTIMATING CONFIDENCE INTERVALS 213

Finally, it’s worth discussing the covariances in the Hessian matrix H. The confidence limits
are derived from the main diagonal elements of H. The off diagonal contains information
on the covariances, that is how a change in one parameter can influence the change in
another parameter. This indicates whether the parameter estimates are independent of each
other. If parameters are correlated, it often means there is insufficient experimental data
(or variety of measurements) to separate the two parameters and identify them individually.
We will return to this important topic in another section (10.10) where we review examples
of parameter correlation.

An alternative and possibly more trustworthy way to generate confidence limits and one that
avoids many of the problems highlighted above, is the use of Monte Carlo simulations [151,
137, 142, 151], which we will address in the following section.

Determining Confidence Intervals from Monte Carlo Simulations

In the last section a description was given on how to estimate the 95% confidence limits on
a set of fitted parameters. Intuitively, if we were to repeat the same experiment many times
and each time fitted the experimental data to the model, we would find that 95% of the time
the fitted parameters would lie within the indicated range.

Unfortunately the approach used to estimate these confidence limits includes many assump-
tions which may or may not be defensible. Going back to the intuitive explanation, if we
could repeat the experiment many times and fit the data many times, we could get many es-
timates for the parameters, each estimate slightly different due to errors in the experimental
data. From the sample of fitted parameters we could then compute a standard deviation
and thus obtain a confidence limit (Figure 10.6). Obviously repeating the experiment many
times is impractical but by making two reasonable assumptions, we could do the same thing
while only conducting one real experiment.

The two assumptions are:

1. When we repeat an experiment, the underlying biology remains the same, that is we
are measuring the same thing again.

2. Whatever errors are present in the measurements, the same kind of error manifests
itself each time we repeat the experiment. What this means is that the probability
distribution for the errors remains the same, meaning it may be normal, Poisson, etc.

If these two assumptions hold, then we can consider creating synthetic experimental data
sets if we know the probability distribution for the errors.

We need to make one further assertion before we can continue. Let us assume that the
parameter estimates we obtain from fitting the real experimental data to the model are
close to the true parameter values. That is, prwe is not far from the fitted parameter, pg.
The core concept is to generate, via a bootstrap (see next section) new synthetic data sets.
The bootstrap ensures that the new data sets have the same error distribution as the data

214 CHAPTER 10. PARAMETER ESTIMATION

The System Experimental Best Fit
Under Study Data Sets Parameters
a) b) Q)
D, P,
D, >,
pTrue D2 > p2
™D, > P,
“D, TP,
Ny b

Uncertainties in
Measurements

Figure 10.6 a) In the real world we assume our system has a set of ‘true’ parameter values,
Prre- b) We do experiments which give us experimental data, D;. c¢) Using b) we fit
our model to obtain estimates for the parameters, p;. Because each experiment is slightly
different due to measurement uncertainty, we will in turn generate slightly different sets of
fitted parameters.

collected from the real and only experiment performed. Each synthetic data set will be
fitted to the model, from which we obtain multiple estimates for the parameters. Once we
have a large sample of estimated parameters, we can make statements about the uncertainty
of our parameter estimates (Figure 10.7). In particular, approximate confidence intervals
for the parameters can be obtained by using the 5 and 1-5 sample quantiles (where o is the
threshold, for example, 0.05 for 95% confidence) from the Monte Carlo estimators of the
parameters.

If the experimental uncertainties surrounding measured data are not known, then a proxy
can be obtained by relying on the residuals that were produced as a result of the parameter
estimation procedure.

Bootstrap

Bootstrapping is a method to infer the statistics of a population by sampling from a sample
of the population [38, 137]. It is a means of gaining information about a population when
the population itself is not available. The key assumption in a bootstrap is that the sample
contains enough information to reconstruct details about the population. An example of a

10.4. ESTIMATING CONFIDENCE INTERVALS 215

Carry Out One Generate Synthetic Best Fit
Experiment Data Sets Parameters
a) b) Q) d) e)
DO p1
4
D, P,
i
D p
'\
PTrue DO > P 0 2 3
e D3 P,
N
Dy Ps
Nop_ b_

The System Fit Model Bootstrap Fit Model
Under Study

Figure 10.7 a) The actual system with true values for the parameters; b) Generate a set of
measurements from one experiment a); c) Fit the data to the model to generate parameter
estimates, pg; d) Use a bootstrap to generate synthetic data sets, D;; e) Fit the synthetic
data sets to the model and produce a sample of parameter estimates, p;. Use the sample of
parameter estimates to gauge parameter uncertainty.

simple bootstrap is given in Appendix F.

The bootstrap method works as follows. Assume we have a sample of observations of size
N from our population. Now generate new samples by selecting N random values with
replacement, that is, returning the value back to the pool before selecting another. Since
we are sampling with replacement, some of the original observations may appear more
than once in the new sample sets. Repeat the sampling process until the desired number of
simulated data sets are generated.

In the case of fitting a model, what do we sample? One possibility are the residuals gener-
ated from the initial fit. The residuals are the difference between the fitted data value and
the corresponding experimental value, that is:

r; = (i) observed — (y;) predicted

To generate a synthetic data set, sample the residuals and add them to the predicted y;
values:

(i) synthetic = (y;) predicted + Fgample (10.7)

For example, assume that after our initial fit we generated the residuals: (0.1,—0.5,0.2).
Assume also that the fitted data was (10, 6, 3). To sample residuals we randomly pick three
values from the set. Each time we pick a value, we also return the value back to the set
(replacement). For example, the following sets are possible sample of residuals:

(—0.5,0.2,0.2), (—0.5,0.1,0.2), (0.2,0.1,0.1), (=0.5,0.1, —0.5)

216 CHAPTER 10. PARAMETER ESTIMATION

With the residual samples, we now generate the synthetic experimental data by adding each
set to the fitted data (10.7). For example (10 — 0.5,6 4 0.2,3 + 0.2). The four new data
sets will therefore be:

(9.5,6.2,3.2),(9.5,6.1,3.2), (10.2,6.1,3.1), (9.5, 6.1, 2.5)

It is prudent to generate at least 500 to 1,000 new synthetic data sets in this way. Taking
each synthetic data set in turn, fit the data to the model to generate a ‘synthetic’ estimate
for the parameters. We will thus generate 500 to 1,000 estimates for the model parame-
ters. Using these parameters we can calculate statistics such as the standard deviation for
each parameter. However, unlike the estimated statistics from the Hessian which will be
symmetric, the confidence limits from the Monte Carlo method are not guaranteed to be
symmetric. As a result it is best to compute confidence limits using percentile values al-
though other approaches are possible [168]. For example, we could generate 97.5™ and
2.5™ percentile values.

10.5 Cross-validation

There are many models that one could propose to fit the data adequately, some complex,
some simple. But just because data fits a model is no guarantee that the model will be
useful. Here is a trivial example to illustrate this important point. The data in Table 10.5
fits a straight line, y = 1.9x — 1.2 with R? value of 0.9826 which suggests a very good fit.
We now make a prediction that at value x = 30, the predicted response is 55.8. However,
when we attempt to confirm the prediction experimentally, we find that our prediction is off
by a wide margin. Instead we attempt a different fit, this time a second-order polynomial.
The new fit yields a R?> = 1 and a fitted equation of y = 0.1x% 4 x. The prediction
at x = 30 is now 120, which is exactly the expected value. The example is trivial but it
highlights a number of important points.

x 0 1 2 3 4 5 6 7 8 9
0 11 24 39 56 75 96 119 144 17.1

The original linear fit managed to reproduce the existing data very well, in fact there was no
reason from the R?2 value to think otherwise. However when tested, the model was found to
be inadequate. The linear fit was only capable of making good predictions within the range
of the data itself and perhaps a little beyond. The linear fit actually failed to capture the
real essence of the data, that is it failed to generalize and recognize that the data followed
a 2nd-order polynomial.

The ultimate purpose of a model is to organize our knowledge and make new and useful
predictions. Even if the final model has passed all the statistical tests that we previously
discussed, we cannot be sure that the model will make useful predictions. The key question

10.6. CASE STUDIES 217

is, has the model generalized? The only way to determine this is to put the model to an
actual test. In the literature this is often called cross-validation [113].

The key idea behind cross-validation is simple. Rather than fit the model using all available
data, we choose to hold back some data. We fit the model with the reduced data set and then
using the fitted model we determine how well the model predicts the data we held back.
The data we use to fit the model is often called the training set and the data we hold back
the test data. If the fitted model fails to predict the test set, then it means that the model
has failed to generalize and has probably over-fitted the training set in order to appear to be
a good fit. This is one of the main functions of cross-validation.

Often different training sets are used by splitting the data in different ways. The model
is then subjected to every combination of training set. This is computationally expensive
but ensures a thorough study. The combinations of training sets can be determined using
different strategies. The simplest is to remove one data point from the available data set.
The test data then constitutes one data point and we must attempt to predict the value
for that data point. This can be repeated for every data point. For example, if the entire
data set includes twenty data points, then twenty different training sets can be created. A
generalization of this is called K-fold cross-validation [113]. This is where the data is
partitioned into k equal size subsamples. One subsample is designated the training set and
the remainder are used for fitting the model. This can be repeated for each k subsample
and even for different sized k. Alternatively training sets can be generated by randomly
selecting data to be put into a training set. For large data sets this is more practical.

Ultimately many cross-validation tests will be carried out resulting in a distribution of pre-
dictions. This can be examined for any patterns. For example, if all the tests yield very
similar predictions, then this is a very good indicator that the model has generalized and
can be trusted to make further reliable predictions. If however the tests yield markedly
different predictions, then is is a clear warning sign that the model is untrustworthy and
should be carefully reexamined.

10.6 Case studies

Test Example

Consider a linear chain of irreversible uni-molecular reactions that follow mass-action ki-
netics:
Sl — Sz — S3 — S3 — S4 — Ss (108)

The noisy concentration data for the six metabolites displayed in Figure 10.8 was simulated
with all the kinetic rate coefficients set to 2, the initial concentration of the first substrate
set to 10, and all others to zero.

The data in Figure 10.8 has 100 points. The noise was assumed to be exponentially dis-
tributed and was added to the simulated curves, and then used to fit the model. The simplex

218 CHAPTER 10. PARAMETER ESTIMATION

Metabolite Concentrations

Time s

Figure 10.8 Plot of the simulated noisy time series concentration data and the fitted curves
for a linear sequence of reactions governed by irreversible mass-action kinetics.

method (the Levenberg-Marquardt gives similar results) was used to fit the model. The five
parameters were initialized to 0.1. The fit is shown in Figure 10.9 as solid lines.

A Monte Carlo simulation was run and for each generated synthetic dataset the parameters
were optimized. Figure 10.10 shows the distribution of parameter estimates from the Monte
Carlo simulations. What is relevant here is that the scatter plots are not skewed in anyway,
showing that there are no correlations between the parameters. This implies that there was
sufficient data to identify all the parameters in the model. We will see a different outcome
in the next example.

Confidence limits were obtained using (10.6) and are shown in Table 10.1.

The confidence limits could also have be evaluated from the Monte Carlo generated data
(Figure 10.10) by choosing limits around the mean values of the parameters and making
sure that 95% of the points fall between them. The confidence limits constructed in this
manner match the ones computed using equation (10.6). In addition, the Hessian was found
to be well behaved with no significant correlation between the parameters (10.10). This is
consistent with the Monte Carlo study and again suggests there is adequate data to identify
all the parameters in the model.

This example was artificially constructed where we were able to adequately measure every
state variable in the system. In addition, the level of noise was relatively low and we were
able to ‘collect’” many data points for each variable. These ideal conditions will not be
available in real systems as we will see in the next example.

10.6. CASE STUDIES 219

12

Dotted Lines — Data
10 Solid Lines - Fitted Curves B

Metabolite Concentrations

Time s

Figure 10.9 Plot of the simulated noisy time series concentration data and the fitted curves
for a linear sequence of reactions governed by irreversible mass-action Kinetics.

Parameter Value

ko 2.16 £0.05

ki 1.99 £ 0.042
ko 1.99 £ 0.083
k3 1.96 + 0.183
ka 1.94 £ 0.199

Table 10.1 The table shows 95% confidence limits for the estimated parameters based on
equation (10.6).

220

CHAPTER 10. PARAMETER ESTIMATION

2.05
2 g
.a‘ﬁ ,:-::;ct.“,:
vy R
1.95
1.9
2.1 2.15 2.2 2.25
ko
2.1
2.05
< 2
2
1.95
1.9
1.85 ‘ ‘ ‘
19 195 2 205 2.1
ko

2.2 2.25

1.95
1.9

1.85

1.9

195 2
k1

205 2.1

Figure 10.10 Cluster plots for the distribution of fitted parameters for a Monte Carlo
simulation. Various parameter combinations are shown.

10.6. CASE STUDIES 221

Fitting Data to HIV Proteinase

In our second example we will fit rate constants to data obtained from a model for irre-
versible inhibition of HIV proteinase [91]. The data was obtained from www.biokin.com/
dynafit/index.html, and comprises two different time courses at different inhibitor con-
centrations. There are five parameters to estimate. Initial values for the parameters were
assigned and substrate concentrations set as described in [91]3. The model is described by
the following reaction scheme:

M+M = FE (10.9)
EFE+S = ES

ES - E+4+P

E+P <= EP
E+1 = EI

El — EJ

In Figure 10.11 we display two data sets along with their respective best fits.

Several combinations of optimizers were run, the simulated annealing and simplex took the
maximum time, but of the two, the latter gave better results. Running the GA first followed
by running the simplex was also successful. As seen in Figure 10.11, the fits appears to be
quite good.

Equation (10.6) was used to compute the parameter confidence limits and Table 10.2 shows
the confidence limits for the parameters. The confidence limits on k,, k,, k; and k4, are
substantially greater than their mean values, which is a clear indication that these numbers
cannot be trusted (see [121]). To investigate why these parameters have such low confi-
dence, we can carry out a Monte Carlo simulation with a bootstrap using the residuals from
the first fit. We generated 500 new synthetic data sets, and refitted the parameters. Cluster
plots for various combinations of parameters are shown in Figure 10.10 and reveal some
interesting patterns.

As indicated by the arrows in Figure 10.12, the Monte Carlo simulations uncovered signif-
icant correlation between a number of the parameters. This implies that certain combina-

31n the example described above the 4th and 5th data sets were chosen (Kuzmic 1996, curves D, E of Fig 1,
page 264)). We used initial values of ko, = 100, k; = 0.0001, k, = 0.1, [= 0.004, E = 0.004, and
S = 27. In Kuzmic 1996, some of the species levels are also optimized, but here we are more interested in
fitting the parameters.

www.biokin.com/dynafit/index.html
www.biokin.com/dynafit/index.html

222 CHAPTER 10. PARAMETER ESTIMATION

Concentration of P

0.02 e Data 1
— Simulation
I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Time s

Figure 10.11 Two time series concentration data sets plotted along with their respective
fitted curves.

0.8 0.8
0.6 : 0.6
. . o
o . o
w2 0.4 0.4 ot Vol ~
0.2 0.2 }
0 0
018 02 022 024 0 005 01 015 02
K, k;
37 : 0.12
0.1
n 26 0.08 _
- o
- 0.06
. 0.04
34 0.02 -
249 250 251 252 018 02 022 024
kS kr

Figure 10.12 Cluster plots for the parameter distributions showing significant correlations
for some parameter combinations.

10.6. CASE STUDIES 223

Parameter Value

ks 250.9225 =+ 0.69
ky 0.199 + 0.266
kp 35.04 & 109.9
ki 0.0469 + 7.46
kge ~ 0.229243.76

Table 10.2 The table shows 95% confidence limits for the estimated parameters using the
Hessian computed at the end of optimization.

ks kr kp kl kde
£0.31 | £0.006 | +0.37 | +0.01 | +0.11

Table 10.3 The table shows 95% confidence limits for the estimated parameters for HIV
model, using a Monte Carlo simulation.

tions of parameters could change, without having any effect on the concentrations of the
species. This is also known as the observability problem and shows that with the data at
hand, we are unable to identify all the parameters in the system. For example, consider a
simple Michaelis-Menten set of reactions:

S+E=ES—>P+E (10.10)

where the reversible step between the substrate and complex are k1, k—_1, and the forward
reaction rate between complex and product is k5. In terms of these basic mass-action
reactions, we derive the Michaelis-Menten equation by assuming that after a very brief
transient time, the complex forms and after it remains constant. Under these assumptions

the rate between S and P is:
Vmax S

—_— 10.11
Km+ S ()

where Viuax = kaeg, e being the enzyme concentration, and K, = ﬁ Notice that
if k5 is kept constant, k1 and k_; can be changed such that K,, remains the same. This
means that the net rate does not change. This is obvious given we are only changing the final
amount of complex generated, not the product. When presented with time series data from
such a simple model, we will see a correlation between the spread in k; and k_; values.
This is generally true for larger models, but it may not be possible to find simple combina-
tions of these parameters that are truly independent. The important point is that the cluster
plots show observability of the parameters. It is then a simple step to quantify this, by
making the observation that the 2-D cluster plots are sections of the m x m (where m is the
number of parameters) probability distribution of the fitted parameters. The eigenvectors
of the Hessian (inverse of the covariance matrix) that correspond to the lowest eigenvalues,

224 CHAPTER 10. PARAMETER ESTIMATION

are directions along which, if the parameters change, no significant change in the sums of
squares, € is seen. The eigenvalues of the Hessian are, ~ 665, 0.51,0.0076, 107>, 107>,

10.7 Final Comments

Experimental data has been collected, a model has been proposed, data fitting has confirmed
that the model is able to reproduce the experimental data, and all the statistical tests pass.
One might imagine we are now ready to write the paper and publish. However a critical last
step is to ask whether the model can make new, non-trivial predictions. At minimum we
should propose experiments to test the proposed model, at best, attempt the tests ourselves.
It is worth emphasizing again the section where cross-validation was briefly discussed. This
is where a model is tested for its ability to predict data it has never seen before, and is the
ultimate test for demonstrating reliability and utility of a model. In biomedical research the
chief aim should be the development of trustworthy models, models that could, if necessary,
be used in clinical situations.

One of the chief dangers in building models is inadvertently creating a model that is over-
fitted, which can give us a false sense of security that we have a good model. It is true that
some of the statistical tests we have discussed in this chapter can help spot an over-fitted
model, but the best test is cross-validation and ultimately testing new hypotheses generated
from the model. I am reminded here of the oft quoted comment made by John con Neumann
who it is said to have remarked: “With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk”. This quote has worked its way through the biomedical
simulation literature mostly as a means to discredit modeling and fails to point out that
models must be stress tested to ensure they can be trusted.

When data is fitted to a model, we need to know the range of predictions the model can
make beyond the fitted data. Out of range predictions must also to be tested. As discussed
in Chapter 4, what modelers really seek is a degree of confidence in their model. A model
is never truly validated as one can only take measurements to increase confidence in the
model. That confidence may increase as the model is subjected to more and more testing.
John Tyson who is well known for his pioneering work on cell cycle models uses an in-
teresting approach to model building. Whenever the core model is adjusted, the model is
subjected to over 120 phenotype tests, which are predictions that the model is expected to
make [26]. This ensures that the authors have a high confidence in their model.

Whether the fit of a model to data is good or not is immaterial unless the model provides
new, testable predictions that can eventually be experimentally tested.

10.7. FINAL COMMENTS 225

Further Reading and Online Resources

1. Berendsen HJ. (2011) A Student’s Guide to Data and Error Analysis. Cambridge
University Press. ISBN: 978-0-521-13492-7

2. Draper NR and Smith H (1998) Applied Regression Analysis. 3rd edition. Wiley
Series on Probability and Statistics. ISBN-13: 978-047117082

3. Johnson ML, Faunt LM (1992) Parameter estimation by least-squares methods. Meth-
ods in Enzymology, 210, 1-37.

4. Johnson ML (1994) Use of Least-Squares Techniques in Biochemistry. Methods in
Enzymology, 240, 1-22.

5. David Liao (2012) Uncertainty propagation d: Sample variance curve fitting. https:
//vimeo.com/40379524.

6. Straume M, Johnson ML (1992) Monte Carlo Method for determining complete con-
fidence probability distributions of estimated model parameters. Methods in Enzy-
mology, 210, 117-129.

Exercises

1. Create a simple linear chain model of four steps and three species. Choose nonlinear
reversible rate laws for the reactions, assign suitable values to the parameters and
run a simulation to obtain time course data for the three species. Add noise to the
simulated data and treat this data as your ‘experimental data’. Fit the experimental
data to the model and see how well your parameter estimates agree with the original
model. Try different fitting methods such as the Simplex and Levenberg-Marquardt
methods to investigate how well each one performs.

2. Implement a Monte-Carlo method to obtain estimates for the parameter confidence
limits.

3. Investigate how the degree of noise in your experimental data affects the fitted pa-
rameter values.

4. Investigate how omitting one or more of the time series data affects the fitting process.
For example, omit data for the first and last species in the pathway. Recompute the
parameter confidence limits, what do you observe? Use a Monte Carlo simulation to
compute scatter plots for the different parameters.

https://vimeo.com/40379524
https://vimeo.com/40379524

226 CHAPTER 10. PARAMETER ESTIMATION

11

The Steady State

11.1 Steady State

In Chapter 7 we briefly introduced the idea of a steady state. In this chapter we will inves-
tigate the steady state in greater detail.

The literature sometimes refers to the steady state as the stationary solution or stationary
state, singular point, fixed point, or even equilibrium point. For our purpose we will avoid
using the term equilibrium because of possible confusion with thermodynamic equilibrium.

The steady state is one of the most important states to consider in a dynamical model
because it is the primary reference point from which to consider a model’s behavior. At
steady state the concentrations of all molecular species are constant, and there is a net flow
of mass through the network. This is in contrast to systems at thermodynamic equilibrium
where there is no net flow of mass across the system’s boundaries.

The steady state is where the rates of change of all species, dS/dt are zero, but at the same
time the net rates are non-zero, that is v; # 0. This situation can only occur in an open
system, where matter is exchanged with the surroundings.

Equation (7.3) from a previous chapter describes the time evolution for the system:

v v2 v3
Xo — S1 — Sz — Xl

227

228 CHAPTER 11. THE STEADY STATE

We repeat the equations here for convenience:

| — e kut
S1(t) = Uok—l
(11.1)
kq (1 — e_k3’) + k3 (e_k't — 1)
S2(1) = v,

ks (k1 —k3)

As t tends to infinity, S;(¢) and S»(¢) tend to:

Vo

S1(o0) = o S2(00) = ks
The reaction rate through each of the three reaction steps is v,. This can be confirmed
by substituting the solutions for S and S into the reaction rate laws. Given that v, is
greater than zero and S; and S, reach constant values given sufficient time, we conclude
that this system eventually settles to a steady state rather than thermodynamic equilibrium.
The system displays a continuous flow of mass from the source to the sink. This can only
continue undisturbed so long as the source material, X,, never runs out. Figure 11.1 shows
a simulation of this system.

E 2
§ 0.4
=
3
Q 0.2
£
E
=
)
0
0 1 2 3 4
Time

. . . v k k
Figure 11.1 Time course for an open system reaching steady state. X, — S = S2 =3

where v, = 1,k1 = 2,k3 = 3,51, = 0, S2, = 0. X, is assumed to be fixed. Tellurium
Listing: 11.2.

Graphical Procedure

We can also illustrate the steady state using a graphical procedure. Consider the simple
model below:

11.1. STEADY STATE 229

X, > 5 > X

where X, and X; are fixed boundary species and S; is a species that can change (the
floating species). For illustration purposes we will assume some simple kinetics for each
reaction, v; and v,. Let us assume that each reaction is governed by first-order mass-action
kinetics:

V1 :leO [%) =k251

where k1 and k; are both first-order reaction rate constants. In Figure 11.2 both reaction
rates have been plotted as a function of the floating species concentration, Sy.

1.5
g
2 ko, =0.3
S
= 1
g
=
(a7
.5 0.5
S
B3
[
0
0 1 2 3 4 5

Substrate Concentration, S

Figure 11.2 Plot of reaction rates versus concentration of Sy and different values for k,
for the system X, — S; — X;. The intersection of the two lines marks the steady state
point where v = va. X, = 1,k = 0.4. Note that as k, decreases the steady state level
of S increases.

Note that the reaction rate for vy is a horizontal line because it is unaffected by changes in
S1 (no product inhibition). The second reaction, v, is shown as a straight line with slope,
k>. Notice that the lines intersect. The intersection marks the point when both rates v; and
vy are equal, that is when dS1/dt = 0 since v; = v,. This point marks the steady state
concentration of S;. By varying the value of k», we can observe the effect it has on the
steady state. For example, Figure 11.2 shows that as we decrease k,, the concentration of
S increases. This should not be difficult to understand; as k, decreases, the activity of
reaction vy also decreases. This causes S to build up in response.

In this simple model it is also straightforward to determine the steady state of S; mathe-
matically which amounts to finding a mathematical equation to represent the intersection

230 CHAPTER 11. THE STEADY STATE

point of the two lines. Recall that the model for this system is a single differential equation:
dS1
dr
At steady state, set dS1/dt = 0, from which we can solve for the steady state concentration
of S1:

= k1X0 — k251

Sl _ k IX o

ko
This solution tells us that the steady state concentration of S is a function of all the param-
eters in the system. We can also determine the steady state rate, usually called the pathway
flux denoted by J, by inserting the steady state value of S; into one of the rate laws, for
example into vy:

(11.2)

This answer is identical to v; which is not surprising since the pathway flux is completely
determined by the first step, and the second step has no influence whatsoever on the steady
state flux. This simple example illustrates a rate limiting step in the pathway; one step, and
one step only, has complete control over the pathway flux.

More Complex Model

A slightly more realistic model is the following:

U1 Up v

Xo :Sl :SZ 3:X1

where the rate law for the first step is now reversible and given by:

V1 = k1X0 — k2S1

The remaining steps are governed by simple irreversible mass-action rate laws, vy, = k3.5
and v3 = k4S>. The differential equations for this system are:

ds

d—l = (k1Xo —k251) — k351
t

dsS,

—= = k381 —k4S

T 381 —kaS>

The steady state solution for S; and S, can be obtained by setting both differential equa-
tions to zero and solving for S; and S» to yield:

k1X
Sl _ 140

ko + k3

k3k1X
52: 3Rk1 A0

(ka + k3)kq

11.2. EFFECT OF DIFFERENT KINDS OF PERTURBATIONS 231

The steady state flux, J, can be determined by inserting one of the solutions into the ap-
propriate rate law. The easiest method is to insert the steady state level of S into v3 to
yield:

k3k1Xo
J =

ka + k3
Once the first step is reversible, we see that the steady state flux is a function of all the
parameters except k4, indicating that the first step is no longer the rate limiting step. The
equation shows that the ability to influence the flux is shared between the first and second
steps. There is no rate limiting step in this pathway. Note that if we set ko = 0, then the
solution reverts to the earlier simpler model, J = k1 Xo.

We can also make all three steps reversible (kf Si — krSi+1), so that the solution is given
by:
Xoki(ksa + ks) + X1kake
ksks 4+ ko(kq + ks)
Xike(ka + k3) + Xok1ks
kaks + ko(ks + ks)

S1

S>

The last example illustrates the increase in complexity of deriving a mathematical solution
after only a modest increase in model size. In addition, once more complex rate laws are
used, such as Hill equations or Michaelis-Menten type rate laws, the solutions become
exceedingly difficult to derive. As a result, steady states tend to be computed numerically
rather than analytically.

11.2 Effect of Different Kinds of Perturbations

When we talk about model dynamics, we are referring to how species levels and reaction
rates change over time as the model evolves. There are a number of ways to elicit a dynamic
response in a model. The two we will consider here are perturbations to species and to
model parameters around the steady state.

Effect of Perturbing Floating Species

Consider a two step pathway of the following form:

V1 = leO Uy = k2S1
X, > S - X

Assume that X, and X, are fixed. If the initial concentration of S is zero, we can run a
simulation and allow the system to come to steady state. This is illustrated in Figure 11.3.

232 CHAPTER 11. THE STEADY STATE

0.6

<
~

<
[\

S1 approaching steady state

Concentration of S

0

0O 2 4 6 8 10 12 14 16 18 20
Time

Figure 11.3 Species S approaching steady state. Tellurium Listing: 11.3.

Once at steady state, we can consider applying perturbations to see what happens. For
example, Figure 11.4 illustrates the effect of injecting 0.35 units of S; at # = 20 and
watching the system evolve. What we observe is that the concentration of S; immediately
jumps by the amount 0.35, then relaxes back to the steady state concentration it had before
perturbation (Figure 11.4). When we apply perturbations to species concentrations and the
change relaxes back to the original state, we call the system stable. We will return to this
topic in another section.

Figure 11.4 illustrates perturbing one of the floating molecular species by physically adding
a specific amount of the substance to the pathway. In many cases we will find that the
system will fully recover. We are not limited to single perturbations; Figure 11.5 shows
multiple perturbations, both positive and negative. Not all systems show recovery like this
and those that do not are called unstable. That is, when we perturb a species concentration,
instead of the perturbation relaxing back, it begins to diverge.

Effect of Perturbing Species in a Conserved Cycle

Section 3.8 introduced the idea of the conserved cycle, groups of species whose total mass
is conserved during the evolution of a network. Figure 11.6 shows the simplest conserved
cycle where the total mass, S1 + Sz, is constant throughout the systems’s evolution. Fig-
ure 11.7 shows a simulation where S is perturbed by one unit. This causes the total mass
in the cycle to increase and results in a net change to the steady state.

Effect of Perturbing Model Parameters

In addition to perturbing floating species, we can also perturb model parameters. Such
parameters include kinetic constants and inputs such as boundary species or addition of

11.3. COMPUTING THE STEADY STATE 233

1
o 0.8
Gy
o
'§ 06 K
g
= 04 T S1 Decays Back
3 02 Perturbation in S

0

0 10 20 30 40 50

Time

Figure 11.4 Stability of a simple biochemical pathway at steady state. The steady state
concentration of the species S is 0.5. A perturbation is made to S; by adding an additional
0.35 units of S; at time = 20. The system is considered stable because the perturbation
relaxes back to the original steady state. Tellurium model: 11.4.

other effectors such as drugs. We can change a parameter in either two ways: make a
permanent change, or make a change and at some later point return the parameter to its
original value. If we make a permanent change, the steady state will invariably also show
a permanent change. A temporary change will result in the steady state changing, and then
recovering to the original state once the parameter is changed back. Figure 11.8 shows the
effect of perturbing the rate constant, k1, and then restoring the parameter to its original
value at some later time point.

We can also consider other types of perturbations. For example, in studying the infusion
of a drug where the drug concentration is a model parameter, one might use a slow lin-
ear increase in concentration. Such a perturbation is called a ramp. More sophisticated
methods might require a sinusoidal change in a parameter, an impulse, a pulse, or an expo-
nential change. The main point to remember is that parameter changes will usually result in
changes to the steady state concentrations and fluxes. For completeness, Figure 11.9 shows
what happens when we perturb both a parameter and a species concentration. As expected,
the species concentration does not recover to the original steady state.

11.3 Computing the Steady State

In those (many) cases where we cannot derive an analytical solution for the steady state, we
must revert to numerical methods. There are at least two available methods. The simplest
approach is to run a time course simulation for a sufficiently long period such that the
trajectories eventually reach steady state. This method works so long as the steady state is
stable; it cannot be used to locate unstable steady states because such trajectories diverge.

234 CHAPTER 11. THE STEADY STATE

1
u 08 Neeati o
o egative Perturbation in S
c
5 0 l
g
£ 04 T
2
S 02 Positive Perturbation in Sy

0

0 10 20 30 40 50 60

Time

Figure 11.5 Multiple Perturbations. The steady state concentration of the species S is
0.5, and a perturbation is made to S by adding an additional 0.35 units of S; at time = 20
and removing 0.35 units at time = 40. In both cases the system relaxes back. Tellurium
script: 11.5.

U2

Figure 11.6 Simple cycle where S; + S» is constant.

In addition, the method can sometimes be very slow to converge depending on the model
kinetics. As a result, many simulation packages will provide an alternative method for
computing the steady state where the model differential equations are set to zero, and the
resulting equations solved for the concentrations. This type of problem is quite common in
many fields and is often represented mathematically in the following form:

fx.p)=0 (11.3)

where x is the unknown, and p one or more parameters in the equations. All numerical
methods for computing solutions to equation (11.3) start with an initial estimate for the
solution, say x;. The method is then applied iteratively until the estimate converges on
the solution. One of the most well known methods for solving equation (11.3) is called
the Newton-Raphson method. It can be easily explained using a geometric argument as

11.3. COMPUTING THE STEADY STATE 235

S1
Steady State
l | Net Change

Perturb S |

/o

0 2 4 6 8 10 12 14 16 18 20

»
o

»
o

w
ul

N
o

S>

N
o

w
o
cova g v b g v b s b

—
ul

Time

Figure 11.7 Perturbation in S; for cycle network 11.6. Because the conserved total S+ 5>
changes, the steady state changes after the perturbation.

shown in Figure 11.10. Suppose x; is the initial guess for the solution to equation (11.3).
The method begins by estimating the slope of equation (11.3) at the value x1, thatis d f/dx.
A line is then drawn from the point (x1, f(x1)), with slope d f/dx, until it intersects the
x axis. The intersection, x,, becomes the next guess for the method. This procedure
is repeated until x; is sufficiently close to the solution. For brevity, the parameter, p, is
omitted from the following equations. From the geometry shown in Figure 11.10 one can
express the slope of the line, df/dx; as:

of _ fx)

0x1 X1 — X2

This can be generalized to:
A)

dxg Xk — Xk+1

or by rearrangement as:

J ()

Xk+1 = Xk — 8f Joxz

(11.4)

In form (11.4) we see the iterative nature of the algorithm.

Before the advent of electronic calculators with a specific square root button, calculator
users would exploit the Newton method to estimate square roots. For example, if the square
root of a number, a, is equal to x, that is v/a = x, then it is true that:

x2—a=0

236 CHAPTER 11. THE STEADY STATE

1
19
G
o
(e}
g
g
S 04) T k1 Restored to Original Value |
Q
=
S 02| Perturbation in ki -

0 | | | | | | |
0 10 20 30 40 50 60 70 80

Time

Figure 11.8 Effect of Perturbing Model Parameters. Tellurium script: 11.6.

0.8 A

0.6 R

0.2 o

Concentration of S

0 | | | | | | |
0 5 10 15 20 25 30 35 40

Time

Figure 11.9 Effect of Perturbing Model Parameters and Species Concentration.

11.3. COMPUTING THE STEADY STATE 237

Y Starting Point —— ¢

Solution

dffdz

T3 T2 T1

X

Figure 11.10 The geometry of Newton-Raphson’s method.

This equation looks like an equation of the form (11.3). We can therefore apply the Newton
formula (equation (11.4)) to this equation to obtain:

1 a
Xk+1 = E ()Ck + g) (115)

Table 11.1 shows a sample calculation using this equation to compute the square root of
25. Note that only a few iterations are required to reach convergence.

Iteration Estimate

0 15

1 8.33333

2 5.666

3 5.0392

4 5.0001525
5 5.0

Table 11.1 Newton method used to compute the square root of 25, using equation (11.5)
with a starting value of 15.

One important point to bear in mind is that the Newton-Raphson method is not guaranteed
to converge to the solution. The solution depends heavily on the starting point and the
nature of the system. In order to prevent the method from continuing without end in the case

238 CHAPTER 11. THE STEADY STATE

when convergence fails, it is often useful to halt the method after a maximum of iterations
(say 100). In a case like this, a new initial start is given and the method is repeated. In
biochemical models we can always run a time course simulation for a short while and use
the end point of that as the starting point for the Newton method. This approach is much
more reliable because we are staring the Newton-Raphson closer to the solution. If the
method does converge to a solution, there are various ways to decide whether convergence
has been achieved. Two such tests include:

1. Difference between successive solution estimates. We can test for the difference
between solution, x;, and the next estimate, x;41, if the absolute difference, |x; —
Xi+1/|, is below some threshold. At this point we assume convergence has been
achieved. Alternatively, we can check whether the relative error is less than a certain
threshold (say, 1%). The relative error is given by:

e =LY 100%
Xi4+1

The procedure can be made to stop at the i-th step if | f(x;)| < €7 for a given €.

2. Difference between successive dS;/dt estimates. Here we estimate the rates of
change as the iteration proceeds, and assume convergence has been achieved when
the difference between two successive rates of change are below some threshold.
The threshold will usually be some small number for example 1076 or less. If we
are dealing with a model that has more than one state variable, we can construct the
sums of squares of the rates of change:

£(%)

The Newton method can be easily extended to systems of equations so that we express the
Newton method in matrix form:

af (x)
0x

=il
} S (xg) (11.6)

Xk+1 =xk—[

If m is the number of state variables or floating species in the model, then x; is an m
dimensional vector of species concentrations, f (x) is a vector containing the m rates of
change, and df (x)/dx the m x m matrix called the Jacobian matrix (See 12.4). Note that
the Jacobian must be invertible, this is equivalent to the division in the one variable form
(11.5).

11.3. COMPUTING THE STEADY STATE 239

Jacobian Matrix

The Jacobian is a common matrix used in many fields especially control theory and dy-
namical systems theory. We will frequently use it in this book. Given a set of equations:

yl :fl(xlaaxn)
y2 = fa(x1,...,%n)

ym = fm(xh’xn)

The Jacobian matrix is defined as the matrix of partial differentials:

o oA
dxy dxy
s=| o
U
dxy dxy

Newton Algorithm

1. Initialize the values of the concentrations, x, to some initial guess obtained perhaps
from a short time course simulation.

2. Compute the values for f (x), that is the left-hand side of the differential equation
(dx/dt).

3. Calculate the matrix of derivatives, df /dx, that is d(dx/dt)/dx, at the current esti-
mate for x.

4. Compute the inverse of the matrix, df /dx.

5. Using the information calculated so far, compute the next guess, x4 1.

6. Compute the sums of squares of the new value of f(x) at x;4;. If the value is less
than some error tolerance, assume the solution has been reached, else return to step
3 using x 41 as the new starting point.

Although the Newton method is seductively simple, it requires the initial guess to be suf-
ficiently close to the solution in order for it to converge. In addition, convergence can be
slow or not occur at all. A common problem is that the method can overshoot the solution

and will then begin to rapidly diverge.

240 CHAPTER 11. THE STEADY STATE

As mentioned previously, another strategy that is frequently used to compute the steady
state is to first use a short time course simulation to bring the initial estimate closer to
the steady state. The assumption here is that the steady state is stable. The final point
computed in the time course is used to seed a Newton-like method. If the Newton method
fails to converge, a second time course simulation is carried out. This can be repeated as
many times as desired. If there is suspicion that the steady state is unstable, one can also
attempt to run a time course simulation backwards in time. In general however, there is no
sure way of computing the steady state automatically, and sometimes human intervention
is required to supply good initial estimates.

As a result of these issues, an unmodified Newton method is rarely used in practice for
computing the steady state of biochemical models. One common variant, the Damped
Newton method, is more commonly employed. Both Gepasi and SCAMP use the Damped
Newton method for computing the steady state. This method controls the derivative d f/dx,
by multiplying it by a factor «. To prevent overshoot we can limit the range: (0 < o < 1.
There are many variants on the basic Newton method and good simulation software will
usually apply these for estimating the steady state.

In the last ten years more refined Newton-like methods have been devised, and one that
is highly recommended is NLEQ2!. This is used by both Tellurium [148], PySCeS [125]
and roadRunner [11, 147, ?] for computing the steady state. The stiff solver suite sundials
2 also incorporates an equation solver, however in the author’s own experience it does not
appear to be quite as good as NLEQ?2.

Solving the Steady State for a Simple Pathway

Let’s illustrate the use of the Newton-Raphson method to solve the steady state for the
following simple pathway. Assume that all three reactions are governed by simple mass-
action reversible rate laws. Species X, and X; are assumed to be fixed, and only S and
S, are floating species.

v

1
Xo > Sl

v U3

2
> :;2 > ;XTl

The differential equations for the model are as follows:

as
d_l = (k1 Xo —k281) — (k3S1 — k4S>)
t
ds (11.7)
d_[2 = (k3S1 —kaS2) — (k5S2 — ke X1)

The values for the rate constants and the boundary conditions are given in Table 11.2.
This is a problem with more than one variable (S and S») which means we must use the

"http://www.zib.de/en/numerik/software/ant/nleq2.html
Zhttps://computation.llnl.gov/casc/sundials/main.html

http://www.zib.de/en/numerik/software/ant/nleq2.html
https://computation.llnl.gov/casc/sundials/main.html

11.3. COMPUTING THE STEADY STATE 241

Parameter Value

ki 3.4
ko 0.2
k3 23
kq 0.56
ks 5.6
ke 0.12
Xo 10
X1 0

Table 11.2 Values for example (11.7).

Newton-Raphson matrix form (11.6) to estimate the steady state. To use this we require
two vectors, x; and f (x;) and one matrix, d f (x)/dx. The x; vector is simply:

Xp = St
k — S2
The f (x) vector is given by the values of the differential equations:

_ | (k1Xo —k281) — (k381 — kaS2)
Slxw) = [(k351 —k4S2) — (ksS2 — kdﬁ)}

The 0 f (x)/dx matrix is the two by two Jacobian matrix. The elements of the Jacobian
require the derivative to be computed. Software can estimate the derivatives numerically
when more complex rate laws are applied. In this case however, it is easy to differentiate
the equations to obtain the following Jacobian matrix:

d(dS;/dt) d(dS:/dr)

0f (x) ds s, [ka—ks ks
dx d(dS,/dt) d(dS»/dt) ks —ks—ks
ds s,

Notice that the elements of the Jacobian contain only rate constants. This is because the
model is linear. This also means we need only evaluate the Jacobian and its inverse once,
since the entries are constant. If we used nonlinear rate laws such as the Michaelis-Menten
rate law, the Jacobian matrix would also contain terms involving species concentrations.
In this case the Jacobian would need to be reevaluated at each iteration because the value
for the species concentration will change at each iteration. For the current problem the
Jacobian and its inverse is given by:

Jacobian = |:_2'86 >-6]

—-0.56 —11.2

242 CHAPTER 11. THE STEADY STATE

Jacobian=—" = [—0.3876 —0.1938]

—0.01938 —0.09898

Table 11.3 shows the progress of the iteration as we apply equation (11.6). What is in-
teresting is that convergence only takes one iteration. This is because the model is linear.
Nonlinear models may require more iterations. We can also see that after the first iteration,
the rates of change have very small values. This is usually due to very small numerical
errors in the computer arithmetic, but anything as small as 10~!4 may be considered zero.

Iteration Sy S1 dSy/dt dS»>/dt
0 1 1 36.74 -10.64
1 13.18 0.6589 2.8x107!1* —1.16x 10713

Table 11.3 Newton-Raphson applied to a Three Step Pathway with Linear Kinetics. Start-
ing values for S; and S, are both set at one. Convergence occurs within one iteration. Note
that the values for the rates of change are extremely small at the end of the first iteration,
indicating we have converged.

Computing the Steady State Using Software

The previous section showed how to compute the steady state using the Newton method. In
practice we would not write our own solver, but instead use existing software to accomplish
the same thing. To illustrate this, the following Tellurium script will define and compute
the steady state all at once:

import tellurium as te

r = te.loada ('''
$Xo -> S1; ki1xXo - k2x%S1;
S1 -> S2; k3*xS1 - k4%S2;
S2 -> $X1; k4x*S2 - k6x*X1;

// Initialize value
Xo = 10; X1 = 0;

ki = 3.4; k2 = 0.2;
k2 = 2.3; k3 = 0.56;
k4 = 5.6; k6 = 0.12;

// Initial starting point
gil, = ig &2 = i3
LI})

Compute steady state

11.3. COMPUTING THE STEADY STATE 243

r.getSteadyStateValues ()
print r.S1, r.S2

Running the above script yields steady state concentrations of 13.1783 and 0.658915 for
S1 and S3, respectively. This is the same if we compare these values to those in Table 11.3.
Other tools will have other ways to compute the steady state, for example graphical inter-
faces will generally have a button marked ‘steady state’ that can be selected.

When using Matlab, the function fsolve can be use to solve systems of nonlinear equation.
In Mathematica one would use FindRoot.

Effect of Conserved Cycles

Consider the conserved cycle in Figure 11.6. If we assume simple mass-action kinetics for
the two rates, v, and v;, then we can write the differential equations for the system as:

dsSi
— =k2S2— k1S
i 2092 — K191
dss
— =k1S1 — k2§
77 191 — K252

From these equations it should be apparent that dSy/dt = dS,/dt due to the conservation
law, S1 + S» = T. To compute the steady state for the system, we must compute the

Jacobian:
k1 k2
= &l

Computing the steady state requires the inverse of the Jacobian. However, in this case the
Jacobian is singular, that is the rows of the matrix are linearly dependent and the determi-
nant is zero. This means the inverse cannot be computed and therefore we cannot compute
the steady state.

Det = —k1(—k2) —ka(—k1) =0

Any analysis that requires the inversion of the Jacobian will fail for this system, including
the Newton-Raphson method. This is characteristic of networks that include moiety con-
served cycles. Modern simulation software avoids this problem by eliminating the depen-
dent rows from the Jacobian, essentially splitting the species into two groups, a dependent
and independent group. In the case of the simple conserved cycle (Figure 11.6), one species
becomes the independent species, for example S, and the other the dependent species, S5.
In simulation software it means we only have one differential equation instead of two. The
dependent species is computed algebraically from the independent species.
dS

— =k2S2— k1S
pr 202 — K191

So=T-51

244 CHAPTER 11. THE STEADY STATE

A more comprehensive discussion of conservation laws and their effects will be reserved
for a separate book.

11.4 Introduction to Stability

Biological organisms are continually subjected to perturbations. These perturbations can
originate from external influences such as changes in temperature, light, or the availability
of nutrients. Perturbations can also arise internally due to the stochastic nature of molecu-
lar events or by genetic variation. One of the most remarkable and characteristic properties
of living systems is their ability to resist such perturbations and maintain very steady in-
ternal conditions. For example the human body can maintain a constant core temperature
of 36.8°C £0.7 even though external temperatures may vary widely. The ability of a bi-
ological system to maintain a steady internal environment is called homeostasis, a phrase
introduced by Claude Bernard almost 150 years ago. Modern authors may also refer to this
behavior as robustness.

The concept of homeostasis is related to the idea of stability in a dynamical system. While
homeostasis refers to the degree to which a system can resist change, stability is related
to whether a system can resist change or not. Thus an unstable system cannot resist any
change. We can therefore informally define the stability of a system as follows:

A biochemical pathway is dynamically stable at steady state if small perturbations in
the floating species concentrations relax back to the steady state.

We can illustrate a stable system using a simple two step model. Assume that the two step
pathway has the following form:

v = ki1 Xo vy = kS
X, >S5 2.¢

Figure 11.11 illustrates the results from a simulation of a simple two step biochemical
pathway with one floating species, S1. The initial concentrations of the model are set so
that it is at steady state, that is no transients are seen between t = 0 and t = 20. At
t = 20, a perturbation is made to the concentration of S by injecting 0.25 units of S;
into the system. The system is now allowed to evolve further. If the system is stable, the
perturbation will relax back to the original steady state, as it does in the simulation shown
in Figure 11.11. This system is therefore considered stable.

The differential equation for the single floating species, Sy, is given by:

d
% =k1X0—k251 (11.8)

11.4. INTRODUCTION TO STABILITY 245

1
o 08
Gy
o
'§ 06 K
g
= 04 T S1 Relaxes back
3 02 Perturbation in S

0

0 10 20 30 40 50

Time

Figure 11.11 Stability of a simple biochemical pathway at steady state. The steady state
concentration of the species S is 0.5. A perturbation is made to S; by adding an additional
0.25 units of S; at time = 20. The system is considered stable because the perturbation
relaxes back to the original steady state. See Listing 11.7 for Tellurium script.

with a steady state solution of:
Sl =k1X0/k2 (11.9)

We know from the simulation in Figure 11.11 that the system appears to be stable, but can
we show this algebraically? If the system is at steady state, let us make a small perturbation
to the steady state concentration of Sy, 57, and ask what is the new rate of change of
S1 4 8571 as a result of this perturbation? That is, what is d(S1 + §S1)/dt? The new rate
of change equation is rewritten as follows:

d(S1 +6S1)

=k1Xo —k2(S1 +6S
T 1Xo — k2(S1 1)
If we insert the solution for S7, equation (11.9) into the above equation we get:

désS,
dt

= —k85, (11.10)

This equation shows us that the rate of change of the disturbance, 85 is negative. That is,
the system reduces the disturbance so that the system returns back to the original steady
state. If the rate of change in S; had been positive instead of negative, the perturbation
would have continued to diverge away from the original steady state and the system would
then be considered unstable. We will return to the question of stability in greater detail in
the next chapter.

246 CHAPTER 11. THE STEADY STATE

11.5 Sensitivity Analysis

Sensitivity analysis at steady state looks at how particular model variables are influenced
by model parameters. There are at least two reasons why it is interesting to examine sensi-
tivities. The first is a practical one. Many kinetic parameters used in building biochemical
models can have a significant degree of uncertainty about them. By determining how much
a parameter has an influence on the model’s state, we can decide whether we should try to
improve the parameter’s accuracy. A parameter that has considerable influence, but at the
same time has significant uncertainty, is a parameter that should be determined more care-
fully by additional experimentation. On the other hand, a parameter that has little influence
but has significant uncertainty associated with it, is relatively unimportant.

The second reason for measuring sensitivities is to provide insight. The degree to which a
parameter can influence a variable tells us something about how the network responds to
perturbations. Such a study can be used to answer questions about robustness and adapta-
tion.

There are two broad approaches to sensitivity analysis, one is termed local and the other
global. We will only look at local sensitivity analysis here.

Local Sensitivity Analysis

Local sensitivities are defined in two ways, absolute and relative. Absolute sensitivities
are given by the ratio of the absolute change in the variable to the absolute change in the
parameter. That is:
AV
S=—
Ap

where V is the variable, and p the parameter. This equation uses finite changes to the pa-
rameter and variable. Unfortunately, because most systems are nonlinear, the value for the
sensitivity will be a function of the size of the finite change. To make the sensitivity inde-
pendent of the size of the change, the sensitivity is usually defined in terms of infinitesimal
changes:

_dv

=0

Given that the sensitivities only measure perturbations in the immediate vicinity of the ref-
erence state, these sensitivities are called local. Although absolute sensitivities are simple,
they have one significant drawback. The value can be influenced by the units used to mea-
sure the variable and parameter. Often in making experimental measurements, we won’t be
able to measure the quantity using the most natural units. Instead, we may have measure-
ments in terms of fluorescence, colony counts, staining on a gel, and so on. It is most likely
that the variable and parameter units will be quite different, and each laboratory may have
its own particular way to express the measurement. Absolute sensitivities are therefore
quite difficult to compare, and make reproducibility difficult.

S

11.5. SENSITIVITY ANALYSIS 247

To get around the problem of units, many people use relative sensitivities, These are simple
scaled absolute sensitivities:

§=""2 (11.11)

The sensitivity is defined in terms of infinitesimal changes for the same reason cited before.
The reader may also recall that elasticities are also measured this way. Relative sensi-
tivities are immune to the units we use, and they correspond more closely to how many
measurements are made, often in terms of relative or fold changes. In practice, steady state
relative sensitivities should be measured by taking a measurement at the operating steady
state, making a perturbation (preferable a small one), waiting for the system to reach a new
steady state, and then measuring the system again. It is important to be aware that steady
state sensitivities measure how a perturbation in a parameter moves the system from one
steady state to another.

Sensitivities also form the basis for metabolic control analysis [82, 43], which is a frame-
work for understanding how perturbations propagate through networks.

Further Reading

1. Tellurium web site http://tellurium.analogmachine.org

2. Kipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005) Systems Biology in
Practice, Wiley-VCH Verlag.

3. Sauro HM (2011) Enzyme Kinetics for Systems Biology. ISBN: 978-0982477311.

Exercises

1. Consider the following simple branched network:

where v1 = v,, V3 = k151 and v3 = k5 S1.

(a) Write the differential equation for S.

http://tellurium.analogmachine.org

248

CHAPTER 11. THE STEADY STATE

10.

(b) Derive the equation that describes the steady state concentration for S;.
(c) Derive the equations for the steady state fluxes through vy and v,.

(d) Determine algebraically the scaled sensitivity (See equation 11.11) of the steady
state concentration of S with respect to v, and k1.

(e) Explain why the signs of the sensitivity with respect to v, and k are positive
and negative, respectively?

(f) Assuming values for v, = 1;k; = 0.5 and k» = 2.5, compute the values for
the sensitivities with respect to k1 and k.

(g) What happens to the sensitivity with respect to k1 as k increases?

Derive equation (11.5).

. Implement the Newton-Raphson algorithm and use it to find one solution to the

quadratic equation: 4x2 + 6x — 8 = 0.

By changing the initial starting point of the Newton-Raphson algorithm, find the
second solution to the quadratic equation from the previous question.

. Using Tellurium, find the steady state for the following model:

Xo -> S1; ki1*Xo; S1 -> X1; k2xS1; S1 -> X2; k3%S1;

Assume that Xo, X1 and X2 have fixed concentrations. Assign suitable values to the
rate constants and compute the steady state concentration of S1.

Write a Tellurium script to perturb the value of Xo in the above model. Apply the
perturbation as a square pulse; that is, the concentration of Xo rises, stays constant,
then falls back to its original value. Make sure the system is at steady state before
you apply the perturbation.

. Explain what is meant by a stable and unstable steady state.

. The steady state of a given pathway is stable. Explain the effect in general terms on

the steady state if:
a) A bolus of floating species is injected into the pathway.

b) A permanent change is applied to a kinetic constant.

. Why are scaled sensitivities sometimes more advantageous that unscaled sensitivi-

ties?

Construct a simple linear pathway with four enzymes as shown below:

U1 1%) U3 V4

Xo S1 Sz S3 Xl

11.5. SENSITIVITY ANALYSIS 249

Assume that the edge metabolites, X, and X, are fixed. Assign reversible Michaelis-
Menten kinetics to each step and arbitrary values to the kinetics constants. Assign a
modest value to the boundary metabolite, X,, of 10 mM. Compute the steady state
for your pathway. If the software fails to find a steady state, adjust the parameters.
Once you have the steady state, use the model to compute the sensitivity of the steady
state flux with respect to each of the enzyme maximal activities. You can compute
each sensitivity by perturbing each maximal activity and observing what this does to
the steady state flux.

How might you use the flux sensitivities in a practical application? Compute the sum
of the four sensitivities, what value do you get? Can you make a statement about the
sum?

Appendix

See http://tellurium.analogmachine.org for more details of Tellurium.

import tellurium as te

Simulation of a simple closed system
r = te.loada ('''

A -> B; k1 *x A;

B -> A; k2 x B;

A = 10; B = 0;
ki1 =1; k2 = 0.5;
LN |)

result = r.simulate(0, 3, 100)
r.lpot()

Listing 11.1 Script for Figure 7.1.

import tellurium as te

Simulation of an open system
r = te.loada ('''
$Xo -> S1; vo;
S1 -> S2; ki1xS1 - k2x*S2;
S2 -> $X1; k3%S2;

vo = 1

lll)

http://tellurium.analogmachine.org

250 CHAPTER 11. THE STEADY STATE

result = r.simulate(0, 6, 100)
r.plot()

Listing 11.2 Script for Figure 7.2.

import tellurium as te

Simple steady state system
r = te.loada ('''

$Xo -> S1; ki1xXo;

S1 -> $X1; k2*S1;

k1 = 0.2; k2 = 0.4;
Xo = 1; S1 =0.0;
LI})

result = r.simulate(0, 20, 100, ["time", "S1",])
r.plot(ylim=(0,0.6))

Listing 11.3 Script for Figure 11.3.

import tellurium as te
import numpy

Perturbing a species concentration
r = te.loada ('''

$Xo -> S1; kix*Xo;

S1 -> $X1; k2xS1;

Xo =
S1 =
k1l =
k2

S O O =
SN O

we

'll)

Simulate the first part up to 20 time units
ml = r.simulate(0, 20, 100, ["time", "S1"])

Perturb the concentration of S1 by 0.35 units
r.8S1 = r.S1 + 0.35

Continue simulating from last end point
m2 = r.simulate(20, 50, 100, ["time", "S1"])

Merge and plot the two halves of the simulation

11.5. SENSITIVITY ANALYSIS 251

result = numpy.vstack((ml, m2))
te.plotWithLegend(r, result)

Listing 11.4 Script for Figure 11.11.

import tellurium as te
import numpy

Multiple species perturbations
r = te.loada ('''

$Xo -> S1; ki1xXo;

S1 -> $X1; k2*S1;

Xo =
S1 =
k1
k2
lll)

]
O O O
SN O

-

Simulate the first part up to 20 time units
ml = r.simulate(0, 20, 100, ["time", "S1"])

Perturb the concentration of S1 by 0.35 units
r.S1 =r.S1 + 0.35

Continue simulating from last end point
m2 = r.simulate(20, 40, 50, ["time", "S1"])

Merge the data sets
m3 = numpy.vstack((ml, m2))

Do a negative perturbation in S1
EoBil = @8l = 0.8

Continue simulating from last end point
m4 = r.simulate(40, 60, 50, ["time", "S1"])

Merge and plot the final two halves of the simulation
result = numpy.vstack((m3, m4))
te.plotWithLegend(r, result)

Listing 11.5 Script for Figure 11.5.

import tellurium as te
import numpy
import pylab

252 CHAPTER 11. THE STEADY STATE

r = te.loada (''"'
$Xo -> S1; kixXo;
S1 -> $X1; k2%S1;

Xo =
S1 =
k1l =
k2
'll)

O O O =
SN O

we

Simulate the first part up to 20 time units
ml = r.simulate(0, 20, 5, ["time", "S1"]).copy()

Perturb the parameter kil
r.kl1 = r.k1 * 1.7

Simulate from the last point
m2 = r.simulate(20, 50, 40, ["time", "S1"]).copy()

Restore the parameter back to ordinal value
r.k1 = 0.2

Carry out final run of the simulation
m3 = r.simulate(50, 80, 40, ["time", "S1"])

Merge all data sets and plot
result = numpy.vstack((ml, m2, m3))
pylab.ylim([0,1])
te.plotWithLegend(r, result)

Listing 11.6 Script for Figure 11.8.

import tellurium as te
import numpy

Stability illustration
r = te.loada ('''
$Xo -> S1; kilxXo;
S1 -> $X1; k2x*S1;

Xo =
S1
k1l =
k2
lll)

]
O O O =
SN O

“e

11.5. SENSITIVITY ANALYSIS 253

Simulate the first part up to 20 time units
ml = r.simulate(0, 20, 100, ["time", "S1"]).copy()

Perturb the concentration of S1 by 0.35 units
r.S1 =r.S1 + 0.35

Continue simulating from last end point
m2 = r.simulate(20, 50, 100, ["time", "S1"]);

Merge and plot the two halves of the simulation

result = numpy.vstack ((ml, m2))
te.plotWithLegend(r, result)

Listing 11.7 Tellurium script used to generate Figure 11.11.

254 CHAPTER 11. THE STEADY STATE

Stability

12.1 Stability

The previous chapter briefly touched on the concept of stability of a biochemical network.
This chapter will delve more deeply into this topic. First let’s refresh our memory by
reviewing the simple model that was used to introduce stability. Figure 11.11 shows a
simulation where a species concentration is disturbed, and over time relaxes back to the
original steady state. This is an example of a stable steady state.

The differential equation for the single floating species, S1, was given by:

ds
d—; = k1Xo — k>S4 (12.1)

and as shown before, it has the steady state solution:
Sl = k1X0/k2 (12.2)

An important question to ask is whether the steady state is stable or not, that is, whether a
perturbation will decay and return to the steady state. The differential equation describing
the two step model is given by:

dSi

— =k1Xo — k28

dt 140 291
When the system is at steady state, let us make a small perturbation to the steady state
concentration of S1, §S7 and ask how 457 changes as a result of this perturbation. That is,

255

256 CHAPTER 12. STABILITY

what is d(6S1)/dt? The new rate of change equation is rewritten as follows:
d(S1 + 6S1)
dt

If we insert the steady state solution for S, equation (12.2), into the above equation we are
left with:

= k1Xo — k2(S1 + 851)

dsSy
dt
In other words the rate of change of the disturbance itself, §S1, is negative. The system
attempts to reduce the disturbance so that the system returns back to the original steady
state. Systems with this kind of behavior are called stable. If the rate of change in S had
been positive instead of negative, the perturbation would have continued to diverge away
from the original steady state and the system would then be considered unstable.

— k285, (12.3)

Let’s look at this is graphically by plotting the rate of change, dSy/dt, as a function of
S1, as shown in Figure 12.1. The steady state occurs when the net rate of change is zero,
marked by the arrow. If the substrate level falls below this value, the net rate goes positive,
thereby increasing the level of S;. If the substrate rises above the steady state level, the
graph shows the net rate of change going negative, so that S; decreases. The system is
therefore stable.

1
~ 0.5 =
S Net positive
I &S/
0 <
~__ Net negative
gls | T—
—-0.5 ‘ T
Steady state level of Sy
—1

0 02 04 06 08 1 12 14

Substrate Concentration, S

Figure 12.1 Rate of change as a function of S;. The arrow indicates the steady state for
S1. When §; is below the steady state value, the net change is positive meaning that S
will increase. When S is above the steady state value, the net change is negative meaning
that S; will decrease. The system is therefore stable.

This kind of stability is also called the internal stability because it describes the system’s
stability to perturbations in the internal state. We can informally define a stable system as:

12.1. STABILITY 257

Internal Stability: A biochemical pathway is internally stable if at steady state, small
perturbations to the floating species relax back to the steady state.

Caveat: If the perturbed species is part of a conserved cycle (See section 3.8), then the
total mass in the cycle must remain constant during the perturbation. This may require
perturbing one species in a positive direction and another in a negative direction.

Let us divide both sides of equation (12.3) by 4S; and taking the limit, we find that
d(dS1/dt)/d81 is equal to —k,. The stability of this simple system can therefore be de-
termined by inspecting the sign of d(dS1/dt)/dS;1. In this case d(dS1/dt)/dS1 = —k2
which is negative, meaning the system is stable. It is worth noting that the larger the rate
constant, k5, the quicker the system relaxes back to steady state.

For systems with more than one species, a system’s stability can be determined by looking
at all the terms d(dS; /dt)/dS; which are given collectively by the expression:

dds/dr) _

o (12.4)

where J is called the Jacobian matrix containing elements of the form d(dS;/dt)/0dS;.
Using this result we can generalize equation (12.3) to:

d(3s)
=Js 12.5
i s (12.5)
where J is given by
d(dSy1/dt) 0(dS,/dt)
0dSm/dt) 3(dSm/dt)
1 m

Equation (12.5) is an example of an unforced linear differential equation and has the general
from:

ar _
d

Solutions to unforced linear differential equations are well known and take the form:

Ax

xj(t) = C1K1€A1t + cszebt + -~-cnKneA"’
The solution involves a sum of exponentials, ehit , constants ¢;, and vectors, K;. The
exponents of the exponentials are given by the eigenvalues (See Appendix E) of the matrix,
A, and K ;, the corresponding eigenvectors. The ¢; terms are related to the initial conditions
assigned to the problem. It is possible for the eigenvalues to be complex, but in general if

258 CHAPTER 12. STABILITY

the real parts of the eigenvalues are negative, the exponents will decay. If they are positive,
the exponents will grow. We can therefore determine the stability properties of a given
model by computing the eigenvalues of the Jacobian matrix and looking for any positive
eigenvalues. Note that the elements of the Jacobian matrix will often be a function of the
species levels; it is therefore important that the Jacobian be evaluated at the steady state of
interest.

We can formally define the internal stability of a biochemical system as follows:

The steady state for the biochemical system:

ds

— =N 12.6
7 v (12.6)
is stable if all the eigenvalues of the system’s Jacobian matrix have negative real parts.

The system is unstable if at least one of the eigenvalues has a positive real part.

There are many software packages that compute the eigenvalues of a matrix, and there are
a small number of packages that can compute the Jacobian directly from a biochemical
model. For example, the script below is taken from Tellurium. It defines a simple model,
initializes the model values, computes the steady state, and then prints out the eigenvalues
of the Jacobian matrix (Listing 12.1). For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The output from
running the script is given below, showing that the eigenvalue is —0.3. Since we have a
negative eigenvalue, the pathway must be stable to perturbations in Sj.

import tellurium as te

rr = te.loada ('''
$Xo -> S1; ki1xXo;
S1 -> $X1; k2*S1;

// Set up the model initial conditions
Xo = 1; X1 = 0;
k1 = 0.2; k2 = 0.3;

'll)

Evaluation of the steady state
rr.getSteadyStateValues ()

print the eigenvalues of the Jacobian matrix
print print rr.getFullEigenValues()

Output follows:
[[-0.3 0. 1]

12.1. STABILITY 259

Listing 12.1 Computing eigevalues to determine stability.

Example 12.1

The following system:
— S] — Sz —>

is governed by the set of differential equations:

dsS:

P _3 g
dt !
ds,

2 _ o5, —4s
d[1 2

The Jacobian matrix is computed by differentiating the equations with respect to the steady state

values of S and Sy:
-2 0
=3]

The eigenvalues for this matrix are: —2 and —4, respectively. Since both eigenvalues are negative,
the system is stable to small perturbations in S; and S,.

Example 12.2

Consider the system:

Xo — S1 v,
Sl — X1 $;

S1— 82 S;(1+S3)
S2— X2 58,

where X,, X1 and X> are fixed species. At steady state S = 2.295 and S» = 1.14 with parameter
values v, = 8. Determine whether this steady state is stable or not. The differential equations for
the system are given by:

dsS;
7=Uo—51—51(1+523)
dsS,

== =85,(1+ 87 -58

7 1(1+83) 2

The Jacobian matrix is computed by differentiating the equations with respect to the steady state

values of S and Sy:
; —2-83 35,52 —3.4815 —8.948
| 1483 5438582 | 2482 3948

The eigenvalues for this matrix are: 0.2333 + 2.9; and 0.2332 — 2.9i, respectively. Since the real
parts of the eigenvalues are positive, the system is unstable to small perturbations in S; and S>.

260 CHAPTER 12. STABILITY

The pattern of eigenvalues tells us a lot about stability, but also about the kind of the tran-
sients that occur after a perturbation. The following sections will investigate this subject
further.

12.2 Jacobian for Biochemical Systems

For a given set of differential equations, we can compute the Jacobian by differentiating
the equations with respect to the model variables. However for biochemical networks, the
Jacobian can be written in a special way that highlights the importance of the network
structure and kinetics of the biochemical reaction steps. To do this, let us first define the
unscaled elasticity (D.18) as:
o

Ny
where v is a reaction rate and S an effector of the reaction. For example, if v = k1S, the
unscaled elasticity, &g = k1. The matrix of unscaled elasticities can be defined as:

— U] V] V]~
8S1 8S2 8S3
V2 v2 V2
8V 8S1 8S2 85!3

as v v v
ey 6y €y

The example shows a three by three elasticity matrix. An elasticity matrix has n rows
representing n reactions and m columns represent m species. Many entries in the elasticity
matrix will often be zero. For example, consider the pathway:

Xo—> S1—> S —> X

where X, and X are fixed species. The pathway has three reactions, which we will desig-
nate v1, vz, and v3 and two floating species, S and S,. The unscaled elasticity matrix will
therefore be a three by two matrix. If we assume reversibility or product inhibition in all
three reactions, the entries in the matrix will be:

<1 VU] oVl —
8S1 852 8S1 0
V2 v2 V2 v2
gv 8S] 8S2 8S1 8S2
S
E3 € 0 &
S1 S> S

12.3. EXTERNAL STABILITY 261

Note that the entries & ;; and 8;? are zero because S5 has no direct effect on vy, and S7 has
no direct effect on v3. Some of the unscaled elasticities will also be negative. For example,
8;; will be negative because increases in S, will slow down the v, reaction rate due to
product inhibition.

Recall that an element of the Jacobian is defined as:
a(dS;/dt)
aS;

that is the differential equation differentiated with respect to a species. However, we also
know that the vector of rates of change is given by the system equation:

ds
~ =N
dt v

Differentiating this with respect to s yields:
d (ds v
—([Z2Z)=NZ=
as (dt) as

Hence, the Jacobian is the product of the stoichiometry and the unscaled elasticity matrix:

av
J=N—
as

Given that stability is determined from the Jacobian, this result indicates that stability is
a function of network topology and the kinetics of the individual reactions. The result
indicates that it is not always possible to discern the functional dynamics of a motif (Chap-
ter 3) just from the topological pattern. The dynamics also depend on the kinetics of the
constituent parts.

The dynamics of a network is a function of the network topology and the kinetics of its
constituent parts.

12.3 External Stability

There is one other type of stability that is useful with respect to biochemical systems,
namely external stability. This refers to the idea that if a system is externally stable,
then a finite change to an input of the system should elicit a finite change to the internal
state of the system. In control theory this is called BIBO, or Bounded Input Bounded Out-
put stability. It is very important to bear in mind that the finite change in the internal state
refers to a linearized system. When the system is nonlinear, the output may be bounded by
physical constraints.

262 CHAPTER 12. STABILITY

A system that is internally unstable will also be unstable to changes in the systems inputs. In
biochemical systems such inputs could be the boundary species that feed a pathway, a drug
intervention, or the total mass of a conserved cycle. External stability can be determined
using the same criteria used for internal stability, that is the real parts of eigenvalues of the
Jacobian matrix should all be negative.

12.4 Phase Portraits

The word phase space refers to a space where all possible states are shown. For example, in
a biochemical pathway with two species, S1 and S5, the phase space consists of all possible
trajectories of S1 and S in time. For a two dimensional system with species S and S3, the
phase space can be conveniently displayed with S; on one axis and S» on the other. A line
on a two dimensional plane will represent how S; and S» move with respect to each other
in time. Figure 12.2 shows a time course plot for a simple three step pathway with two
species and the corresponding trajectory in the phase plot. In a real phase plot we would
have all possible trajectories shown rather than just one. Figure 12.3 shows the same phase
plot but this time with forty-four trajectories. Note they all converge on a single point that
represents the system’s steady state.

1

Time Course Plot ... Phase Plot
Rt 08
1
06
S2
04
05 & S
S e 1
02
.~ — S
0% 0
0 2 4 6 8 10 0 02 04 06 08 1 1.2 14
Time S 1

Figure 12.2 Time course simulation plot and corresponding phase plot.
A visual representation of the phase space is often called a phase portrait or phase plane.
To illustrate a phase portrait consider the following simple reaction network:

v k1 S ky S»
85 =58,

with two linear differential equations:

ds

d_tl = vo—lel
d

i =k1S1 — k295>

dr

12.4. PHASE PORTRAITS 263

2.0

15}F

0.5}

.
0.0 0.5 1.0 15 2.0

S1

Figure 12.3 Multiple trajectories plotted on the phase plot Tellurium Listing: 12.5.

We can assign particular values to the parameters, set up some initial conditions, and plot
the evolution of S; and S5 in phase space. If we replot the solution using many different
initial conditions, we get something that looks like the plots shown in Figures 12.3 to 12.9.

The plots illustrate a variety of transient behaviors around the steady state. These particular
transient behaviors apply specifically to linear differential equations. If we have a nonlinear
system and we linearize the system around the steady state, the linearized system will also
behave in a way suggested by these plots.

Consider the general two dimensional linear set of differential equations:

dSi
— = S S
T a1 +aizdz
dsSs,
—= = S S
T azi191 + azzd2

As we’ve seen already, such a two dimensional linear system of differential equations has
solutions of the form:

At Aot

+ crkre
+ cakge

S1 = C1k1€

Ast Aat

S2 = C3k3e

That is, a sum of exponential terms. The ¢; and k; terms are constants related to the initial
conditions and eigenvectors, respectively, but the A; terms or eigenvalues determine the
qualitative pattern that a given behavior might have. It should be noted that the eigenvalues
can be complex or real numbers. In applied mathematics, e raised to a complex number
immediately suggests some kind of periodic behavior. Let us consider different possibilities
for the various eigenvalues.

264 CHAPTER 12. STABILITY

\ | P
B \\ | ."I / ' 1
5 Lo 1 ¥
e N Y117 r LS < N e S,
~ N [/ / > o S,
a, NONNAN LSS E S 05
- 2% gl o . B
—~ _,-\ \‘ L ’/// y d =
S S I g o
E . = __ = c
— e -—‘ 5
P N ——— U _
i ” N 0.5
/,.v’ - ,/ *f \‘k e T .
~ Fe T R
A7 AR .
r i // 4 " ‘I ‘* \\ _ R 2 0 1 2 3 4 5
A F] % XS Time
i / | \ X .
/ / \ \ !

Figure 12.4 Trajectories for a two species reaction network. On the left is the phase plot
and on the right, a single transient as a function of time. This system illustrates a stable
node corresponding to Negative Eigenvalues in the Jacobian. Matrix A: a1; = —2,a12 =
0,az1 = —0.15,a2, = —2. Corresponding eigenvalues: A; = —2,1, = —2. The
symmetry in the trajectories is due to eigenvalues of the same magnitude.

¢ Both Eigenvalues have the same sign, different magnitude but are real. If both eigen-
values are negative, the equations describe a system known as a stable node. All trajec-
tories move towards the steady state point. If the eigenvalues have the same magnitude
and the ¢; terms have the same magnitude, the trajectories move to the steady state in a
symmetric manner as shown in Figure 12.4.

If the two eigenvalues are both positive, the trajectories move out from the steady state
reflecting the fact that the system is unstable. Such a point is called an unstable node. If
the two eigenvalues have different magnitudes but are still positive, the trajectories twist as
shown in Figure 12.5.

¢ Real Eigenvalues but of opposite sign. If the two eigenvalues are real but of opposite
sign, we see behavior called a saddle-node shown in Figure 12.6. This is where the tra-
jectories move towards the steady state in one direction, called the stable manifold, and
form a stable ridge. In all other directions trajectories move away, resulting in an unstable
manifold. Since trajectories can only move towards the steady state if they are exactly on
the stable ridge, the saddle nodes are generally considered unstable.

e Complex Eigenvalues. Sometimes the eigenvalues can be complex, that is of the form
a + ib where i is the imaginary number. It may seem strange that the solution to a dif-
ferential equation that describes a physical system can admit complex eigenvalues. To
understand what this means we must recall Euler’s formula:

¢ = cos(0) + i sin(b)
Extended to:

@D — oA oo5(bt) + i e sin(bt) (12.7)

12.4. PHASE PORTRAITS 265

o, T e e K
s . \‘Y-._\ T ,_\ ‘\
- W T g “‘\‘ Bk 1
e i - Y . \‘ —
""\\M--‘- S - - AN \\ | S 1
% e " e X |
ma g Tn T B Y —S;
~—_ N A g
\s Nl)
= 3 o <
> — . 0
S
. —Z | -1
T K LN e S
. i fe The - ~a
. ‘\ N, g W T R
[f | \ A ~ A -~ >
P e R e TRe T 0 1 2 3 4 5
\ L SN B T S .
Vo N g o Time
\ Wig: i G
\ T e T
A R e S \\'*3 A

Figure 12.5 Trajectories for a two species reaction network. On the left is the phase
plot and on the right a single transient as a function of time. This system illustrates a
unstable node, also called an improper node corresponding to Positive Eigenvalues. Matrix

A:ayy = 12,a15 = =2,a21 = —0.05,a,> = 1.35. Corresponding eigenvalues: A; =
1.6, 1, = 0.95.

Description Eigenvalues Behavior

Both Positive ri >rp >0 Unstable

Both Negative rp <rp <0 Stable

<
Positive and Negative r; <0 <r; Saddle point
Complex Conjugate r1 >r; >0 Unstable spiral
Complex Conjugate r1 <rp <0 Stable spiral
Pure Imaginary rp =r; =0 Center

Table 12.1 Summary of Node Behaviors.

When the solutions are expressed in sums of sine and cosine terms, the imaginary parts
cancel out, leaving just trigonometric terms with real parts (The proof is provided at the
end of the chapter in an appendix). This means that systems with complex eigenvalues
show periodic behavior.

Figures 12.7, 12.8, and 12.9 show typical trajectories when the system admits complex
eigenvalues. If the real parts are positive, the spiral trajectories move outwards away from
the steady state. Such systems are unstable. In a pure linear system, the trajectories will
expand out forever. They will only stop and converge to a stable oscillation if the system
has nonlinear elements which limits the expansion. In these cases we observe limit cycle
behavior.

If the real parts of the eigenvalues are negative, the spiral trajectory moves into the steady
state and is therefore considered stable.

266 CHAPTER 12. STABILITY

" A]
// oy /1 |I I| \ \‘\
¥ ¥ 4 14
/ /, /' ,." [’ {'I * ‘\ "___ b S 1
s o / . 0
‘/ Y \CT— —5:
A 4 £ ! | e 0
r , S\ — 2
W p” / e = el
o = /."/ = ra >l >
. _-4,-——-“‘"\\ | // /;(g -
\ I/ V. A o —4
————— g
~ MA A
i 1“_ k' ‘|' ;,n’ Fi /./‘ A /I
T) A 4 0 0.5 1 1.5 2 25 3
x N1 id4 A a P ;
% X V1 2 F 2 @ Time
N N VLSS

Figure 12.6 Trajectories for a two species reaction network. On the left is the phase plot
and on the right a single transient as a function of time. This system illustrates a saddle node
corresponding to One Positive and One Negative Eigenvalue. Matrix A: ay1 = 2,a12 =
—1,a21 = 1,a3, = —2. Corresponding eigenvalues: A1 = —1.73, 1, = 1.73.

Conjugate Pair
A complex conjugate pair is a complex number of the form: a £ bi. The eigenvalues for
a two variable linear system with matrix A can be computed directly using the relation:

_ tr(A) £ Vu2(A) — 4 det (4)
- 2

A

where tr (A) = a + d, and det (A) = ad — bc. If the term in the square root is
negative, the eigenvalues will always come out as a conjugate pair owning to the =+
term. If tr>(A) — 4 det(A) < 0, then the solution will be the conjugate pair:

_tr (A) N Vtr2(A) — 4 det(A)

A
2 2

Therefore a complex eigenvalue will always be accompanied by its conjugate partner.

o Imaginary Eigenvalues with Zero Real Parts. It is possible for the pair of eigenvalues
to have no real component but retain an imaginary part. In this situation the behavior
is called a center. This is where the trajectory orbits the steady state. The oscillation is
an unusual one in the sense that it implies zero dampening in the system, in other words
zero energy loss. Such a situation would be very rare in biology and even in non-living
systems, such behavior tends to be idealized. For example a pendulum in a vacuum with
no friction at the fulcrum. The other unusual aspect of a center is that the oscillation is
depending on the starting condition. Again we can relate this to a pendulum where the
swing depending on how much force we initially apply to the pendulum bob. Biological
oscillators are invariably energy dependent and the frequency is independent of the initial

12.5. BIFURCATION PLOTS 267

foE L] el e 4
b f F 00 s .
(I A i 5 _Sl
’ I 1 ."l / > - - T .) S
[| / e =3¢ 2
V41t [T~ &
b [/ B W K>
AR 1‘ : Pl cm NN 2 0
RE Y ke ‘ » ‘\‘\.' \.* g
b e M y i U \ > -2
o B e O T U \
0y : = | \
. i s /.-" ‘! ? J | || |
~ e ‘ | A
. A/ .T T -4
S A L)]
- / S 0 1 2 3 4 5 6 7 8
s A £ A f ! [.
T AN A] Time
et ! / / /

Figure 12.7 Trajectories for a two species reaction network. On the left is the phase plot
and on the right, a single transient as a function of time. This system illustrates a stable spi-

ral node corresponding to Negative Complex Eigenvalues. Matrix A: ay; = —0.5,a12 =
—1,a21 = 1l,azx = —1. Corresponding eigenvalues: A = —0.75 + 0.97i,A, =
—0.75-0.97i.

conditions. Biological oscillators therefore tend not to be center types but are a behavior
that results from nonlinearities in the system.

12.5 Bifurcation Plots

In its simplest form, a bifurcation plot is just a plot of the steady state value of a system
variable, such as a concentration or flux versus a parameter of the system. For example, we
know that the steady state solution for the simple system:

ds
d—tl = k1 Xo — kS, (12.8)

was given by:
Sl =k1X0/k2 (12.9)

We can plot the steady state value of S; as a function of k5 as shown in Figure 12.11.
This isn’t a particularly interesting bifurcation plot however and misses one of the most
important characteristics.

Equation (12.9) shows that the simple system (12.8) only has one steady state for a given
set of parameters. That is, if we set values to X,, k1, and k5, we find there is only one value
of S that satisfies these parameter settings. This is what Figure 12.11 also demoonstrates.
What is more interesting is when a system admits multiple possible steady state values for
a given set of parameter values. To illustrate this behavior, let us look at a common system
that can admit three possible steady states. It is in these cases that bifurcation plots become
particularly useful and more interesting.

268 CHAPTER 12. STABILITY

IS 10
S —S,
\\‘ “‘ 5 _Sz
\ N\ 2
S =)
"1 \ 1| | g O
| G ¥ =
D | >
g b p -5
S F
/¥
/ -10
. 0 5 10 15 20 25
il < F Time

N 4
- #

Figure 12.8 Phase portrait for the two species reaction network. Unstable spiral node.
Positive Complex Eigenvalues. Matrix A: a11 = 0,a12 = 1.0,a1 = —1.2,a55, = 0.2.
Corresponding eigenvalues: A; = 0.1 + 1.097, A, = 0.1 — 1.09i.

Bistable Systems

Bifurcation plots can be useful for identifying changes in qualitative behavior, particularly
systems that have multiple steady states. Consider the system shown Figure (12.12). This
shows a gene circuit with a positive feedback loop. As the transcription factor x accumu-
lates, it binds to an operator site upstream of the gene which increases its synthesis. The
more transcription factor made, the higher the rate of expression.

At first glance this would seem to be a very unstable situation. One might imagine that the
transcription factor concentration would continue to increase without limit. However, the
physical limits, in this case the saturation of the translation, transcription, and degradation
machinery, ultimately limits the upper value for the concentration of transcription factor.
To investigate the properties of this networks we will construct a simple model. This model
uses the following kinetic laws for the synthesis and degradation steps:

x4

=b+ki——
U1 + Vs + x4
v2=k3x

v is a Hill like equation with a Hill coefficient of four and a basal rate of b. v, is a simple
irreversible mass-action rate law. The differential equation for the model is:
dx
dr
To find the steady state, set the differential equation to zero and attempt to analytically solve
for x. If we try this we get a solution that is complex to interpret.

=V — V2

A better way to understand what is going on, is to plot both rate laws as a function of tran-
scription factor, x. When we do this we obtain Figure 12.13. The intersection points marked

12.5. BIFURCATION PLOTS 269

,
o
sz
E 4
.
Y
s
1/
ys
]
-~
g |~
-
e
Variables
=}

LY ..‘\\ ’ \\ \\‘ 4
“_ by \\ === ’ ‘r \ \\ -1
» \\ * ~ J \
\\ \ 5% ¥ -~ 4 *
LN " . -2
\\ ‘\\ v ~——— v 0 5 10 15 20 25
L T e Ay Time
N ™, S . — /'

Figure 12.9 Phase portrait for the two species reaction network. Center node. Complex
Eigenvalues, Zero Real Part. Matrix A: a;; = 1,a12 = 2.0,a31 = —2,a3 = —1.
Corresponding eigenvalues: A1 = 0+ 1.76i,A, = 0—1.76i.

with filled circles indicate the steady state solutions because at these points, v; = v,. If we
vary the slope of v, by changing k3, the intersection points will change (Figure 12.14). At
a high k3 value, only one intersection point remains (Panel ¢), the low intersection point. If
the value of k3 is low, only the high intersection point remains (Panel a). However with the
right set of parameter values, we can make a system with three steady state values (Panel
b).

We can determine the three different steady state stabilities by doing a simple graphical
analysis on Figure 12.13. Figure 12.15 shows the same plot but with perturbations.

Starting with the first steady state in the low left corner of Figure 12.15, consider a pertur-
bation made in x, §x. This means that both vy and v, increase, however v, > v meaning
that after the perturbation, the rate of change in x is negative. Since it is negative, this re-
stores the perturbation back to the steady state. The same logic applies to the upper steady
state. This tells us that the lower and upper steady states are both stable.

What about the middle steady state? Consider again a perturbation, §x. This time v; > v,
which means that the rate of change of x is positive. Since it is positive, the perturbation,
instead of falling back, continues to grow until x reaches the upper steady state. We con-
clude that the middle steady state is unstable. This system possess three steady states, one
unstable and two stable. Such a system is known as a bistable system because it can rest
in one of two stable states but not the third.

Another way to observe the different steady states is to run a time course simulation at
many different starting points. Figure 12.16 shows the plots generated using the script in
Listing 12.2. The plots show two steady states, a high state at around 40, and a low state
at around 3. Notice that there is no third state observed. As we have already discussed, the
middle steady state is unstable, and all trajectories diverge from this point. It is therefore

270 CHAPTER 12. STABILITY

w | A:stable node B: stable focus C: saddle point D: unstable focus | | E: unstable node
[

2 Im Im Im Im Im

g ° L]

GC.) O———— —_— 1 — —_—
& Re ¢ Re e ® Re Re

/ I

] —_—0

/
AN

(-]

N/
NV

(Stable States) (Unstable States

Figure 12.10 Summary of behaviors including dynamics and associated eigenvalues for
a two dimensional linear system. Adapted from “Computational Models of Metabolism:
Stability and Regulation in Metabolic Networks”, Adv in Chem Phys, Vol 142, Steuer and
Junker.

not possible when doing a time course simulation to observe an unstable steady state since
there is no way to reach it.'

import tellurium as te
import numpy

rr = te.loada ('''
J1: $Xo -> x; 0.1 + ki1xx~4/(k2+x"~4);
x -> $w; k3x*x;

k1 = 0.9;
k2 = 0.3;
k3 = 0.7;
x = 0.05;

'll)

m = rr.simulate(0, 15, 100)
for i in range(l, 10):
rr.x = i*0.2
mm = rr.simulate(0, 15, 100, ["x"1)
m = numpy.hstack((m, mm))
te.plotArray(m)

Listing 12.2 Tellurium script used to generate Figure 12.16.

I'The author has been reliably informed that running time backwards in a time course simulation will cause the
simulation to converge on the unstable steady state. The author has not tried this himself, however.

12.5. BIFURCATION PLOTS 271

0.8

0.6

0.4

0.2

Concentration of S;

0 5 10 15 20 25 30 35 40
ko

Figure 12.11 Steady state concentration of S as a function of k5 for the system, dS;/dt =
k135 _'kZSI-

Ilii’:;:T’

Figure 12.12 System with Positive Feedback.

We can get an estimate for the values of all three steady states from Figure 12.13. Reading
from the graph we find x values at 0.145,0.683, and 1.309. It is also possible to use the
steady state solver from Tellurium to locate the steady states. Listing 12.3 shows a simple
script to compute them. By setting an appropriate initial condition, we can use Tellurium
to pin point all three steady states. For example, if we use an initial value of x at 0.43, the
steady state solver will locate the third steady state at 0.683. Steady state solvers such as
the one included with Tellurium can be used to find unstable states, providing the initial
starting point is close enough.

import tellurium as te

r = te.loada ('''
$Xo -> x; 0.1 + ki1xx~4/(k2+x74);
x -> $w; k3*x;

// Initialization here
k1 = 0.9; k2 = 0.3;
k3 = 0.7;

272 CHAPTER 12. STABILITY

0.8 - U1 n

U2

vy and vy

0.2}

0 | | | | | | |
0 02 04 0.6 0.8 1 1.2 1.4

X

Figure 12.13 Reaction velocities, v; and vy, as a function of x for the system in Fig-
ure 12.11. The intersection points marked by full circles indicate possible steady states.
Computed using the SBW rate law plotter. k1 = 0.9;k, = 0.3;k3 = 0.7;b = 0.1.

1 Pl T B T .
a '0 b P/ C 'o'
=) N /'
!/ ks =026 7 ks =07 S k=12
O-' | | | Vadl | | . | |
0 1 2 3 40 05 1 150 05 1 15

Figure 12.14 v; and v, plotted against x concentration. Intersection points on the curves
mark the steady state points. Panel a) One intersection point at a high steady state; b) Three

steady states; c) One low steady state.

lll)

Compute steady state
print r.getSteadyStateValues()

Listing 12.3 Basic bistable model.

Stability of Positive Feedback

What determines the stability of a positive feedback system? Let us consider the same
genetic network with positive feedback as before (Figure 12.12). The differential equation

12.5. BIFURCATION PLOTS 273

1 T T T
V1 > Uy V1
0.8 |- dx/dt >0 i
U2
N
= 0.6 =
o
® g4 pu 5x |
ST dx/dt <0
0.2+ s
0 L 8x \ \ \ \ \ \
0 0.2 0.4 0.6 0.8 1 1.2 1.4
X

Figure 12.15 A graphical understanding of the stability of the steady states. See text for
details. Computed using the SBW rate law plotter. k; = 0.9;k, = 0.3;k3 = 0.7;b = 0.1.

1.5
R
s 1 1
g
=
3
g 0.5 1
U ;
|

Figure 12.16 Time course data generated from Tellurium model 12.2. Each line represents
a different initial concentration for x. Some trajectories transition to the low state while
others to the upper state.

274 CHAPTER 12. STABILITY

Kinetic Order Elasticity

First-Order 1.0
Zero-Order 0.0
Sigmoidal > 1.0

Table 12.2

for this system is:

fi—’; = 01 () — v2(x)

where we have explicitly shown that each reaction rate is a function of x. To determine
whether the system is stable to small perturbations we can differentiate the equation with
respect to x to form the Jacobian. Notice there is only one element in the Jacobian because
we only have one state variable:

dx/dt du; Jvy

dx Ox dx

The terms on the right are unscaled elasticities (D.18). If the expression is positive, the
system is unstable because it means that dx/dt is increasing if we increase x. We can
scale both sides to yield:

Js = 8)16 — 8)26
where the right-hand term now includes the scaled elasticities (D.17). The criteria for
stability is again that ¢ ch > 8)26. Therefore, if the positive feedback is stronger than the effect
of x on the degradation step vy, the system will be unstable.

Recall that the elasticities are a measure of the kinetic order of the reaction. Thus an elas-
ticity of one means the reaction is first-order. A saturable irreversible Michaelis-Menten
reaction will have a variable kinetic order between one and zero (near saturation). A Hill
equation can, depending on the Hill coefficient, have kinetic orders greater than one (Ta-
ble 12.2). Knowing this information, there are at least two ways to make sure that the
elasticity for the feedback elasticity, vy, is greater than the elasticity for the degradation
step, va:

1. vp is modeled using a Hill equation with a Hill coefficient > 1 and v is first-order or
less.

2. A Hill coefficient = 1 on v1, with Michaelis-Menten saturable kinetics on v, to ensure
less than first-order kinetics on v5.

By substituting the three possible steady state values for x into the equation for dx/dt,we
can compute the value for the Jacobian element in each case (Table 12.3).

12.5. BIFURCATION PLOTS 275

Steady State x Jacobian: (dx/dt)/dx Elasticity, e3'

0.145 -0.664 0.052
0.683 0.585 1.835
1.309 -0.47 0.33

Table 12.3 Table of steady state values of x and corresponding values for the Jacobian
element. Negative Jacobian values indicate a stable steady state, positive elements indicate
an unstable steady state. The table shows one stable and two unstable steady states.

The unstable steady state at x = 0.683 has an elasticity for v; of 1.835. Note this value
is greater than the elasticity of the first-order degradation reaction, v,, which equals one.
Therefore this state is unstable.

Bifurcation Plot

Let’s now return to the question of plotting a bifurcation graph for the bistable system in
Figure 12.12. Figure 12.14 shows both reaction rates, v; and v, plotted as a function of
the intermediate species x. In this figure we see three intersection points, marking the three
possible steady states. By varying the degradation constant k3, we can change the behavior
of the system so that it exhibits a single high steady state, three separate steady states, or a
single low steady state (See Figure 12.13).

If we track the intersection points as we vary the value of the rate constant k3, we obtain
the bifurcation plot shown in Figure 12.17.

Figure 12.17 shows that at some value of the parameter k3, the system has three possible
steady states, outside this range only a single steady state persists. Bifurcation diagrams
are extremely useful for uncovering and displaying such information. Drawing bifurcation
diagrams is not easy, however. and there are some software tools that can help. Figure 12.17
for example was generated using the SBW Auto C# tool>. Another useful tool for drawing
bifurcation diagrams is Oscill8?. Both tools can read SBML. Figure 12.17 was generated
first by entering the model into Tellurium (Shown in Listing 12.3) to generate the SBML.
The model was then passed to Auto C# to produce the bifurcation diagram.

The bifurcation plot shows how the steady state changes as a function of a parameter, in
this case k3. Of interest is the following observation. If we start k3 at a high value of
1.4 (Marker 1), we see that there is only one low steady state. As k3 is lowered, we pass
the point at approximately k3 = 0.8 (Marker 2) where three steady states emerge. We
continue lowering k3, and see that the concentration of x rises very slowly until about 0.4
(marker 3). At this point the system jumps to a single steady state, but now at a high level

*http://jdesigner.sourceforge.net/Site/Auto_C.html
3 http://oscill8.sourceforge.net/

http://jdesigner.sourceforge.net/Site/Auto_C.html
http://oscill8.sourceforge.net/

276 CHAPTER 12. STABILITY

®

p—
“

Concentration, x

-
L

Figure 12.17 Plotting intersection points from Figure 12.13 as a function of k3. Dotted
line marks the lower intersection point, dashed line the middle intersection points, and solid
line the upper intersection point. Computed using the SBW AUTO C# Tool.

(Marker 4). The interesting observation is that if we now increase the value of k3, we do not
traverse the same path. As we increase k3 beyond 0.4, we do not drop back to the low state,
but continue along the high state until we reach k3 = 0.8 (Marker 5), at which point we
jump down to the low state (Marker 2). The direction in which we traverse the parameter
k3 affects the type of behavior we observe. This special phenomena is called hysteresis,
Figure 12.18.

Hysteresis is where the behavior of a system depends on its past history.

Irreversible Bistability

It is possible to design an irreversible bistable switch. Figure 12.20 shows the bifurcation
plot for such a system. This is modified from the ‘Mutual activation’ model in the review by
Tyson [175], Figure 1e. In this example increasing the signal results in the system switching
to the high state at around 2.0. If we reduce the signal from a high level, we traverse the
top arc. If we assume the signal can never be negative, we will remain at the high steady
state even if the signal is reduced to zero. The bifurcation plot in the negative quadrant of
the graph is physically inaccessible. This means it is not possible to transition to the low
steady state by decreasing signal. As a result, the bistable system is irreversible, that is,
once it is switched on, it will always remain on.

import tellurium as te

12.5. BIFURCATION PLOTS

277

3
k —_—
g2
|
g
- '
o "'
S t'
O | LT m.
0 05 1 15 0.5 1 =

Parameter, k3

Parameter, k3

Figure 12.18 Depending on whether we increase or decrease k3, the steady state path we
traverse will be different. This is a characteristic of hysteresis.

r = te.loada ('''
$X -> R1; KkI1*EP + k2xSignal;
R1 -> $w; k3*R1;
EP -> E; Vml1*EP/(Km + EP);
E -> EP; ((Vm2+R1)*E)/(Km + E);

Vml = 12; Vm2 = 6;

Km = 0.6;

ki = 1.6; k2 = 4;

E = 5; EP = 1553

k3 = 3; Signal = 0.1;
lll)

result = r.simulate(0, 40, 500)
r.plot()

Listing 12.4 Script for Figure 12.20.

The Tellurium script for the model is shown in Listing 12.4. To create Figure 12.20, first
install Oscill8*, then launch Tellurium. Load the script into Tellurium. Run the script (press
green button in toolbar) to put the model into memory. Go to the SBW menu and select
Oscill8. Once in Oscill8, select Run; 1 Parameter. In the new dialog box select continuation
and the parameter “Signal”. Then select run to view the bifurcation plot.

“http://oscill8.sourceforge.net/

http://oscill8.sourceforge.net/

278 CHAPTER 12. STABILITY

Signal

l Vs U,

R4
U3
Uy

/N

EP E

NS

Figure 12.19 System with Positive Feedback using a covalent modification cycle, E, EP.

Toggle Switch

The final example we will consider is the toggle switch. This example illustrates the idea
of an attractor basin in a phase plot. The system in question is shown in Figure 12.21 and
is comprised of just two nodes, S; and S». Each node inhibits the other. This is a high
level diagram, but mechanistic realizations can be made using protein or gene regulatory
networks. In fact, one of the first synthetic biology constructs was the toggle switch made
from an engineered gene regulatory network [48]. Intuitively, one can imagine the type of
behavior this system might exhibit. For example, if S; has a high concentration then this
will repress S». Since S is now low, repression of S; is negligible. This state appears
stable. Alternatively we could imagine that S5 is at a high concentration. This will repress
S1 and thus we have another state that appears stable.

We can better study the behavior of the toggle switch by building a computer simulation.
Using the set of differential equations shown in equations (12.10), we describe the model

as:
dSi k1

= — k28
i~ 1+si 720
J . (12.10)
Sz 3

= — k4S
di 1487 2

A suitable set of parameter values are given by k1 = 6;k3 = 6;ky = 2;kq4 = 2. Fig-
ure 12.23 shows the phase plot for this system. The three points marked by round circles
represent the steady state locations. Note that there is a high S1/low S state, and a low
S1/high S, state. These correspond to the states we intuitively described before. There is
also a third point which represents a medium level of S; and S». The arrows in the diagram
represent the direction of change of S and S» in time. The diagram has been subdivided

12.5. BIFURCATION PLOTS 279

20

< 15
:m /
.8
g 10 -----
= | e
Q .
g

0

) —1 0 I ’ ’

Figure 12.20 Bifurcation diagram for species R; with respect to the signal. Signal from
the model shown in Tellurium script 12.4. The continuous line represents stable steady state
points, the dotted line the unstable steady states. Plotted using Oscil8 http://0oscill8.
sourceforge.net/.

Figure 12.21 The toggle switch. Two mutually inhibited nodes, S; and S>.

into four basins of attraction. For example, the phase plot highlights one of the direction
arrows in the basin labelled two. The arrows initially point right to left and down. This tells
us that if we started a time course simulation at the first arrow, the concentration of S; and
S»> would both decline. Initially, the arrow points roughly in the direction of the unstable
state but as it moves, its direction changes and eventually moves towards the upper stable
state to the left.

The phase plot gives us a condensed view of how any initial condition will evolve. Points
that start in basin one will converge to the third state, basin two points converge on the first
state, basin three to the third state, and finally basin four to the first state.

Nuliclines

The toggle switch model from the previous section also allows us to introduce the concept
of nullclines. We’ve seen various mechanisms for visualizing a system, especially related
to its steady state stability. For example, in Figure 12.1 we show how the stability of a
one dimensional system can be visualized, likewise for Figure 12.13, the bifurcation plot

http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/

280 CHAPTER 12. STABILITY

‘i’ o
JS1LPJZ
|

Figure 12.22 The toggle switch constructed from a gene regulatory network.

in Figure 12.17, and the phase plot in Figure 12.23. There is yet another plot that can help
us understand the instability of a two dimensional system and that has to do with plotting
the nullclines. The nullcline is the solution to a differential equation when set to zero as a
function of the two system variables. For example, the toggle switch differential equation
for Sy is:

We can set this to zero and find all combinations of S and S, that satisfy this equation.
These points form a line on a two dimensional plane. Such a line is called the nullcline.
Figure 12.24 shows two nullclines corresponding to the two differential equations for the
toggle model. Note that where the nullclines intersect, we find the steady state because at
these points, both equations yield the same values for S and S5.

Although useful, many of the plots we have reviewed are limited to systems of two or
three variables. The nullclines in an n-dimensional system cannot easily be visualized.
Likewise, a two dimensional phase plot can only take a slice through the dynamics of a
system with many variables. Nevertheless, these techniques, in particular bifurcation plots,
are extremely useful in delineating the potential behavioral modes of networks. See [27, 28]
for examples of bifurcation plots in studying protein signaling pathways.

Further Reading

1. Edelstein-Keshet L (2005) Mathematical Model sin Biology. SIAM Classical In Ap-
plied Mathematics. ISBN-10: 0-89871-554-7

2. Fall CP, Marland ES, Wagner JM, Tyson JJ (2000) Computational Cell Biology.
Springer: Interdisciplinary Applied Mathematics. ISBN 0-387-95369-8

3. Steuer R and Junker BH (2009). Computational models of metabolism: stability and
regulation in metabolic networks. Advances in chemical physics, 142, 105.

12.5. BIFURCATION PLOTS 281

vV A N L LN

Y v v v
e v L L v

v v v L v

v B L v v
Y S v Y

v LY v v v

L ol o

v v N ¥ L V'

v v v v v e e

VY vy ¥ i e

Ve v & <«

2 Vs & &

Vays & & e e

Vs &~ & & «

« & £ LT & e

— e 4

- T e i e e —

W # 57« =~ = « € « & & — <
, e ik S = e -

)
~
o 4
©

0 1 2 3 4 0

5
S
Figure 12.23 Phase portrait for a toggle switch, equation (12.10). The four numbered
areas mark the four basins of attraction. The line of thicker arrows illustrates one possible

time course trajectory given an initial starting point. Diagram generated by PPlane http:
//math.rice.edu/"dfield/dfpp.html, k1 = 6;k3 = 6;ky = 2;kq = 2.

Exercises

1. Determine the Jacobian matrix for the following systems:

dx 2 5 dy

7 _ == x(1 -
a)dt S A x(I—y)
b)dx_ B dy_
A T

2. Compute the steady state solutions to the two systems in the previous question.
3. Determine the stability of the solutions from the previous question.

4. Determine the Jacobian in terms of the elasticities and stoichiometry matrix for the
following systems:

http://math.rice.edu/~dfield/dfpp.html
http://math.rice.edu/~dfield/dfpp.html

282 CHAPTER 12. STABILITY

s] dSy/dt=0

Figure 12.24 Phase portrait for a toggle switch. The two nullclines are superimposed
on the phase plot and labelled with arrows. Diagram generated by PPlane http://math.
rice.edu/"dfield/dfpp.html. See Figure 12.23 for parameter values.

a) Xo = S1; S1—> 52, S —> 53:53 > X3

b) Xo > S1; S1—> 52; S — S1; S — X4

c)S1 — S2; S — 83
Assume all reactions are product insensitive, X; species are fixed, and in c) S3 regu-
lates the first step.

5. Show that the following system is stable to perturbations in S; and S, by computing
the eigenvalues at steady state (See Listing 12.1):

Xo —> S1— 8 — X

http://math.rice.edu/~dfield/dfpp.html
http://math.rice.edu/~dfield/dfpp.html

12.5. BIFURCATION PLOTS 283

The three rate laws are given by:

LImlxo
V1 =
Kmy + Xo + S1/Ki
Vin2S2
Uy =
Kmy + 51+ $2/K;
0y — Vim3S3
2 Kms + 5S>

Assign the following values to the parameters: X, = 1; X1 = 0; Vip = 1.5; Vi =
2.3;Vm3 = 1.9; K1 = 0.5;, Ko = 0.6; Kj3 = 0.45; K; =0.1; K; =0.2.

6. Show that the following system is unstable. What kind of unstable dynamics does it

have?

import tellurium as te

r = te.loada ('''
JO: $XO0 -> S1; VM1*(X0-S1/Keql)/(1+X0+Sil+pow(S4,h));
J1: S1 -> S2; (10%S1-2%S2)/(1+S1+S82);
J2: S2 -> S3; (10%S2-2%S3)/(1+S2+S83);
J3: 83 -> S4; (10%S3-2xS4)/(1+S3+S4);
J4: S4 -> $X1; Vm4xS4/(KS4+54);
X0 = 10; X1 = 0;
S1 = 0.973182; S2 = 1.15274;
S3 = 1.22721; S4 = 1.5635;
VM1 = 10; Keql = 10;
h = 10; Vmd = 2.5;
KS4 = 0.5;

AD

7. Show that the following system is unstable. What kind of unstable dynamics does it
have?

import tellurium as te

r

te.loada ('''

JO: $src -> X; k1xS;

Ji: X -> R; (kop + kox*EP)*X;

J2: R -> $waste; k2*R;

J3: E -> EP; Vmax_1*R*E/(Km_1 + E);
J4: EP -> E; Vmax_2*EP/(Km_2 + EP);

284 CHAPTER 12. STABILITY

src = 0; kop = 0.01;
ko 0.4; k1 = 1;
k2 = 1; R=1;
EP = 1; S =0.2;
Km_1 = 0.05; Km_2 = 0.05;
Vmax_2 = 0.3; Vmax_1 = 1;
KS4 = 0.5;

lll)

result = r.simulate(0, 500, 1000)
r.plot()

8. Using Figure 12.24, show graphically that the toggle switch model has two stable
and one unstable steady states.

12.6 Appendix

Proof that the presence of imaginary numbers in the solution to a set of differential equa-
tions means that the solution is periodic (Equation (12.7)). Consider the system:

x(t) = c1z1e T 4 0y 2y AT

where z1 and z3 are corresponding conjugate eigenvectors. Using Euler’s formula, et =
cos(u) + i sin(p) and that e AT = oAt oIkt e obtain:
x(t) = clzlem(cos(,ut) + i sin(ut))
—l—czzzem(cos(,ut) — i sin(ut))
Writing the conjugate eigenvectors as zy = a + bi and z, = a — bi, we get:
x(t) = c1(a + bi)e* (cos(ut) + i sin(ut))
+(a — bi)e“(cos(ut) — i sin(ut))
Multiply out and separate the real and imaginary parts:

x(t) = eM [c1(acos(put) — bsin(ut) + i(asin(ut) + b cos(ut)))
+ ca(acos(ut) — b sin(ut) —i(asin(ut) + b cos(ut)))]

The complex terms cancel leaving only the real parts. If we set ¢; + ¢c2 = k1 and (¢1 —
¢2)i = k, then:

x(t) = e* [kq(a cos(ut) — b sin(jur))
ko(asin(ut) + b cos(ut))]

12.6. APPENDIX 285

The solution is real when the constants ¢; and ¢ are real. This will only be the case
when the eigenvalues are a conjugate pair, (a &£ ib), which is the case we are considering.
Therefore, systems that admit a complex pair of conjugate eigenvalues result in periodic
real solutions.

Plot a phase portrait for a simple species species pathway
import tellurium as te
import matplotlib.pyplot as plt

rr = te.loada ('''
$Xo -> S1; kilxXo;
S1 -> S2; k2%S1;
S2 -> $X1; k3%S2;

k1 = 0.6; Xo = 1;

k2 = 0.4; k3 = 0.8;
539
plt.figure(figsize=(9,4))
SiStart = 0
S2Start = 0

for i in range(1, 11):
rr.S1 = SiStart
rr.S52 = S2Start
m = rr.simulate(0, 10, 120, ["S1i", "S2"])
p = te.plotArray(m, show=False)
plt.setp (p, color='r')
S1Start = SiStart + 0.2
SiStart = 2
S28tart = 0
for i in range(1l, 11):
rr.S1 = SiStart
rr.S2 = S2Start
m = rr.simulate(0, 10, 120, ["S1", "S2"])
p = te.plotArray(m, show=False)
plt.setp (p, color='r')
S2Start = S2Start + 0.2
S2Start = 0
SiStart = 0
for i in range(1l, 11):
rr.S1 = SiStart
rr.S52 = S2S8tart
m = rr.simulate(0, 10, 120, ["S1", "S2"])
p = te.plotArray(m, show=False)
plt.setp (p, color='r')
S2Start = S2Start + 0.2
SiStart = 0
S2Start = 2

286

CHAPTER 12. STABILITY

for

plt
plt
plt
plt

plt.
plt.

i in range(1, 11):

rr.S1 = SiStart

rr.S2 = S2Start

m = rr.simulate(0, 10, 120, ["S1i", "S2"])
p = te.plotArray(m, show=False)

plt.setp (p, color='r')

S1Start = SiStart + 0.2

.x1im ([0, 2])
.ylim ([0, 2])

.xlabel ('S1', fontsize=16)
.ylabel ('S2', fontsize=16)
savefig ("plot.pdf")
show ()

Listing 12.5 Script for Figure 12.3.

13

Modeling FeedForward Networks

In this penultimate chapter we will return to the feedforward loops (FFL) that were intro-
duced in Chapter 1. FFLs offer an interesting example where simulation can yield useful
insight into the properties of a particular network configuration.

Recall that an enrichment study of gene regulatory motifs in E. coli and yeast revealed
two types of FFLs that appear more common that others (Figure 1.21). These included the
coherent type I and incoherent type I motifs. Schematically these are shown in Figure 13.1.
In order to study the potential dynamics of this motif, we must first convert the schematic
diagrams into kinetic models.

Coherent FFL Incoherent FFL
C1 T 1 T
P2 P2
P3 P3

Figure 13.1 Schematics of Type I coherent and incoherent feedforward loops.

287

288 CHAPTER 13. MODELING FEEDFORWARD NETWORKS

13.1 Coherent Type | Motif

Let us first address the coherent feedforward loop (Figure 13.1). In order to convert this
into a kinetic model of a gene regulatory network, we have to consider the nature of the in-
teractions between P; and P,, and the convergence of P; and P; onto P3. Biologically we
will assume that Py and P, are transcription factors such that P; activates a gene (hidden
in the diagram) that expresses P,. Likewise, P; and P, in turn stimulate the expression of
P3, again via a hidden gene. This gives us the diagram shown in Figure 13.2.

P1— P2

Gene 1 |

| e

Gene 2

Figure 13.2 Conversion of the coherent schematic into a biological model - Step 1.

However, there is a problem with the model shown in Figure 13.2. If we were to simulate
this model (assuming we’ve assigned suitable rate laws and values to the kinetic param-
eters), we will find that the concentration of P, and P3 increases indefinitely, and the
network fails to come to a steady state. Degradation steps for the transcription factors are
missing. Adding these steps to the model yields the network shown in Figure 13.3.

f

P1— g P2

Gene 1 |

[

Gene 2

Figure 13.3 Conversion of the coherent schematic into a biological model - Step 2.

We can continue to add detail to this model. In particular the expression of P, and P3 ap-
pears very simplistic; there doesn’t seem to be separate transcription and translation steps.
That is, we are not modeling the production of mRNA and protein expression. Sometimes
the presence of mRNA can be an important part of the model. Adding mRNA as an inter-
mediate between the gene and the expressed protein will add delays to the system which

13.1. COHERENT TYPE | MOTIF 289

can, in some cases, markedly affect behavior. The decision whether to add an extra mRNA
step is entirely dependent on the purpose of the model. Recall that models are not repli-
cas of reality, but rather useful tools to help explain a given set of observations and at the
same time, make useful predictions. If a model without the mRNA step can still explain
the observations and make useful predictions, then there is no need to include it. It is up to
the systems or synthetic biologist to make a judgement call on what detail a model should
include or not. Sometimes one might be told that a model X is wrong because it doesn’t
include feature Y. The truth is, even if we added feature Y, the model is still wrong. No
model is right, just perhaps useful.

In summary, the model includes two genes to express P, and Ps, respectively. We’ve also
added two degradation steps, one for P, and another for P3. P; will be our input to the
model which means there is no degradation step for P;.

We now must decide on the nature of the interactions between the various inputs and gene
expression. A common rate law used to model gene expression is the Hill equation. This
choice allows us to include sigmoidicity in the response if needed. For example, a Hill
equation for activation is:

_ VmP?

~ (Kg + P)"

where V;,, is the maximal rate of gene expression, Kg is the concentration of P at half-
maximal activity, n is the Hill coefficient that determines the degree of sigmoidicity, and
P is the concentration of transcription factor. We can use the Hill equation to describe the
expression P,. The more interesting problem is when we need to assign a rate law for the
expression of P3 which depends on P; and P,. The expression of P3 could depend on P;
and P; in at least two ways:

v

1. P; and P, must both be bound in order for P3 expression.

2. Py or P, bound will result P3 in expression.

In the first case, the action of P; and P; is like an AND gate. If either are not present, no
expression occurs. Only if both transcription factors bind do we get expression. The second
case is like an OR gate; if either of the transcription factors are present, we see expression.
We can model these two situations using a modified Hill equation. The reader is referred to
the companion book ‘Enzyme Kinetics for Systems Biology’ for more details but the two
relevant rate laws are:

K1 K2 P P2

AND Gate: v =V,
"14 K1 P + K2P)? + K1 Ko Pl PJ?

(13.1)
K P1n1 + szgz

1+K1P1nl +K2P2nz

OR Gate: v = V),

The K terms are thermodynamic constants related to the binding and unbinding of the

290 CHAPTER 13. MODELING FEEDFORWARD NETWORKS

0.6 —— P1: Input pulse
i N . RTYRD P5: Output
N
_
< 0.4
=)
<
-9
0.2
0

Time

Figure 13.4 Effect of a narrow pulse (P7) on the concentration of P3 for a Coherent Type
I motif using an AND gate like rate law.

transcription factors to operator sites. The n terms are Hill coefficient type constants and
Vin, the maximal activity.

The final consideration are the degradation rates for the three transcription factors. Here we
assume that the reactions are governed by simple first-order mass-action rate laws. With
the network and kinetic laws in place, we can now consider carrying out simulations.

Simulating the Coherent Type | Motif: AND Gate

Let us first consider using the AND gate based rate law in the coherent type I motif (13.1).
Listing 13.1 in the chapter appendix shows the model we will investigate. It is worth
mentioning how gene expression is modeled using Tellurium. Consider the step P; to P,.
To model this, we will use the following lines:

$G -> P2; VmxP1~4/(Kml + P1-4);
P2 -> $w; k1xP2;

The first line describes the expression of P, as a function of P;. The reaction $G -> P2
represents the production of P, from a fixed species called G, short for gene. The expression
rate is given by a Hill equation which is a function of P;. The second line represents the
degradation step for P,. The reaction P2 -> $w represents the disappearance of P, into
a fixed species call w, short for waste. A similar syntax is used for the expression of P3
except an AND gate like rate law is used to combine the activities of P; and P,. We have
set the Hill coefficients to a value of 4, set the maximal rates of unity and the half-maximal
constants to 0.5.

Figures 13.4 and 13.5 illustrate one of the key properties of the coherent type I feedforward

13.1. COHERENT TYPE | MOTIF 291

0.6 —— Pj: Input Pulse
Y Y A ETEYD P5: Output
O
< 0.4
=)
<
-9
0.2
0

Time

Figure 13.5 Effect of a wide pulse (P;) on the concentration of Pz for a Coherent Type
I network using an AND gate like rate law. Note how the response falls off immediately
once the pulse turns off.

network using an AND gate, noise rejection. That is, the output is active if the input signal
persists long enough. If the signal is only momentary, then the output of the FFL does not
respond. This enables the network to be used as a noise filter where short fluctuations in the
input do not trigger a response, but larger more lasting signals do. Another characteristic
is that the response, when it occurs, is delayed, but once the input signal subsides, the
response falls off immediately.

If a pulse signal is applied to P, the signal travels two routes to get to Ps. If the pulse is
too short, it takes too long for the signal to travel via P,. By the time the signal reaches
P3 via P, the direct signal from P; has subsided, meaning that a short time signal will not
activate Ps. This effect is shown in Figure 13.4.

In sharp contrast, if the pulse width of P; is wide enough, activation via the direct route
persists long enough such that the indirect route via P, has time to also reach P3. This
means that signals from both routes will be present at P3, and since we assumed that acti-
vation of P3 was via an AND gate like response, P3 will now fully respond. The network
therefore acts as a transient signal filter (Figure 13.5).

Simulating the Coherent Type | Motif: OR Gate

In the last section we saw the effect of using an AND gate like response on the output. Here
we will consider the alternative, an OR gate. Listing 13.2 in the chapter appendix shows the
script used to model the OR gate network. Figure 13.6 shows the results of applying a pulse
to the model. We can see that the network acts as a pulse shifter; the input pulse appears
on the output, but shifted forward in time. One characteristic is that the output pulse rise is
delayed from the initial pulse edge. Once the pulse comes off, the output is also delayed.

292 CHAPTER 13. MODELING FEEDFORWARD NETWORKS

0.8
—— Pq: Input pulse
----- P3: Output
0.6 3: OPY
ol
E 04
9
0.2
O ...

Time

Figure 13.6 Effect of pulse (P1) on the concentration of P3 for an Coherent Type I network
using an OR gate like rate law. Note how the response rises immediately and is delayed
once the pulse turns off.

13.2 Incoherent Type | Motif

The second common type of motif found in E. coli and yeast is the incoherent type I motif.
As with the coherent type I motif in the last section, we have to consider how we are
going to implement the motif as a simulation model. Figure 13.7 shows a genetic circuit
that is one possible realization of the incoherent type I motif. As before, we have added
degradation steps to P, and P3 which we assume will follow simple first-order reaction
kinetics. We can assign a Hill like activation rate law between P; and P;.

The more interesting question concerns the dual control of P3 expression. For the inco-
herent network, P3 is both activated and inhibited at the same time. One possible kinetic
model to use is a non-competitive one. That is. P5 acts as a repressor but always dominates
because even if the activator P; binds, it cannot easily dislodge the repressor. We can also
consider a competitive model where the activator competes with the repressor on the same
binding site. Here we will only review the non-competitive model, the equation for which
is given below:
v K1 Py
(14 K2 Py + K3P, + K3 P P3)

Properties of the Incoherent Type | Motif

The incoherent type I feedforward network (Figure 13.7) has a completely different re-
sponse compared to the coherent type I network.

13.2. INCOHERENT TYPE | MOTIF 293

P1— P2

Gene 1 |

P3—

Gene 2

Figure 13.7 Conversion of the Incoherent schematic into a biological model. Note that the
regulation on Ps3 is antagonistic compared to the coherent type I network.

Using the non-competitive model, the incoherent type I network has a number of interesting
behaviors, including pulse generator, concentration band detector, and frequency band pass
filter. The pulse generator simulation is shown in Figure 13.8 where an input step function
is applied to the input, P;, and the effect on P3 observed. In this case, P rises rapidly then
falls off in a pulse like manner even though the input signal remains on. This is due to the
delay in the inhibition route. Initially the inhibition is weak and the output rises. Eventually
P, increases to the extent that it begins to repress the production of Ps.

The second type of behavior that the network can display is to act as a concentration band
detector. The simulation shown in Figure 13.9 shows the network turning on for a specific
range of input signal. The position of the peak in the response can be adjusted by changing
the strength of inhibition and the input threshold from P; to Ps.

An incoherent type I network can also act as a band pass filter. That is, the network will
respond more strongly if the input signal varies at a specific range of frequencies. At
high and low frequencies the network will not respond, but at mid range frequencies it
will. In addition, the incoherent type I loop can be used to build a response accelerator.
The activator loop is made stronger so that the initial response rises faster, but then the
repression brings the response back down to the desired steady state.

A series of synthetic incoherent type I networks have been built in E. coli illustrating the
band pass behavior [41]. Further details on the properties of feedforward networks can also
be found in the book by Alon [4].

Further Reading

1. Alon U (2006) An Introduction to Systems Biology: Design Principles of Biological
Circuits, Chapman & Hall/Crc Mathematical and Computational Biology Series.

2. Alon U (2007) Network motifs: theory and experimental approaches. Nature Re-

294 CHAPTER 13. MODELING FEEDFORWARD NETWORKS

0.6

—— Pp: Input
----- P3: Output

o 04}

=

=

<

~ 0.2 8

0 | | e frrasunua (sasssans P

Figure 13.8 Simulation of the pulse generation characteristics of a incoherent type I feed-
forward network. The x-axis shows the change in the input signal over time. At 10 time
units, a step signal is applied, this causes the output to rise then fall in a pulse like manner.
The width of the pulse can be adjusted by changing the degree of cooperativity on P3. See

Tellurium script 13.3.

0 0.2 0.4 0.6 08]
Py

Figure 13.9 Simulation of the concentration band detector using an incoherent type I
feedforward network. The x-axis shows the change in the input signal, P;, while the y-axis
shows the steady state concentration in the output signal, P3. The network only responds
in a particular range of input concentration. See Tellurium script 13.4.

13.2. INCOHERENT TYPE | MOTIF 295

views Genetics, 8, 450-461.

3. Yosef N and Regev A (2011), Impulse Control: Temporal Dynamics in Gene Expres-
sion. Cell 144, 886—-896.

Exercises

1. Study the behavior of an Incoherent Type I FFL by using a competitive model for
the activator/repression step. In a competitive model both the repressor and activator
bind to the same operator site.

Appendix

See http://tellurium.analogmachine.org for more details of Tellurium.

import tellurium as te
import numpy

Coherent Type I Genetic Network, noise filter
rr = te.loada ('"'
$G2 -> P2; Vmax2*P1~4/(Kml + P1°4);
P2 -> $w; k1*P2;
$G3 -> P3; Vmax3*P1~4xP2°4/(Kml + P1°4%P274);
P3 -> $w; k1*P3;

Vmax2 = 1; Vmax3 = 1;

Kmli = 0.5; k1 = 0.1;

P1 = 0; P2 = 0; 18 = 03
lll)

rr.getSteadyStateValues ()
print rr.getFloatingSpeciesConcentrations()

Pulse width

Set to 1 for no effect

Set to 4 for full effect

width = 1

rr.P1 = 0.3

ml = rr.simulate(0, 10, 100, ["time", "P1", "P3"])

rr.P1 = 0.7 # input stimulus

m2 = rr.simulate(10, 10 + width, 100, ["time", "P1i", "P3"])
rr.P1 = 0.3

m3 = rr.simulate(10 + width, 40, 100, ["time", "P1i", "P3"])
m = numpy.vstack((ml, m2))

http://tellurium.analogmachine.org

296 CHAPTER 13. MODELING FEEDFORWARD NETWORKS

result = numpy.vstack((m, m3))
te.plotWithLegend(rr, result)

Listing 13.1 Script for Figure 13.4.

import tellurium as te
import numpy

Coherent Type I Genetic Network, delay circuit using OR gate
rr = te.loada ('"'

$G2 -> P2; Vmax2xP1~4/(Kml + P174);

P2 -> $w; k1%P2;

$G3 -> P3; Vmax3*(P1~4 + P2°4)/(Kml + P1°4 + P2°4);

P3 -> $w; ki1xP3;

Vmax2 = 1; Vmax3 = 0.1;
Kml = 0.5; k1 = 0.1;
P1 = 0; P2 = 0; 23 = 03

lll)

rr.getSteadyStateValues()
print rr.getFloatingSpeciesConcentrations()

Pulse width

Set to 1 for no effect

Set to 4 for full effect

width = 10

rr.P1 = 0.3

ml = rr.simulate(0, 50, 200, ["Time", "P1", "P3"]).copy()

rr.P1 = 0.8 # Input stimulus

m2 = rr.simulate(50, 50 + width, 200, ["Time", "P1i", "P3"]).copy()
rr.P1 = 0.3

m3 = rr.simulate(50 + width, 200, 200, ["Time", "P1", "P3"]).copy()
m = numpy.vstack((ml, m2))

result = numpy.vstack((m, m3))

te.plotWithLegend(rr, result)

Listing 13.2 Script for Figure 13.6.

import tellurium as te
import numpy

Incoherent Type I Genetic Network, Pulse generator
rr = te.loada ('"'

$G1 -> P2; til%al*P1/(1 + al*P1);

P2 -> $w; gamma_1%*P2;

13.2. INCOHERENT TYPE | MOTIF 297

$G3 -> P3; t2*b1*P1/(1 + b1*P1 + b2%P2 + b3*P1xP2°8);
P3 -> $w; gamma_2%P3;

P2 =
P3 =
P1 =
G3 =
Gl =
tl =
al =
t2 =
bl =
b2 =
b3 = 10;

gamma_1 =
gamma_2

lll)

\..\..
(@}
=

&

we o

we + we
[y
we

-

O, B O 0l OO O O O

o O
=

we

Time course response for a step pulse

rr.P1 = 0.0;

ml = rr.simulate(0, 10, 100, ["Time", "P1", "P3"])
rr.P1 = 0.4 # Input stimulus

m2 = rr.simulate(10, 50, 200, ["Time", "P1", "P3"])
m = numpy.vstack((ml, m2))

te.plotWithLegend(rr, m)

Listing 13.3 Script for Figure 13.8.

import tellurium as te
import numpy as np

Steady state band detector
rr = te.loada ('''
$G1 -> P2; tl*al*P1/(1 + al*P1);
P2 -> $w; gamma_1%P2;
$G3 -> P3; t2*b1*P1/(1 + bl*P1 + b2%P2 + b3*P1%P2°8);
P3 -> $w; gamma_2%P3;

P2 = 0; P3 = 0;

P1 = 0.01; G3 = 0;

€l = 03

®i, = B al = 0.05;
t2 = 0.8; bl =1;

b2 = 0.1; b3 = 10;
gamma_1 = 0.1;
gamma_2 = 0.1;

lll)

298

CHAPTER 13.

MODELING FEEDFORWARD NETWORKS

Steady state response

200

np.empty([n, 21)

i in range (0, n):

m[i, 0] = rr.P1

m[i, 1] = rr.P3
rr.getSteadyStateValues ()
rr.P1 = rr.P1 + 0.005

te.plotArray(m)

Listing 13.4 Script for Figure 13.9.

Behavior of Stochastic Models

14.1 Introduction

Chapter 6 described some basic concepts in stochastic kinetics, in particular how to sim-
ulate stochastic models. What was not discussed is the kind of behavior that can emerge
from a stochastic system. At first glance it may seem that a stochastic model would just be
a noisy version of the equivalent deterministic model. In some cases this is true. Take for
example a simple equilibration model such as:

A=B

where the forward rate is given by k1 A, and the reverse rate by k,B. Given starting con-
centrations for A and B, we can easily determine by simulation the time trajectories for A
and B. We can compute the trajectories for both the stochastic and equivalent deterministic
model. The two stochastic rate constants k1 and k, are numerically equal to the deter-
ministic equivalents because both reactions are first-order. Figure 14.1 shows plots gen-
erated from the model (Listing 14.2) and compares four simulations that were carried out
using different initial conditions. The first plot at the top left corner starts with 6000 mol-
ecules. Under these conditions, the stochastic and deterministic simulations seem almost
indistinguishable. At 600 molecules we begin to see a difference, and by 20 molecules, the
stochastic trajectories are very noisy. However even at 20 molecules the stochastic data still
appears to roughly follow the deterministic trajectories. In fact the mean stochastic levels
at equilibrium are identical to the deterministic concentrations. In this case the stochastic
simulation is the same as the deterministic model except noisy.

In general this will not always be the case. If stochastic simulations simply represented

299

300 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

A = 6000 A =600

6000 600

4000 400

2000

Time Time

Figure 14.1 Comparison of deterministic and stochastic simulation for an isomerization
reaction using different initial conditions. Generated using Tellurium script 14.2.

noisy versions of the equivalent deterministic simulations, then stochastic models would
probably be of little interest. However it turns out there are a number of common situa-
tions where a stochastic model can yield very different behavior compared to the equiv-
alent deterministic model. In this book we will look at three interesting situations where
stochasticity makes a significant difference:

e Bursting and extinction events
e Stochastic focusing

e Chatter

14.2 Stochastic Bursting

It is hard to imagine that a single reaction event could make any real difference to the future
evolution of a larger system, but in some special cases this holds true. Bursting is where
a system at one point is relatively quiescent, then suddenly shows marked activity until it
returns to the quiescent state again. The time interval between quiescent and active states
is generally irregular. A clear example of bursting occurs during transcription [59, 22].

14.2. STOCHASTIC BURSTING 301

Transcriptional Bursting

When the number of transcription factors (or RNA polymerase) is very small, the binding
and unbinding to the operator and promoter sites leads to random transcription events such
that transcription acts in an on/off manner with bursts of mRNA production followed by
periods of silence. This is called the random telegraph model [92]. We can construct a
bursting model as follows.

The model has three parts, the first is the binding of unbound transcription factor to an
operator site, the second computes the level of gene expression as a function of bound tran-
scription factor. Finally, the third part involves the degradation of the expressed protein.
A schematic of the network is shown in Figure 14.2. Listing 14.3 in the Appendix is the
Tellurium script that generated the data in Figure 14.3. The simulation uses the Gillespie
method to generate the results. The lower curve shows the on/off behavior of the tran-
scription factor. Given that there is only one expression cassette, there is only one bound
complex at any one time, hence the bound state varies between zero and one. When the
transcription factor is bound, there is a burst of protein synthesis. When the bound tran-
scription factor is released, the protein level decays as a result of protein degradation. We
see therefore, a rapid rise in protein followed by a slow decay. For comparison, the same
model is also simulated using a deterministic simulation as shown in Figure 14.4. The
deterministic and stochastic simulations are obviously very different.

[]
t Degradation
p— .

1 Protein

Figure 14.2 Simple bursting model.

lon Channel Bursting

Ion channels are common membrane bound proteins found in many cells, particularly nerve
tissue. There are a great variety of ion channels, but what they have in common is the abil-
ity to transport ions across membranes. Many channels act as gates, opening and closing
in response to specific stimuli. Some channels open or close depending on the local poten-
tial difference across the membrane, while others open and close depending on whether a
specific ligand is bound or not. Examples of ligands that can bind to ion channels include
acetylcholine, glutamate, or ATP.

Ion channels tend to be specific about what ions they transport, for example there are
sodium, potassium, calcium, and proton channels to name a few. Many of the voltage con-
trol ion channels are involved in nerve conduction and have been studied for many years.

302 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

I I
—— Bound Transcription Factor
4| |— Protein Concentration/10 2
2 [-
0 | |
0 500 1,000 1,500 2,000
Time

Figure 14.3 Bursting from a simple gene expression model. Note that the level of protein
has been reduced ten fold in order to make a clearer comparison. Upper curve represents
protein. Generated from Listing 14.3.

In the following section we will look at a very simple model of a ligand gated channel.

Consider a channel, C, that exists in two states, closed and open with an equilibrium dis-
tribution between the two. Furthermore, consider a ligand, L, that can bind to the open
channel forming a blocked channel (Figure 14.5). We can represent the model using the
following reactions:

Copen = Cclosed

L+ Copen — CLigand Blocked

Listing 14.5 in the Appendix shows the Tellurium code to run the model. We assume that
the ligand concentration is much higher than the concentration of ion channels such that
when ligand binds, the concentration of ligand hardly changes. As a result, we can fix the
level of ligand. Each time an ion channel opens, a flood of ions move across the membrane
resulting in a burst of electrical activity. The ligand concentration controls the duration be-
tween openings. The kinetics in the model has been arranged so that the transition between
closed and open is slow compared to the transition between open and blocked (bound to
ligand). At low ligand concentration the behavior of the system is dominated by the slow
transitions between the open and closed states leading to fewer bursts but longer lasting
ones. As the ligand concentration is increased, the equilibrium shifts away from the slow
open/closed transitions to the much faster open/blocked states. This means the bursts be-
come much shorter and more frequent in duration. This in turns means that the bursts in
ion current tend to average out more so the bursting is less noticeable.

14.3. STOCHASTIC FOCUSING 303

2
- == Bound Transcription Factor
150 — Protein Concentration/10
1
0.5
Qlocmooceccraaeiceieieeeeeee e
0 500 1,000 1,500 2,000

Figure 14.4 Simple gene expression model based on a deterministic description. Note
that the deterministic behavior is completely different from the stochastic bursting seen in
Figure 14.3. Upper curve represents protein.
+
A
Blocked Open Closed

<T> G
[
|
Ligand

Figure 14.5 Simple model of a ligand gated channel.

14.3 Stochastic Focusing

There are important and common situations where a stochastic model can yield completely
different results from the equivalent deterministic model. Consider the enzymatic model
shown in Figure 14.7. In this model the first step is competitively inhibited by a signal
molecule called So. The rate law for the first step is therefore given by:

Vm

V] = ———
Km + So

Assume the substrate for the first reaction is fixed and the second step governed by a sim-
ple first-order reaction. We can run a simulation of this model either as a deterministic
or as a stochastic model. If we assign values shown in the Tellurium Listing 14.4 in the

304 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

1.5

Open Gate

0.5

0 21002 4-100%2 6-107%2 8-1072 0.1
Time

Figure 14.6 Bursting in an ion channel model. Each signal represents an open channel
and the width of the signal indicates how long the channel remains open. Once a channel is
open, ions pour across the membrane resulting in a burst of current. Tellurium script: 14.5.

U; Uy
- S, .
T &S

So

Figure 14.7 Two step model where the first step is inhibited by a signal Sp.

Appendix, we can compute the deterministic steady state for the intermediate, S, to be
141.5 concentration units. In order to simulate the same model stochastically, we need to
consider possible adjustments to the values for the constants. For example, the first-order
constant k3 remains unchanged. What about the competitive inhibition rate law, in partic-
ular the K, and V}, parameters? Since we know the model is a competitive one, we can
unwrap the rate law into individual elementary steps, however this may obscure the origins
of the unusual behavior we observe in the stochastic model. In addition, although research
is still ongoing in this important area, recent evidence suggests that the classic methods,
such as Gillespie SSA can be applied to non-elementary systems without significant loss
of accuracy [141, 23, 103, 146]. We therefore assume that the competitive rate law can be
legitimately used in the stochastic models and that the K, and V}, constants will have the
same values compared to the deterministic model.

With the model in place, we must now consider the level of signal, S,. Specifically, we
will assume the signal has a stochastic profile with a mean and variance of concentrations.
We can generate such a profile for S, by adding two new reactions, one that makes S,, and

14.3. STOCHASTIC FOCUSING 305

another that degrades it. A simple equilibration model will do, that is:
Xo =S,

By adding these two steps to the model, we ensure S, is noisy. Because the noise enters
the system externally, it is called extrinsic noise. We now wish to compute the steady state
concentration of S;. We know that §; will show a noisy profile due to contributions from
the extrinsic noise, S,, and noise generated by the model itself, called intrinsic noise. To
compute the steady state level we must run the simulation for a long time (ignoring any
initial transient) and compute the mean concentration by averaging over the S trajectory.
It is important that we use as much data as possible for this to obtain a reasonable estimate.
From the simulation we estimate the mean concentration of S; in the stochastic model to
be approximately 245.0 concentration units (Figure 14.8). This is significantly larger than
the deterministic steady state value of 141.5 concentration units. This demonstrates that
the deterministic and stochastic models are not identical. The stochastic model predicts a
different mean steady state concentration. The question is, why?

300
8
= 200
=
g
>

100

0 | | | | |
0 100 200 300 400 200 600

Time

Figure 14.8 Stochastic Focusing. Lower line represents the deterministic simulation and
the upper line the equivalent stochastic model. In this case the stochastic solution does not
follow the deterministic model. Generated from Tellurium script: 14.4.

To explain why the concentration levels are different, we must understand what happens to
noise as it propagates through a network. Imagine a simple first-order step, shown in Fig-
ure 14.9. Also imagine that the concentration of substrate, S, has a mean and distribution of
values as indicated by a bell shaped curve. This distribution is an input to the reaction and
we can imagine that a distribution of reaction rates will inevitably occur. Because the rate
law is linear however, the shape of the distribution of reaction rates will actually remain
unchanged. If we measure the mean reaction rate, we find that it corresponds to the ex-
pected reaction rate for a deterministic model system. Noise is unaffected by the first-order
reaction.

Now consider a different case where the reaction rate is modeled by a competitive inhibitor.

306 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

Observed mean rate

Expected mean /

reaction rate

Mean reactant concentration
and distribution

S

Figure 14.9 Propagation of stochastic noise through a first-order reaction.

In this case the response is no longer linear and the rate curve has significant curvature.
Let us again apply an input concentration with a given mean and distribution of values
(See Figure 14.10) to observe what happens. Because the curvature is negative, values
above the mean concentration of S will get compressed, while values below the mean
concentration will get stretched. This results in a distortion to the input bell shape curve
as it emerges as a reaction rate. The distortion means that the mean reaction rate is shifted
higher compared to the expected deterministic reaction rate because the output distribution
is stretched upwards. The change in mean rate leads to changes in the steady state levels
as compared to the deterministic case. This effect is called stochastic focusing [132, 86]
and can be negative (stochastic defocusing) as demonstrated in this example, or positive
depending on the sign of the curvature. If severe enough, stochastic focusing can result in
major changes to the qualitative behavior of the network such that the stochastic simulation
bears no resemblance to the deterministic one.

14.4 Chatter

In Chapter 12 we briefly talked about bistable systems, systems that can exist in one of
two stable steady states for a given set of parameters. If we model bistable systems using a
stochastic based model, it is possible to generate behavior where the system jumps periodi-
cally from one steady state to the other. The reason for this is that if stochastic fluctuations
are large enough compared to the gap between the two steady states, it is possible for the
system to jump from one basin of attraction to the other. Figures 14.11 and 14.12 are two
runs from the same model illustrating random jumps between the high and low states of a
bistable system. In Figure 14.11 we see the system starting at the high state of around 20

14.4. CHATTER 307

Observed mean rate "
\

Expected reaction rate

Mean reactant concentration
and distribution

Figure 14.10 Stochastic focusing due to a non-linear rate law. Note that the curvature of
the rate function causes the mean reaction velocity to increase.

molecules. This state lasts until # = 20 when the system jumps to its low state. At = 50
the system jumps back to the high state. The frequency of jumps between the two states is
a function of the systems’s parameters. The jumps are not regular and Figure 14.11 shows
an example where there is one jump to the low state at ¢ = 60, and some short lived jumps
to the low state at t+ = 135 and 140. The effect where a system spontaneously switches
between two states as a result of noise is called chatter [173, 44] or chattering.

Chattering in bistable systems has been observed in both natural and synthetic systems.
Work by Ozbudak et. al [127] shows that a population of E. coli cells are distributed
bimodally between the on (lactose utilization) and off state. A more detailed analysis by
Egbert and Klavins [39] using a synthetic circuit shows very clearly that a population of
cells can be distributed between the two bistable states. The degree of distribution can be
controlled by changing the system’s parameters. Many examples now exist in the literature
including work in the field of neuroscience.

import tellurium as te
import pylab

Chattering in a bistable system

r = te.loada ('''
$Xo -> x; bl + Vm*(x/Km)*(1+(x/Km)) "~ (n-1)/((1+(x/Km)) "n+k2) ;
x -> $w; k3x*x;

k2 = 200;

308 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

40

Molecules
[\
o

0 20 40 60 80 100 120 140

Time

Figure 14.11 Example of chatter in a bistable system that is stochastically modeled. The
system has two steady states at roughly 5 and 22. Noise randomly flips the system from
one state to the other.

k3 = 4.2;

Vm = 110;

i = &o18

bl = 10;

Km = 3.6;

7 5 13
lll)

m = r.gillespie(0, 140, ["Time", "x"])
r.plot (x1im=(0,140))

Listing 14.1 Script for Figure 14.6.

Further Reading

1. Rao, CV, Wolf, DM and Arkin, AP (2002), Control, exploitation and tolerance of
intracellular noise, 420:6912, 231-237.

2. Kern M, Elston TC, Blake WJ and Collins JJ (2005) Stochasticity in gene expres-
sion: from theories to phenotypes, Nature Reviews Genetics, 6, 451-464.

3. Rajl A, van Oudenaarden A (2008) Nature, Nurture, or Chance: Stochastic Gene
Expression and Its Consequences. Cell, 135:2, 216-226.

4. Eldar, A and Elowitz, MB (2010) Functional roles for noise in genetic circuits, Na-
ture, 467:7312, 167-173.

14.4. CHATTER 309

40

Molecules

[\
o

0 20 40 O 80 100 120
Time

Figure 14.12 Example where there is a single transition to the low state at about ¢ = 60.

5. Ingalls B (2013) Mathematical Modeling in Systems Biology: An Introduction, MIT
Press. ISBN: 978-0262018883

Exercises

1. The following modified model is taken from the work of Ribeiro and Lloyd-Price [145].
Run a simulation of the model using the given parameters. Explain why this model
shows bimodal behavior.

import tellurium as te

r = te.loada (''"'
ProA -> A + ProA; g*ProA;
ProB -> B + ProB; g*ProB;
A + ProB -> ProBA; aO*A*ProB;
B + ProA -> ProAB; aO*B*ProA;
ProBA -> ProB + A; al*ProBA;
ProAB -> ProA + B; al*ProAB;
A -> $w; dxA;
B -> $w; dx*B;
ProAB -> ProA; d*ProAB;
ProBA -> ProB; d*ProBA;

22 0.23 d = 0.005;
a0= 0.3; al = 0.01;
A = 0;

ProA = 1; ProB = 1;
lll)

310

CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

result = r.gillespie(0, 2000000, ["Time", "A"]1);
r.plot()

2. The following model should be simulated as a deterministic model (i.e. using ODEs)

and as a stochastic model.

$1)< Xo]

k2
S3
k3

Figure 14.13 Reaction Scheme: Xo, X1, and X2 are boundary species. Be very careful
that you replicate this model exactly as given. Assume all reactions are simple irreversible
mass-action. Parameter values are as follows: k1 = 0.1;k, = 0.1;k3 = 0.01;k4 =
0.05;ks = 10.1; Xo = 10; X2 = 1.

a) Enter the model into Tellurium and run a deterministic simulation. Show the
graphs for S1, S, and S3 over a time period of 800 time units.

b) Adjust the model so that it is ready for a stochastic simulation. Use the same
values for the rate constants and initial conditions. Plot S; and S3 on one graph and
S> on another graph.

c¢) Observe the significant difference between the deterministic and stochastic simu-
lations. Why is this the case? Explain why the dynamics of the stochastic simulation
are so different considering the number of molecules involved and the kind of reac-
tions in the models.

d) Given your answer in (c), provide one situation where you think it is important to
use a stochastic model rather than a deterministic one.

. Expand the simple gene expression model in Figure 14.2 to include transcription and

translation. Develop a stochastic model of the expanded system. Investigate whether
the translation machinery, which is present in higher concentration, can act as a buffer
to the mRNA bursting.

14.4. CHATTER 311

Appendix

See Appendix H for more details of Tellurium.

import tellurium as te
import matplotlib.pyplot as plt
import roadrunner

rr = te.loada ('''

A -> B; kl1xA;

B -> A; k2x%B;

k1 = 0.2; k2 = 0.4;
lll)

starting = 6000 # 10 zepto molar 10~(-21) = 6000 molecules

rr.model["init (A)"] = starting
rr.model["init(B)"] = 0

plt.subplot(221)

plt.title("A = 6000")

ml = rr.gillespie(0, 12, ["time", "A", "B"])
te.plotArray(ml)

rr.model["init(A)"] = starting
rr.model["init(B)"] = O

m2 = rr.simulate(0, 12, 100)
te.plotArray(m2)

starting = 600
rr.model["init(A)"] = starting
rr.model["init(B)"] = 0

plt.subplot(222)
plt.title("A = 600")
ml = rr.gillespie(0, 12, ["time", "A", "B"])
te.plotArray(ml)
rr.model["init (A)"]

starting

rr.model["init (B)"] 0
m2 = rr.simulate(0, 12, 100)
te.plotArray(m2)

starting = 60
rr.model["init(A)"] = starting
rr.model["init(B)"] = 0

312 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

plt.subplot(223)

plt.title("A = 60")

ml = rr.gillespie(0, 12, ["time", "A", "B"])
te.plotArray(ml)

rr.model["init (A)"] starting
rr.model["init(B)"] = 0

m2 = rr.simulate(0, 12, 100)
te.plotArray(m2)
plt.xlabel("Time")

starting = 20
rr.model["init(A)"] = starting
rr.model["init(B)"] = O

plt.subplot (224)

plt.title("A = 20")

ml = rr.gillespie(0, 12, ["time", "A", "B"])
te.plotArray(ml)

rr.model["init(A)"] = starting
rr.model["init(B)"] = O

m2 = rr.simulate(0, 12, 100)
plt.xlabel("Time")
te.plotArray(m2)

Listing 14.2 Script for Figure 14.1.

import tellurium as te

r = te.loada ('''
// Transcription binding/unbinding step
TR + Genel -> TR_B; k1*TR*Genel;
TR_B -> TR + Genel; k2*TR_B;
// Protein synthesis
$g -> product; Vm*TR_B;
// Protein degradation
product -> $w; k3*product;

// TR = free transcription factor;
// TR_B = bound transcription factor
Genel = 1; TR = 1; Vm = 1;

k1 = 0.01; k2 = 0.01; k3 = 0.04;
TR_B = 0; product = 0;
T)

seed = 1.22012

14.4. CHATTER 313

m = r.gillespie(0, 2000, ["time", "TR_B", "product"], seed)
r.plot()

Listing 14.3 Script for Figure 14.2.

import tellurium as te
import matplotlib.pyplot as plt

Stochastic Focusing Model
Modified from: Paulsson J, Berg 0G, Ehrenberg M.
Proc. Natl. Acad. Sci. USA 97(13), 7148-53 (2000)
Stochastic focusing: fluctuation-enhanced sensitivity
of intracellular regulation.
= te.loada ('''

$src -> So; kl*src;

So -> $srr; k2*So;

J1: $Xo -> S1; Vm/(Km + So);

J2: 81 -> $w; S1%k3;

kil = 203 2 = @

Vm = 20; Km = 0.2;

k3 = 0.04; src = 1;

B # # # # #

Sil, = 03 So = 0;
)
ml = r.simulate(0, 600, 100, ["Time", "S1"])
r.plot()
r.S1 =0
r.So =0

m2 = r.gillespie(0, 600, ["Time", "S1"])
r.plot(xtitle="Time", ytitle="Vaaraible")

Listing 14.4 Script for Figure 14.8.

import tellurium as te
import pylab

Bursting in a simple ion channel model
r = te.loada ('''

open -> closed; kl*open;

closed -> open; k2*closed;

$ligand + open -> closedLigand; k3*ligand*open;
LigandBlocked -> $ligand + open; k4xLigandBlocked;

1;
= 0;

314 CHAPTER 14. BEHAVIOR OF STOCHASTIC MODELS

LigandBlocked = 0O;
ligand = 1E-7;

k1 = 400; k2 = 75;
k3 = 8ES8;
k4 = 3000;

lll)

result = r.gillespie(0, .2, ["time", "open"])
r.plot (x1im=(0,0.1),ylim=(0,2))

Listing 14.5 Script for Figure 14.6.

Appendices

315

List of Symbols and Abbreviations

Symbols
a,b,c,... Used toindicate stoichiometric amounts
c Equilibrium ratio of relaxed and tense form in MWC model
Ci Stoichiometric coefficient
A Change
Dy Diffusion coefficient
£ Elasticity coefficient
h Hill coefficient
k,k; Rate constant
r Mass-action ratio
o Normalized substrate concentration, S; / Ky,
B Normalized inhibitor concentration, //K;
y Normalized activator concentration, A/ K4
A:G Reaction free energy change
J Flux
K, Association constant
K, Dissociation constant
Keg Equilibrium constant
Ky Half-maximal activity
K; Inhibition constant
K, Michaelis constant
K; Michaelis constant with respect to substrate
K, Michaelis constant with respect to product

317

318

APPENDIX A. LIST OF SYMBOLS AND ABBREVIATIONS

T o=

Allosteric constant

Liter (US spelling)

Modifier

Mole

Amount of substance i
Number of subunits

Product concentration
Permeability coefficient
Normalized product concentration, P; /Ky,
Disequilibrium constant

Gas constant

Modifier factor

Substrate concentration or entropy depending on context
Temperature

Time

Half-life

Forward reaction rate

i™ reaction rate

Reverse reaction rate

Volume

Maximal velocity

Reference state for variable X

Math Symbols

)>

[

4
Summation Symbol: in =Xx1+x2+x3+ x4
i=1
4
Product Symbol: l_[Xj = X1X2X3X4
i=1

dy/dx Derivative of y with respect to x

dy/dx Partial derivative of y with respect to x

319

Non-Mathematical Abbreviations

AMP, ADP, ATP Adenine nucleotides

cAMP Cyclic AMP

CTP Cytidine triphosphate

DHAP Dihydroxyacetone phosphate

DNA Deoxyribonucleic acid

F6p Fructose-6-Phosphate

FFL Feedforward Loop

KNF Koshland, Nemethy and Filmer model
IPTG Isopropyl B-D-1-thiogalactopyranoside
Lacl Lactose Operon Repressor

mRNA Messenger RNA

MWC Monod, Wyman and Changeux model
NAD/NADH Nicotinamide adenine dinucleotide
PEP Phosphoenolpyruvate

PFK Phosphofructokinase

RBS Ribosome binding site

RNA Ribonucleic acid

SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language
TF Transcription factor

TPase Triose phosphate isomerase

320 APPENDIX A. LIST OF SYMBOLS AND ABBREVIATIONS

Useful Numbers

B.1 Useful Numbers

Numerical data are essential when building models. Sadly such data is scarce, or at least
the right kind of data is scarce. In section 4.14 we briefly reviewed some of the potential
sources of data for model building [135]. Here we list some basic numbers that a modeler
might find useful when building a model. There has been a slow realization that report-
ing quantitative data is important in systems biology (nil admirari). It is therefore worth
pointing out a number of efforts to collect and categorize potentially useful data. Two ef-
forts stand out, the cybercell effort! started by David Wishart [169], and the more active and
larger effort called bionumbers [116] started in 2007 by Ron Milo, Paul Jorgensen and Mike
Springer. Other useful sources include the excellent text book ‘Physical Biology of the
Cell’ [134], Bernhard Palsson’s book ‘Systems Biology: Simulation of Dynamic Network
States’ [129], and of course the book that probably inspired the numbers trend, Uri Alon’s
‘An Introduction to Systems Biology: Design Principles of Biological Circuits’ [4]. The
following tables list data gleaned from bionumbers?, cybercell and the Phillips book [134].
Some of the yeast data came from an interesting review by Warner [180]. Any mention of
data for modeling would be amiss if we didn’t mention Robert Alberty’s book ‘Thermody-
namics of Biochemical Reactions’ [2]. This book is a rich source of information on many
aspects related to thermodynamics.

"http://ccdb.wishartlab. com/CCDB/

2 www.biolumbers . org

321

http://ccdb.wishartlab.com/CCDB/
www.bioNumbers.org

322 APPENDIX B. USEFUL NUMBERS

Cell Sizes:
1. Bacteria (E. coli) Diameter: 0.7-1.4um
Length: 2-4 pum; Volume: 0.5-5 pum?
2. Yeast (S. cerevisiae):
Diameter: 3-6 um
Volume: 20-160 pm?
3. Mammalian HeLa Cell:
Diameter: 15-30 pum
Volume: 500-5000 pm

Length Scales:

Nucleus volume: 10% of cell volume
Cell membrane thickness: 4-10 nm
Average protein diameter: 3-6 nm
DNA diameter: 2 nm

Water molecule diameter: 0.3 nm

g2 = e B 5>

Concentration Equivalents:
9. Concentration of 1 nM in:

E. coli: 1 molecules/cell

HeLa: 1000 moleculs/cell
10. Concentration in E. coli of

ATP: 2 mM

Pyruvate: 0.37 mM

Lacl: 1-50 nM

Pyruvate Kinase: 11 uM
11. Number of receptor proteins: 1,000,000
12. Number of soluble proteins: 2-4 million
13. Number of ribosomes: 18,000

Diffusion Rates:

14. Diffusion coefficient for average protein:
D = 5-15 um? s~! which equals
10 millisec to traverse E. coli
10 secs to traverse HelLa cell

15. Yeast (S. cerevisiae):
Diameter: 3-6 um
Volume: 20-160 pm?

16. Mammalian HeLa Cell:
Diameter: 15-30 pum
Volume: 500-5,000 pm?3

B.1. USEFUL NUMBERS 323

Reaction Rates for E. coli:

17.
18.
19.
20.
21.
22.
23.
24.

Cell Division Time: 30-60 mins

Rate of replication: 2,000 bp/s

Protein synthesis: 1,000 proteins/s
Lipid synthesis: 20,000 lipids/s
Ribosome rate: 25 amino acids per sec
Transcription rate: 45 mins

ATPs to make a cell: 55 billion
Reaction rate Pyruvate kinase:

500,000 molecules per second

Reaction Rates for Yeast:

25.

Ribosomes made per second: 2,000

26. Ribosomes in Yeast: 200,000
Energetics:
27. AG that represents an order of magnitude

ratio between products and reactants: 6 kJ/mol

28.

Membrane potential: 70-200 mV

Fundamental Constants:

29.
30.
31.

Avogadro’s Number: 6.02214129 x 1023 mol~!
Gas Constant: 8.314472 J mol™1 K71
Faraday Constant: 96485.3383 C mol™ 1

324 APPENDIX B. USEFUL NUMBERS

Answers to Questions

Chapter 1

1. Assume length of cell is 2um: 250

2. Assume E. coli is a cylinder: volume = 1.57um? or 1.57 x 1071° L
3a. Assume E. coli is a cylinder: Area = 7.85 um?

3b. Approximately 218,000 proteins

4. NA

5. 25 minutes (1500 seconds)

6. 0.67 seconds

7a. 5 x 10716 mmoles per second per volume of E. coli

7b. 3 x 10° per second per E. coli

325

326 APPENDIX C. ANSWERS TO QUESTIONS

Enzyme Kinetics in a Nutshell

Enzymes

Enzymes are protein molecules that can accelerate a chemical reaction without changing
the reaction equilibrium constant.

Enzyme Kinetics

Enzyme kinetics is a branch of science that deals with the many factors that can affect the
rate of an enzyme-catalysed reaction. The most important factors include the concentration
of enzyme, reactants, products, and the concentration of any modifiers such as specific
activators, inhibitors, pH, ionic strength, and temperature. When the action of these factors
is studied, we can deduce the kinetic mechanism of the reaction. That is, the order in which
substrates and products bind and unbind, and the mechanism by which modifiers alter the
reaction rate.

D.1 Michaelis-Menten Kinetics

The standard model for enzyme action describes the binding of free enzyme to the reac-
tant forming an enzyme-reactant complex. This complex undergoes a transformation,
releasing product and free enzyme. The free enzyme is then available for another round of
binding to new reactant.

k1 ko
E+S—ES—E+P (D.1)
k—1

327

328 APPENDIX D. ENZYME KINETICS IN A NUTSHELL

where k1, k_; and k, are rate constants, S is substrate, P is product, E is the free enzyme,
and ES the enzyme-substrate complex.

By assuming a steady state condition on the enzyme substrate complex, we can derive
the Briggs-Haldane equation relation (sometimes mistakenly called the Michaelis-Menten

equation):
Vm S

V=
where V}, is the maximal velocity, and K}, the substrate concentration that yields half the
maximum velocity.

(D.2)

V

s |
(0e] —

e
N

Initial Reaction Rate, v 3

0 T 5 10 15 20 25 30
Km

Substrate Concentration (.S)

Figure D.1 Relationship between the initial rate of reaction and substrate concentration for
a simple Michaelis-Menten rate law. The reaction rate reaches a limiting value called the
Vin. Ky is set to 4.0 and V3, to 1.0. The K, value is the substrate concentration that gives
half the maximal rate.

D.2 Reversibility and Product Inhibition

In vivo it is unlikely that an enzyme reaction is completely irreversible. Even if an enzyme
shows no reverse reaction rate from product to substrate, there is still likely to be some
degree of product inhibition because the product can bind to the active site and compete
with the substrate.

D.3. REVERSIBLE RATE LAWS 329

D.3 Reversible Rate laws

An alternative and more realistic model is the reversible form:

k1 ko
E4+S—ES—FE+ P (D.3)
k-1 k—>

The aggregate rate law for the reversible form of the mechanism can also be derived and is
given by:
_ Vi S/Ks -V, P/Kp

D.4
1+S/Ks+ P/Kp B4
D.4 Haldane Relationship
For the reversible enzyme kinetic law there is an important relationship:
P Ve K
Keg =t =122 (D.5)
Seq Vr KS

This equation shows that the four kinetic constants, V¢, V;., Kp and Kg are not indepen-
dent. Haldane relationships can be used to eliminate one of the kinetic constants by sub-
stituting the equilibrium constant in its place. This is useful because equilibrium constants
tend to be known compared to kinetic constants which may be unknown. By incorporating
the Haldane relationship, we can eliminate the reverse maximal velocity (V;) from D.4 to
yield the equation:

_ Vi/Ks(S — P/Keq)

14+ S/Ks+ P/Kp
Separating out the terms makes it easier to see that the above equation can be partitioned
into a number of distinct parts:

(D.6)

B S/Ks
v=Vr - (1=T/Keg) " 17 STk 4 77Ks (D.7)

where I' = P/S. The first term, V¢, is the maximal velocity; the second term, (1 —
I' / Keq), indicates the direction of the reaction according to thermodynamic considerations.
The last term refers to the fractional saturation with respect to substrate. Thus we have a
maximal velocity, a thermodynamic and a saturation term.

D.5 Competitive Inhibition

There are many molecules capable of slowing down or speeding up the rate of enzyme cat-
alyzed reactions. Such molecules are called enzyme inhibitors and activators. One common

330 APPENDIX D. ENZYME KINETICS IN A NUTSHELL

a) Competitive Inhibition b) Uncompetitive Inhibition
E ES——FE+P E ES E+P
EI ESI

Figure D.2 Competitive and Uncompetitive Inhibition. P is the concentration of product,
E is the free enzyme, ES the enzyme-substrate complex, and ES/ the enzyme-substrate-
inhibitor complex.

type of inhibition, called competitive inhibition, occurs when the inhibitor is structurally
similar to the substrate so that it competes for the active site by forming a dead-end com-
plex.

The kinetic mechanism for a pure competitive inhibitor is shown in Figure D.2(a), where
[is the inhibitor and EI the enzyme inhibitor complex. If the substrate concentration is
increased, it is possible for the substrate to eventually out compete the inhibitor. For this
reason the inhibitor alters the enzyme’s apparent K, but not the V.

- 1
S + K (1 + —)
K; (D.8)

Vin S/ Km
1+ S/Km + I/K;

At I = 0, the competitive inhibition equation reduces to the normal irreversible Michaelis-
Menten equation. Note that the term Ky, (1+ 7/ K;) in the first equation more clearly shows
the impact of the inhibitor, /, on the K,,. The inhibitor has no effect on the V;,.

A reversible form of the competitive rate law can also be derived:

Vin P
I (S B Keq)
v = (D.9)

I R

where V), is the forward maximal velocity, and Ky and K, are the substrate and product
half saturation constants.

Sometimes reactions appear irreversible, where no discernable reverse rate is detected, and
yet the forward reaction is influenced by the accumulation of product. This effect is caused
by the product competing with substrate for binding to the active site and is often called
product inhibition. Given that product inhibition is a type of competitive inhibition, we

D.6. COOPERATIVITY 331

will briefly discuss it. An important industrial example of this is the conversion of lactose to
galactose by the enzyme B —galactosidase where galactose competes with lactose, slowing
the forward rate [54].

To describe simple product inhibition with rate irreversibility, we can set the P /K., term
in the reversible Michaelis-Menten rate law (D.4) to zero. This yields:

VinS
v = = (D.10)

S+ K 1+P
m Kp

It is not surprising to discover that equation (D.10) has exactly the same form as the equa-
tion for competitive inhibition (D.8). As the product increases, it out competes the substrate
and therefore slows down the reaction rate.

We can also derive the equation by using the following mechanism and the rapid-equilibrium
assumption:
E4+S—=ES— EP=E+P D.11)

where the reaction rate v is assumed to be proportional to ES.

D.6 Cooperativity

Many proteins are known to be oligomeric, meaning they are composed of more than one
identical protein subunit where each subunit has one or more binding sites. Often the
individual subunits are identical.

If the binding of a ligand (a small molecule that binds to a larger macromolecule) to one
site alters the affinity at other sites on the same oligomer, it is called cooperativity. If
ligand binding increases the affinity of subsequent binding events, it is termed positive
cooperativity whereas if the affinity decreases, it is termed negative cooperativity. One
characteristic of positive cooperativity is that it results in a sigmoidal response instead of
the usual hyperbolic response.

The simplest equation that displays sigmoid like behavior is the Hill equation:

Vi S"

V= ——
Kg+ S"

(D.12)
One striking feature of many oligomeric proteins is the way individual monomers are phys-
ically arranged. Often one will find at least one axis of symmetry. The individual protein
monomers are not arranged in a haphazard fashion. This level of symmetry may imply
that the gradual change in the binding constants as ligands bind, as suggested by the Adair
model, might be physically implausible. Instead, one might envision transitions to an al-
ternative binding state that occurs within the entire oligomer complex. This model was
originally suggested by Monod, Wyman and Changeux [119], abbreviated as the MWC
model. The original authors laid out the following criteria for the MWC model:

332 APPENDIX D. ENZYME KINETICS IN A NUTSHELL

1. The protein is an oligomer.

2. Oligomers can exist in two states: R (relaxed) and T (tense). In each state, symmetry
is preserved and all subunits must be in the same state for a given R or T state.

3. The R state has a higher ligand affinity than the T state.
4. The T state predominates in the absence of ligand ..

5. The ligand binding microscopic association constants are all identical. This is in
complete contrast to the Adair model.

Given these criteria, the MWC model assumes that an oligomeric enzyme may exist in
two conformations, designated T (tensed, square) and R (relaxed, circle). The equilibrium
between the two states has an equilibrium constant L = 7/R, which is also called the
allosteric constant. If the binding constants of ligand to the two states are different, the
distribution of the R and T forms can be displaced towards either one form or the other. By
this mechanism, the enzyme displays sigmoid behavior. A minimal example of this model
is shown in Figure D.3.

777N
=00 ©®
N/

Figure D.3 A minimal MWC model, also known as the exclusive model, showing alterna-
tive microscopic states in the circle (relaxed) form. L is called the allosteric constant. The
square form is called the tense state.

In the exclusive model (Figure D.3) the ligand can only bind to the relaxed form (circle).
The mechanism that generates sigmoidicity in this model works as follows. When ligand
binds to the relaxed form, it displaces the equilibrium from the tense form to the relaxed
form. In doing so, additional ligand binding sites become available. Thus, one ligand
binding may generate four or more new binding sites. Eventually there are no more tense
states remaining, at which point the system is saturated with ligand. The overall binding
curve will therefore be sigmoidal and will show positive cooperativity. Given the nature of
this model, it is not possible to generate negative cooperativity. By assuming equilibrium
between the various states, it is possible to derive an aggregate equation for the dimer case

D.7. ALLOSTERY 333

of the exclusive MWC model:

This also generalizes to n subunits as follows:
a8 I
_kx (i kR)

S n
1+ — L
(+kR) *

For more generalized reversible rate laws that exhibit sigmoid behavior, the reversible Hill
equation is a good option. Invoking the rapid-equilibrium assumption, we can form a re-
versible rate law that shows cooperativity:

Y (D.13)

b Via (1 —p) (a + 7)
1+ (o + 7)?

where p = I'/K.4 and o and 7 are the ratio of reactant and product to their respective
equilibrium constant, «/ K5 and 7w/ K p. For an enzyme with /4 (using the author’s original
notation) binding sites, the general form of the reversible Hill equation is given by:

v — Via (1 —p) (0[+JT)h_1
B 1+ (o +)"

(D.14)

D.7 Allostery

An allosteric effect is where the activity of an enzyme or other protein is affected by the
binding of an effector molecule at a site on the protein’s surface, other than the active site.
The MWC model described previously can be easily modified to accommodate allosteric
action.

The key to including allosteric effectors is to influence the equilibrium between the tense
(T) and relaxed (R) states (See Figure D.4). To influence the sigmoid curve, an allosteric
effector need only displace the equilibrium between the tense and relaxed forms. For ex-
ample, to behave as an activator, an allosteric effector needs to preferentially bind to the
R form and shift the equilibrium away from the less active T form. An allosteric inhibitor
would do the opposite, that is bind preferentially to the T form so that the equilibrium shifts
towards the less active T form. In both cases the V}, of the enzyme is unaffected.

334 APPENDIX D. ENZYME KINETICS IN A NUTSHELL

0O
T, R, / X \
[1] = OO O RX,

L= . T\Q®/

OO R, RoX

Figure D.4 Exclusive MWC model based on a dimer showing alternative microscopic
states in the form of 7" and R states. The model is exclusive because the ligand, X, only
binds to the R form.

The net result of this is to modify the normal MWC aggregate rate law to the following if
the effector is an inhibitor:

_ a(l+a)* !
T4+ LA+ P

v (D.15)

where « = S/K;, B = [/Ky, and K and K are kinetic constants related to each ligand.
A MWC model that is regulated by an inhibitor or an activator is described by the equation:

a(l+a)* !

(1+p)"
(1 +p)r

U:Vm
(1+a)"+L

There are also reversible forms of the allosteric MWC model but they are fairly complex.
Instead, it is possible to modify the reversible Hill rate law to include allosteric ligands.

Via (1 — KF) (o + n)h_l
v = ¢d (D.16)

14 ph
—Mh+(()l+71')h
14+oun

where:

o<1 inhibitor
o>1 activator
Simple Hill Equations

When modeling gene regulatory networks, we often need simple activation and repression
rate laws. It is common to use the following Hill like equations to model activation and

D.8. ELASTICITIES 335

repression, respectively. The third equation shows one example of how we can model dual
repression and activation, where S acts as the activator and S7 the inhibitor. n; and n, are
Hill like coefficients which may be used to alter the responsiveness of each factor.

VinS™
Activation: v = ———
K+ S
. Vin
Repression: v = ————
K+ Sn

Dual: v =
1+ K1S7! + K287% + K3S7'S)?

D.8 Elasticities

Elasticities measure the response of a chemical reaction rate to changes in the immediate
environment. For example, given a simple reaction such as:

S— P

we can measure two elasticities, one with respect to S and the other with respect to P.
Each elasticity gives us the response of the reaction rate when either S or P are changed,
respectively. Mathematically, the elasticity is defined in terms of a scaled derivative:

BvSNv%

35V 5% (D-17)

e =
According to the definition, one can interpret an elasticity as a ratio of relative changes.
Even though the elasticity is only defined for infinitesimal changes, we can approximate
the elasticity in terms of small finite changes and conveniently interpret it as the ratio of
percentage changes. For example, if we were to make a 2% change in S, and in turn
observed a 0.5% change in the reaction velocity, then the value of the elasticity is given
approximately by the ratio 0.5/2 = 0.25. Full details of the elasticity and its properties can
be found in the companion book Enzyme Kinetics for Systems Biology.

Unscaled Elasticity

We can also define the unscaled elasticity as:

3
gy = % (D.18)

336 APPENDIX D. ENZYME KINETICS IN A NUTSHELL

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius
Publishing ISBN: 978-0982477335

Math Fundamentals

This Appendix highlights some of the notation used in this book and summarizes the most
important mathematical concepts that students should be familiar with.

E.1 Notation

Sum and Product:

n
ap +a2+a3+...+an=2ai

i=1

n
alxazxa3x...xan=1_[ai
i=1

Vectors and Matrices:

Bold lower case letters indicate vectors, for example: v, s

Bold upper case letters indicate matrices, for example: N, X

337

338 APPENDIX E. MATH FUNDAMENTALS

Derivatives:

On the left is Leibniz’s notation and on the right Lagrange’s notation:

af
Y=
d*f "
=W
o
dx" - f ('x)

E.2 Short Table of Derivatives

d d

a[c]— a[x]—

2 feu = 2 L
ATy T T I T dx
d . dv du d v u
d—[uv]—ua%—vd— %[M/U)]—v—z
d ., n_1du d _df du
a[“ | =nu Ix a[f(”)]— duf(u) I
d 1 du det du

—1 = —- — — ¥

dx[nu] dx dx ¢ dx

d . du
a[sm(u)] = cos(u) I

d . du
a[cos(u)] = —sin(u) Ix

E.3. LOGARITHMS 339

E.3 Logarithms

log(AB) = log(A) + log(B)
log(A/B) = log(A) —log(B)
log(A™) = n log(A)

X x x™m = xn+m
n
X —
— xn—m
nm

(xn)m — anm

E.4 Partial Derivatives

If the value of a given function depends on two variables, then we write this function in the
form:

u=f(x.y)

If it is possible to change x without affecting y, then x and y are called independent vari-
ables. The rate of change of u with respect to x when x varies, but y remains constant, is
called the partial derivative of u with respect to x. Partial derivatives are denoted using
the partial symbol, d. For example, the partial derivative of u with respect to x:

ou
dx
Likewise, the partial derivative of u with respect to y is:

ou
dy

To find a partial derivative we simply differentiate with respect to the variable of interest
while treating the remaining variables as constants. For example, the reaction rate for a
given reaction is v = k1S —k, P, where S is the reactant, P the product, and k1 and k» the
rate constants. In a controlled environment we should in principle be able to independently
change S and P. Therefore, we can write down the partial derivatives of the reaction rate
with respect to S and P as follows:

Jv
— —k
as !
9
v__k2

P =

340 APPENDIX E. MATH FUNDAMENTALS

In order to indicate what variables are kept constant in the partial derivative, the following
notation is sometimes used, particulary in thermodynamics:

d
Y g
N
dv
—) =k
(P) s :
Or for functions with many variables, x, y, z, . . ., the notation would extend to:

u
dx VoZyeo

Like derivatives, partial derivatives are defined in terms of a limit. For example, the partial
derivatives for the function, f(x, y) are defined as:

af (x.y) S +hy) = fx.y)

e h
0f (x.) _ lim Sy +h)— f(x,y)
ay h—0 h

The graphical interpretation of a partial derivative, df(x, y)/0dx, is that it represents the
slope of the function, f(x, y) in the x direction.

E.5 Differential Equations

Differential equations are equations that contain derivatives. For example, the following is

a differential equation:

dy 2

Ziy2=0

dx Y
An ordinary differential equation is where the derivative is a function of single inde-
pendent variable. In science and engineering this independent variable is often time. For

example, the following equations are ordinary differential equations:

dy

— =aqa

dx Y

dy

- =2 3y — 8
e X + 3y
d?y xdu _0o
dx? dx

A differential equation expressed in terms of the first derivative (dy/dx) is called a first-
order differential equation. A differential equation that is expressed in terms of second-
order derivatives (d2y/dx?) is called a second-order differential equation. When solving

E.6. TAYLOR SERIES 341

differential equations the objective is to find the function y(x) such that when differenti-
ated, gives the original differential equation. For example the solution to:

dy
— =q
dx Y
is
y = yoe®* (E.1)

If we differentiate solution (E.1), we get back the original differential equation.

Differential equations are used frequently to model physical systems, describing the rate
of change of some variable with respect to time, ¢. They are useful because we may not
explicitly know the solution y(#), but we will often know the rate of change the variable
has at any given moment in time, dy/dt. This means we can at least obtain a numerical
solution to y(¢) even if the analytical solution is unobtainable.,

Differential equations can be further classified as autonomous or non-autonomous. Au-
tonomous differential equations are the most common in biochemical models. These equa-
tions do not depend on time, that is the right-hand side of the differential equation has no
terms relating explicitly to time. For example, equation E.2 is autonomous, while equa-
tion E.3 is non-autonomous:

dx

= —x2110 E.2
= + (E.2)
dx 24¢-5 (E.3)
— =X j— .

dt

A partial differential equation is one where the derivatives are functions of more than one
independents variable. Often in science and engineering, partial differential equations are
a function of independent variables, time and space. For example, this equation is a partial
differential equation:

ou du dp

— b uy— = =

at ox 0x
Note the use of the partial d (d) in the partial differential equation to indicate that the
function u is differentiated with respect to more than one variable.

E.6 Taylor Series

Expressions like 1 + 2x + 6x2 and 2 + 4x + x2 — 3x3 that contain the sum of a number
of terms raised to a positive power are called polynomials. The only operations allowed
in a polynomial are addition, subtraction, multiplication and non-negative integer powers.
One of the simplest polynomials is the straight line, y = a + bx, termed a polynomial of
first degree. The coefficients, @ and b, can be chosen so that the line will pass through any
two points. As such, we can express any straight line using y = a + bx. Similarly for a

342 APPENDIX E. MATH FUNDAMENTALS

polynomial of second degree, y = a + bx + cx?2, a parabola, we can choose the constants,
a, b, and ¢ so that the curve passes through any three points.

It follows that we can find a polynomial equation of n™ degree that will pass through any
n + 1 points. If the polynomial has an infinite number of terms, we imagine it could be
made to follow any function, f(x), by suitable adjustment of the polynomial coefficients.
Although this statement may not always be true, in many cases it is, which makes the
polynomial series very useful.

A polynomial of infinite degree is called a polynomial series:
f(x) =Co+c1x+02x2+c3x3+.,,

The question is, how can we find the polynomial series that will represent a given function,
for example sin(x)? To answer this we have to determine the constants, ¢,, 1, etc. in the
polynomial equation. Let us assume that we wish to know the value of sin(x) at x = 0
using a polynomial series. At x = 0, all terms vanish except for ¢, therefore at x = 0:

f(0) =co

We can therefore interpret the first constant, ¢,, as the value of the function at x = 0. What
about c1? Let us take the derivative of the series, that is:

F'(x) = c1 + 2¢ax + 3c3x% + ...

If we set x = 0, we find that:
f1(0) =1

The second constant, ¢y, in the polynomial series is the first derivative of the function. If
we take the second derivative we can also show at x = 0, f”(x0) = 2c5, thatis ¢, =
f"(0)/2. For the third derivative we can show f””(0) = 3(2)c3, thatis c3 = f"/(0)/(3!).
This pattern continues for the remaining terms in the polynomial so we can write:

fx) = f(0) + f'(0)x + + ...
This series is called the Maclaurin series for the function, f(x). It approximates the
function around the specific value of x = 0. To illustrate the use of the Maclaurin series,
consider expanding sin(x) around x = 0. f(0) will equal sin(0) = 0. f'(0) = cos(0) = 1
and so on. We can therefore write the series as:

1 1
sin(x):0+1x+0—§x3+0+§x5—...

XX

51n(x)=x—§+§—...

E.6. TAYLOR SERIES 343

Function Second-order approximation

1-|+x 14+ x+x2
JT+x 1+5+%
. 3
sin(x) X — 37

Table E.1 Examples of common approximations.

What if we wanted to approximate a function about an arbitrary value of x? To do this we
would use the Taylor series which is a generalization of the Maclaurin series. The Taylor
series is defined by:

19%f

2
———(x—x
2! 0x2 2

af
9%y (x —xo) +

J(x) = f(xo) +

1o f

n! oxn

o+ (x—xo)"+... (E4)

where the approximation is now centered on x,. If we set x, equal to zero, we obtain the
Maclaurin series.

If we keep three terms, we obtain another very important approximation called the quadratic
approximation:

d2f

dt?

d 1
f(x) = f(xo0) + Sxd—]; + E(5x)2 (E.5)
In optimization strategies near the optimum, we can often approximate the fitness surface

using a quadratic function.

Taylor Series in Two Dimensions

It is possible to derive a Taylor series for equations with multiple variables, for example
f(x,y). In this case the expansion is a little bit more complicated. A Taylor series expan-
sion around x,, and y, for the function f(x, y) is given by:

i (x —x0) + ;i(y — Yo) +
Yo

f(x,y) = f(xo0,Y0) +

d9x,
1 , 2 f 3 f , 2f
~1 - Ao 2 - Ao - Yo — Jo
o [(x Xo) o2 +2(x —xo)(y — ¥)8x08y0 + (V= o) 52

344 APPENDIX E. MATH FUNDAMENTALS

where all derivatives are evaluated at the operating point, x,, y,. There is a very nice
compact form for this equation which can be written in terms of vectors and a matrix:

[(%0) = f(%o) + (x —%0)" V f +%(X—X0)TH(X—X0)+-~

where Vf is called the gradient (or grad f), and H the Hessian. Note that the vector notation,
v means that the vector is in row form because by convention a vector is often depicted as

a column. Given a function, f(x,y,...), Vf is just the vector of partial derivatives:

of of 1
Vf=|+—, —, ...
f[ww]
The following equivalent notation in terms of the unit vectors is also frequently found in
the literature for V£

vi=LivP5h
ax ady
The Hessian matrix, H, for the function f(x, y) is given by:
P2f S
H— dx dx dx dy :[2 f i|
92 f 92 f 0x; 0x;
dy dx dy dy

which can be naturally extended to functions with any number of variables.

E.7 Total Derivative

Consider the function:
J@) = f(x@),y@)

The derivative of f(¢) with respect to ¢, is given by the chain rule:

ar _afds o dy
dt Oxdt Oy dt

Note the use of partial derivatives. This equation is often abbreviated to:

0 a
df = —fdx + —fdy
ax dy
where it is called the total derivative. Often the variable 7 is not specified in the total deriva-
tive. Operationally, the total derivative computes the change in f, given small changes in

x and y.

E.8. EIGENVALUES AND EIGENVECTORS 345

E.8 Eigenvalues and Eigenvectors

A square matrix such as A can be used to transform a given vector, v in specific ways. For
example, if the matrix A is:

2 0

o

then the result of multiplying A into v will yield a vector that is similar to v but where the
first element is scaled by 2 and the second element by 4.

For an arbitrary square matrix, if it is possible to find a vector v such than when we multiply
the vector by A we get a scaled version of v, then we call the vector v the eigenvector of
A and the scaling value, the eigenvalue of A. For a matrix of dimension n, there will be
at most n eigenvalues and n eigenvectors. In the case of the simple example above, the
eigenvalues must be 2 and 4, respectively, while the two eigenvector are:

o 0
0 o

The definition of an eigenvector and eigenvalue is often given in the form:
Av = Av

We can rearrange this equation as follows:

Av = AIv
Av—AIv =0
(A—-AHv =0

From linear algebra we know there will be non-zero solutions to (4 —AI)v = 0 if det(A —
AI) = 0. We can use this observation to compute the eigenvalues and eigenvectors of a
matrix. For example, consider the matrix:

36

1 4

3—-4 6
A—-Al =
1 4—1

det(A —AI) = 3—A)(4—1)—6

Computing A — A1 yields:

=A2—-71+6
=A-6)R-1

346 APPENDIX E. MATH FUNDAMENTALS

The eigenvalues are therefore 6 and 1. With two eigenvalues there will be two eigenvectors.
First we consider A = 6.

(A—ADv =0

(G- e])e=e
oo

By inspection we can see that the eigenvector is:

]

Likewise we can do the same for the other eigenvalue, A = 1 where the corresponding
eigenvector is:

-3

N

Further Reading

1. Smail LL (1953) Analytical Geometry and Calculus. Appleton-Century-Crofts ISBN:
978-0982477311

Statistics Reminder

F.1 Mean

The mean is the sum of values divided by the number of values:

The mean is not necessarily the middle value but depends on the skewness of the values.
The central value is called the median.

F.2 Deviation

A measure of deviation of a variable y from its mean is called the standard deviation,
denoted by 0. A related measure, 02, is called the variance. Consider the mean of a set of
numbers, x;, denoted by x. We can compute the deviation of each x; from the mean by:

di=x;j —X

If we take the square of the deviations and compute the average deviation we obtain the

variance: |
2 —\2
0 = — E X; — X
N (i)

347

348 APPENDIX F. STATISTICS REMINDER

F.3 Standard Error

If we were to sample a population multiple times, we could calculate a mean for each
sample. The standard deviation for the set of means is called the standard error. The value
of the standard error can be calculated using a remarkably simple formula:

Strictly speaking, o should be the standard deviation of the population but often this is
not available and instead, a sample standard deviation is used. The standard error is also
a convenient measure of how precise our measurements are, that is how close a set of
measurements are to each other.

F.4 Covariance

If the variability of one variable, x, is influenced by another, y, then this dependence is
measured using the covariance, Cov(x, y). The covariance between two variables is defined

by:
Cov(x,y) = % Z [(xi — Wx)(yi — My)]

A positive covariance means that two variables as positively correlated. A covariance of
zero means that two variables are statistically independent.

F.5 Normal Distribution

The normal or Gaussian distribution is a continuous probability distribution that describes
the probability of obtaining a given value, x, when the distribution has mean p, and stan-
dard deviation, 0. The probability in a normal distribution is described by the area under
the curve such that the total area equals one. The mean corresponds to the peak of the
curve (since it is symmetric) and the standard deviation to the width. If a random variable
is known to be normally distributed, then the Gaussian curve tells us that there is a 68.3%
chance that the value will lie within one standard deviation from the mean (Figure F.1).

The equation that defines the Gaussian distribution is given by:
_a—w?

= 202
ACY) .

F.6. Z-SCORES OR STANDARD SCORES 349

Figure F.1 Normal Distribution: The 68.3% and 95.4% intervals represent one and two
standard deviations away from the mean, x.

F.6 Z-Scores or Standard Scores

Any normal distribution can be standardized such that it has a mean of zero and a standard
deviation of one, often denoted N(0, 1). For example consider a random variable, X, with a
value 5, that was drawn from a normal distribution with mean (x) equal to 10, and standard
deviation 2 (o), denoted N(10,2). We can shift the mean to zero by subtracting 10 and
normalize the standard deviation by dividing by 2. The new value is called the z-score or

standard score.
B X—nu B 5—10 _

o} 2

The z-score tells use that the variate X is located 2.5 standard deviations to the left of the
mean. We can therefore describe the z-score as a measure of the divergence of a random
variable, X, from the mean, expressed in terms of the number of standard deviations.

2.5

z

F.7 Null Hypothesis

The null hypothesis refers to the statement that is to be tested. In the literature the null
hypothesis is often referred to by the symbol H,. The null hypothesis is assumed to be the
true hypothesis and statistical tests will often attempt to determine the probability that the
null hypothesis is unlikely. If determined so, then the alternative hypothesis, H; is accepted
instead.

F.8 x’ Distribution

The chi-square distribution describes the distribution of variances drawn independently
from a population of normally distributed variates. To be more precise, suppose there is
a population that has a normally distributed random variable, X. The mean of this distribu-

350 APPENDIX F. STATISTICS REMINDER

tion will be i and the variance:

1 N
2 2
0= — X —
N Z(i—)
i=1
where N is the size of the population. Let us take a series of independent samples from the
population and in each case form the squared standardized score:

2 _ (X; —M)z
75N = —
52

We will call square of the score the standardized X(Zl), that is:

X(21) =z

Values for)((21) are positive due to the squaring. Since 68% of variances from a normal pop-
ulation will lie between standardized scores of -1 and 1, the bulk of sampled)((21) values will
also be between 0 and 1 (note the squaring eliminates the negative sign). The distribution
of)((21) is thus skewed. The distribution of)((21) follows the y? distribution with one degree
of freedom.

Let’s now consider the distribution of a sum of two independently sampled X(21)1

» (X1 —p)? n (X2 —p)?
o= 72)

_ .2 2
=z] + 2z

X(zz) also follows a chi-square distribution but this time with two degrees of freedom. Be-
cause we are summing two standardized variances, the distribution is less skewed. We can
continue this process and define y? for any number of degrees of freedom. The function
that relates the probability density to each values of x? is given by:

frr(x) = ce */2yv/2-1

where v is the degrees of freedom, and c is a constant given by the following expression:

1
T 2rru))

where I"(n) is the Gamma function:
I'n)y=mn-1)!

Of particular importance is that the mean of the chi-square distribution is v and the variance
2v.

E(x3) =v
Var()(%) =2v

In other words the y? distribution is fully described by specifying the degrees of freedom.

F.9. F-TEST 351

F.9 F-test

If two random variables, X and Y, have Xz distributions with v; and v, degrees of freedom,
respectively, then the ratio:

F = X / 151
Y / 1%
will be distributed according to the F distribution. The F distribution forms the basis of the
F-test, which allows variances to be compared to determine whether they are significantly
different or not. For example, fitting two different models will generate two different y2
values. We can propose the null hypotheses, H,, that both y? are identical.

The test involves computing the F' ratio and looking up the value in an F-table. If the value
falls below the 0.05 critical value, then we accept the null hypothesis since any differences
we see in the two y? values could easily have come about by chance alone. If however the
F value lies above the 0.05 critical value, we would propose that the observed difference in
the x2 could not have come about by chance alone and likely represents a real difference.

F.10 Confidence Intervals

Oftentimes we would like to know the likelihood that a given variable will fall within a
specified range. That is, we would like some measure of confidence in an estimated value.
If someone quoted the statistic that a variable, x, has a 95% confidence interval of x + Ax,
that would mean that if we repeatedly measured this variable, 95% of the time the measured
value would lie between x + Ax and x — Ax. If the distribution of x is normal, then the
95% interval is at 1.96 o. For example, if we know that a variable has a mean value of 2.5
and a standard deviation of 0.6, then the 95% confidence interval is given by:

x£19%0c=25£196x06=25+0.3

Therefore, if we were to take one more measurement, we could state that the value of the
measurement will lie between 2.2 and 2.8, 95% of the time. We can also say that 1 in 20
(5%) of the time, the variable will lie outside this range by chance.

Alternatively, we could obtain an entire sample of measurements and compute the mean of
the sample. With a new sample, what can we say about the likely value for the mean of
that sample? Given the original standard deviation, the mean of a new sample will have a
confidence limit of:

X959, = 1.96 SEx

where SEj3 is the standard error. That is, the mean of the new sample will have a mean +
the standard error. For example, imagine that the mean for a sample of nine data points
is 4.0 with a standard deviation of 2.0. Given this information, the standard error can be

352 APPENDIX F. STATISTICS REMINDER

computed to be: SEx = o/4/n = 2/3 = 0.66667. Therefore the 95% confidence internal
on the mean is:
X959 £ 1.96 x 0.66667 = 4.0 + 1.31

That is, if we draw a new sample, 95% of the time the mean will lie within the above range.

F.11 Bootstrapping

Assume we wish to estimate the 95% confidence interval for the mean of a population. The
problem is we don’t have the population, only a sample from the population. We can use
bootstrapping to get an estimate for the confidence interval, or more precisely we can use
bootstrapping to generate a distribution that resembles the population from which we can
estimate a confidence interval. Bootstrapping is the act of generating a distribution by
sampling. Let us assume for argument sake that our sample from the population is:

4,5,7,3,7,1

We will now resample with replacement from the original sample. Replacement means not
removing the sampled value from the sample set, so it is possible to sample the same value
again. An example of a bootstrap sample is:

7,3,1,4,1,7

The new sample should have the same number of elements as the original sample. Let’s
say we create 200 samples in this way. For each sample we compute the mean so we have
200 means. This is our bootstrap sample of means.

At this point we can compute some interesting statistics from our 200 means. For example,
what is the 95% confidence interval for the mean of the original population? If we assume
our sample of means has the same statistical structure as the population, we can use the 200
means to compute the 95% confidence interval. To do this we must first rank the means
in ascending order and then use the 97.5% and 2.5% percentiles as the interval, the middle
95% of all bootstrap sample means.

Listing F.1 shows Jarnac code to bootstrap a sample of 30 taken from a normal distribution.
Something similar could be done using Python.

sampleSize = 30;
s = vector (sampleSize)
for i = 1 to sampleSize do
s[i] = stats.gauss(0.2, 1);

p=[; n = 10000;
means = vector (n);
for k 1 to n do

F.12. MAXIMUM LIKELIHOOD 353

begin
1 = vector (sampleSize);
for i = 1 to sampleSize do

begin

r = trunc (rnd (sampleSize)) + 1;
1[i] = s[r]1;

end;

p-append (1);
means [k] = mean (1);

end;
y = hist (means, -1, 1, 50);
graph (y);

Listing F.1 Bootstrapping Script.

F.12 Maximum Likelihood

To introduce maximum likelihood, consider the problem of estimating the probability, p,
of getting a heads when flipping a coin. Let’s say we flip a coin ten times and obtain the
following result: HTHHTTHHHH where H represents heads and T tails. The probability of
obtaining this sequence is related to p, which we can state as:

P(HTHHTTHHHH| p)

This reads: P is the probability of seeing the sequence HTHHTTHHHH given p, the probabil-
ity of flipping a heads. The probability, P, can be computed using the AND rule, meaning
what is the probability of obtaining a Hand a T and a H, etc.? Given that the probability of
throwing a tails is (1 — p), we obtain:

P(HTHHTTHHHE|p) = p(1 — p)pp(1 — p)(1 — p) pppp
=p'(1-p)°

Recall the expression P(HTHHTTHHHH| p) reads: what is the probability of seeing this par-
ticular sequence of heads and tails given p? However in the original question, we wanted
to know what p was, given a sequence of coin throws. We should therefore ask is what
is the likelihood of a particular value of p given the collected data. We should look at the
equation as a function of p instead of what coin throw we see, that is:

L(p|x) = L(p|HTHHTTHHHHE) = p’(1 — p)>

The expression L(p|x) reads: what is the likelihood of p given a set of heads and tails? If
we vary p, we’ll get different likelihoods, this is shown in Table F.1.

We can see from the table (F.1) that the likelihood reaches a maximum at around 0.7. We
therefore conclude that given the data HTHHTTHHHH, the most likely value for p is 0.7.

354 APPENDIX F. STATISTICS REMINDER

p Lp.x)=p'(1-p)’

0.1 7.29x1078
0.2 6.55x107°
03 7.5x107°
0.4 0.000354

0.5 0.000977

0.6 0.00179

0.7 0.00222

0.8 0.00168

0.9 0.000478

1.0 0

Table F.1 Likelihood calculation.
1073

0 0.2 0.4 0.6 0.8 1
P

Figure F.2 Maximum Likelihood plot, see Table F.1.

Things become more interesting if we generalize the previous analysis by assuming we
make 7 flips of the coin, and we obtain x heads and therefore n — x tails. In this case the
likelihood is:

L(plx)=p*1—=p)"=

To maximize the likelihood, let us first take the log to make it easier to differentiate:
In(L(p)) = xInp + (n — x) In(1 — p)
Differentiating the log expression yields:

InL(p) x n-—x

dp p 1-p

F.12. MAXIMUM LIKELIHOOD 355

which gives us the maximum. Setting this to zero, and solving for p gives the final result:

x
p=-
n

This tells us that the most likely value for p is simply equal to the mean number of
heads we see in the sequence.

Maximum Likelihood and Least Squares

Assume X is a continuous random variable whose probability density function is given by
f(x) and depends on a parameter, p. If we carry out an experiment n times, we will obtain
a sample of n numbers:

X1,X2,...,Xp

Assuming that the n random variables are independent, the probability the n data points
will arise is given by the product of the individual probabilities:

f&r.oxnlp) = fx1) f(x2) ... f(xn)

Or in terms of likelihood:

L(p|x1.....xn) = f(x1.....xalp) = [| f(xilp)

i=1

We now maximize the likelihood by differentiating with respect to p, set the derivative to
zero, and solve for p:

aL

p
We can use this generalization to show that the sum of squares yields the maximum like-
lihood for the unknown parameters in the model. Assume that the experimental data is
normally distributed with standard deviation, o;. Let there be n data points, (x;, y;). The
probability of making the observed measurement, y;, given that y(x;) is the model esti-
mate, is given by the normal distribution:

S S [_IL()]
T avar P\ T2 o

The likelihood function is given by the product: [] P;, so that:

IS I [xi =y
L‘p)‘ﬂ(mm)“p<z;[o])

1

0

356 APPENDIX F. STATISTICS REMINDER

We now seek the maximum value for L(p). We note that the first term is a constant while
the exponential term is maximized when the sum in the exponential is minimized. The term
in the exponential we wish to minimize is:

2 xi —y(a)]
>

which is of course the y? sums of squares. Therefore, the maximum likelihood is equiva-
lent to minimizing the sum of squares. Equation 9.1 is therefore justified on more formal
grounds.

Further Reading

1. Bevington, PR (1969), Data reduction and error analysis for the physical sciences.
McGraw-Hill.

2. Berendsen, Herman JC. (2011) A student’s guide to data and error analysis. Cam-
bridge: Cambridge University Press.

3. For something different: David Freedman D, Pisani R, Purves R. Statistics W. W.
(1998) Norton & Company; 3rd edition.

4. Mandel J. (1984) The statistical analysis of experimental data. Dover Publications.

5. Manly, BFJ. (1997) Randomization, Bootstrap and Monte Carlo Methods in Biology.
Chapman & Hall.

F.12. MAXIMUM LIKELIHOOD

357

Table F.2 Standard Normal Probabilities, Negative:

Example: The area swept out from —oo to -1 standard deviation in a standard normal curve
1) is 0.159 units. The area swept out to -0.55 is 0.291 units. Note that the area

swept out from —oo to 0 is 0.5 units, representing half the area of the normal curve.

from http://www.stat.tamu.edu/stat30x/zttables.php

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.3 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
-3.1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

-3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
-29 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001
-2.8 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
-2.7 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
-2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
-2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005
-24 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006
-23 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008
-22 0.014 0.014 0013 0.013 0.013 0.012 0.012 0.012 0.011 0.011
-21 0.018 0.017 0017 0.017 0.016 0016 0.015 0.015 0015 0.014

-2 0.023 0022 0.022 0.021 0021 0.020 0.020 0.019 0.019 0.018
-1.9 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.024 0.024 0.023
-1.8 0.036 0.035 0.034 0.034 0.033 0.032 0.031 0.031 0.030 0.029
-7 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037
-1.6 0.055 0.054 0.053 0.052 0.051 0.050 0.049 0.048 0.047 0.046
-1.5 0.067 0.066 0.064 0.063 0.062 0.061 0.059 0.058 0.057 0.056
-1.4 0.081 0.079 0.078 0.076 0.075 0.074 0.072 0.071 0.069 0.068
-1.3 0.097 0.095 0.093 0.092 0.090 0.089 0.087 0.085 0.084 0.082
-1.2 0.115 0.113 0.111 0.109 0.108 0.106 0.104 0.102 0.100 0.099
-1 0.136 0.134 0.131 0.129 0.127 0.125 0.123 0.121 0.119 0.117

-1 0159 0.156 0.154 0.152 0.149 0.147 0.145 0.142 0.140 0.138
-09 0.184 0.181 0.179 0.176 0.174 0.171 0.169 0.166 0.164 0.161
-0.8 0212 0209 0206 0203 0201 0.198 0.195 0.192 0.189 0.187
-0.7 0242 0239 0236 0233 0230 0227 0224 0221 0218 0.215
-0.6 0274 0271 0268 0.264 0.261 0258 0.255 0.251 0.248 0.245
-0.5 0309 0305 0302 0298 0295 0291 0.288 0.284 0.281 0.278
-04 0345 0341 0337 0334 0330 0326 0323 0319 0316 0312
-0.3 0382 0378 0375 0371 0367 0363 0359 0356 0352 0.348
-0.2 0421 0417 0413 0409 0405 0401 0397 0394 0390 0.386
-0.1 0460 0456 0452 0448 0444 0440 0436 0433 0429 0425

0 0500 049 0492 0488 0484 0480 0476 0472 0468 0.464

Data

http://www.stat.tamu.edu/stat30x/zttables.php

358 APPENDIX F. STATISTICS REMINDER

Table F.3 Standard Normal Probabilities, Positive:

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5 0504 0508 0512 0516 0520 0524 0528 0.532 0.536
0.1 0540 0.544 0548 0552 0.556 0560 0.564 0.568 0571 0.575
0.2 0579 0583 0587 0591 0595 0599 0.603 0.606 0.610 0.614
0.3 0618 0.622 0626 0.629 0.633 0.637 0.641 0.644 0.648 0.652
04 0655 0.659 0.663 0.666 0.670 0.674 0.677 0.681 0.684 0.688
0.5 0692 0.695 069 0702 0.705 0.709 0.712 0.716 0.719 0.722
0.6 0726 0.729 0.732 0.736 0.739 0.742 0.745 0.749 0.752 0.755
0.7 0758 0.761 0.764 0.767 0.770 0.773 0.776 0.779 0.782 0.785
0.8 078 0.791 0.794 0.797 0.800 0.802 0.805 0.808 0.811 0.813
09 0816 0819 0821 0.824 0.826 0829 0.832 0.834 0.837 0.839

1 0841 0.844 0846 0.849 0.851 0.853 0.855 0.858 0.860 0.862
1.1 0864 0.867 0.869 0871 0.873 0875 0.877 0.879 0.881 0.883
1.2 0885 0.887 0.889 0.891 0.893 0.894 0.896 0.898 0.900 0.902
1.3 0903 0905 0907 0908 0910 0912 0913 0915 0916 0918
1.4 0919 0921 0922 0924 0925 0927 0928 0929 0931 0932
1.5 0933 0935 0936 0937 0938 0939 0941 0942 0943 0.944
1.6 0945 0946 0947 0948 0950 0951 0952 0953 0954 0.955
1.7 0955 0956 0957 0958 0.959 0960 0961 0962 0963 0.963
1.8 0964 0965 0966 0966 0.967 0968 0969 0.969 0970 0.971
1.9 0971 0972 0973 0973 0974 0974 0975 0976 0976 0977

2 0977 0978 0978 0979 0979 0980 0980 0981 0981 0.982
21 0982 0983 0983 0983 0984 0984 0985 0985 0985 0.986
22 098 0986 0987 0.987 0988 0988 0.988 0988 0.989 0.989
23 098 0990 099 099 099 0991 0991 0991 0991 0.992
24 0992 0992 0992 0993 0993 0993 0993 0993 0.993 0.994
2.5 0994 0994 0994 0.994 0995 0995 0.995 0995 0995 0.995
2.6 0995 099 099 0.996 0996 0996 0.996 0996 0.996 0.996
27 0997 0997 0997 0.997 0997 0997 0997 0997 0.997 0.997
28 0997 0998 0998 0998 0.998 0998 0998 0.998 0998 0.998
29 0998 0998 0998 0.998 0998 0998 0.999 0999 0.999 0.999

3 0999 0999 0999 0.999 0999 0999 0.999 0.999 0999 0.999
31 0999 0999 0999 0.999 0999 0999 0.999 0999 0.999 0.999
32 099 0999 099 0999 0999 0999 0999 1.000 1.000 1.000
3.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
38 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Modeling Standards and Databases

G.1 Introduction

The last 10 years has seen a significant increase in the number of simulation tools, all
of which use different formats to store models. It was soon realized that some form of
standardization for model exchange was necessary. As a result, two proposed standards
emerged: CellML [65] and SBML [76] (Systems Biology Markup Language). CellML is
primarily a notation for representing biochemical models in mathematical form. SBML
on the other hand uses a biologically inspired notation to represent networks from which
a mathematical model can be generated. Each standard has its strengths and weaknesses,
but SBML has a simpler structure compared to CellML, and as a result has more software
support. Most software tools support import and export of SBML. Both standards have
very active communities with intracellular models being primarily the domain of SBML
and physiological models for CellIML. Here we will focus on SBML.

SBML

SBML is based on XML and closely follows the way existing modeling packages represent
models. For example, SBML represents biochemical networks as a list of chemical trans-
formations. It employs specific and different elements to represent spatial compartments,
molecular species, and parameters. In addition, SBML also has a provision for rules which
can be used to represent constraints, derived values, and general math.

SBML sbml . org, like any standard, has evolved with time. Major revisions of the standard

359

sbml.org

360 APPENDIX G. MODELING STANDARDS AND DATABASES

are captured in levels, while minor modifications and clarifications are captured in versions.
An example of a major change within the standard would be the use of MathML in level
two of SBML, whereas level one encoded infix (common algebra) strings to denote reaction
rates and rules. The most recent level of SBML is level three where new functionality can
be supported through extension packages.

G.2 Graphical Layout

Graphical modeling applications [12] routinely enhance computational models by layout
annotations. The SBML community devised a common standard on how to embed the
layout information within SBML, called the Layout Extension. This extension [51] allows a
model to store the size and dimension of all model elements, along with textual annotations
and reactions. LibSBML has been modified to provide access to all elements of the Layout
Extension. Several reference implementations also exist [12, 34].

In addition to the layout extension mentioned previously, the community has also into-
duced the Systems Biology Graphical Notation (SBGN) (http://sbgn.org) that aims to
standardize the visual language of computational models. While this standard is still in
development and strictly speaking independent of the SBML effort, experience in other
fields such as electrical engineering has demonstrated the essential need for standardizing
the visual notation for representing models as diagrams.

G.3 MIRIAM

Model Definition Languages such as SBML and CellML target the exchange of models.
They aim to pass on the quantitative computational models from one software tool to an-
other. Both communities agreed upon the Minimum Information Requested In the An-
notation of biochemical Models (MIRIAM, [93]). These annotations make it possible to
carry out searches for models with specific attributes on model repositories. This enables
researchers to identify biological phenomena captured by a biochemical model and most
importantly, to facilitate model reuse and model composition.

In order to call a model MIRIAM compliant, the model has to be encoded in a standard
format such as SBML. Furthermore, it needs to be tied to a reference description, describing
the properties and results obtained from the model. Parameters of the computational model
have to be provided so it can be loaded into a simulation environment to reproduce the
expected results. Other required information includes the model, the creator of the model,
the date and time of the last modification, as well as a statement about terms of distribution.

http://sbgn.org

G.4. SBO - SYSTEMS BIOLOGY ONTOLOGY 361

G.4 SBO - Systems Biology Ontology

In order to assign meaning to model constituents, an ontology specific to Systems Biology
was developed: The Systems Biology Ontology (SBO, http://www.ebi.ac.uk/sbo/).
It consists of five controlled vocabularies and two relationships: is-part-of and is-a. Qual-
ifying model participants such as enzymes, macromolecules, metabolites, or small species
such as ions, makes it easier to generate meaning from the model. It will also make the
generation of standard visual notations such as SBGN possible. Moreover, it provides a
solution on how to interpret the model computationally, as the SBO allows describing a
model as continuous, discrete or logical. One could even go a step further, making ex-
plicit kinetic rates in a model obsolete. This could be done by referencing the appropriate
ontology identifier (e.g. tagging a reaction as following Henri-Michaelis Menten enzyme
kinetics and specifying the parameters). The SBO is community driven and new terms or
modifications to the existing ontology can be requested by the community.

G.5 Other Ontologies and Formats

The most recent developments in CellML and particularly the SBML communities revolve
around the creation of ontologies and refining the exchange semantics. Apart from classi-
fying model constituents with an appropriate ontology, one of the current areas of interest
is describing the dynamical behavior of a model. The “Terminology for the Description
of Dynamics* (TEDDY, !) provides a rich ontology to describe and quantify what kinds
of behavior a computational model can exhibit (e.g. the characteristics of a model could
describe bifurcation behavior whereas the functionality of a model could be described as
oscillations or switch behavior). However, knowing that a model exhibits interesting be-
havior is not usually enough. More information is needed in order to recreate that behavior.
The “Minimum Information About a Simulation Experiment” (MIASE, ?) project focuses
on this problem. MIASE helps to describe the simulation algorithms and the simulation
tools used along with all needed parameter settings. Towards this end, one can use the
Kinetic Algorithm Ontology (KiSAO) which relates simulation algorithms and methods to
each other. As these ontologies are still currently under development, it will be interesting
to see how they evolve and are adopted by the community.

Lastly, we should mention BioPAX [100] which stands for Biological Pathway Exchange.
BioPAX is an XML based format that will act as a bridge between different pathway
databases and data. In relation to modeling software, BioPAX may offer a means to em-
bed rich annotation data into an SBML or CellML model. Some of this capability is being
addressed to a limited extent by the new ontologies being developed at EBI in Cambridge,
UK. However, BioPAX may offer a useful complementary way to bind pathway data to

"http://www.ebi.ac.uk/compneur-srv/teddy/
Zhttp://www.ebi.ac.uk/compneur-srv/miase/

http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/compneur-srv/teddy/
http://www.ebi.ac.uk/compneur-srv/miase/

362 APPENDIX G. MODELING STANDARDS AND DATABASES

computational models.

G.6 Human Readable Formats

SBML and CellML are examples of formats that use XML to represent information. One
advantage to using XML is that there is much software available to assist in reading and
manipulating XML based data. However, XML is not suited for human consumption; it is
designed strictly to be read by computer software. In order for humans to build and read
models, human readable formats are required. Often these are text based or graphical in
nature. With respect to text based formats, there has been a long tradition to using human
readable formats for representing biochemical models, starting with BIOSSIM [50]. Other
examples of early human readable formats include works by Park [131] and Burns [21] to
cite a few. In recent years simulators such as SCAMP [152] and METAMOD [74] also in-
troduced human readable formats to define models. Both software tools were subsequently
developed into Jarnac and PySCeS, respectively.

Other formats of interest include languages that support modular development of models
by Smith and Sauro [163] at the University of Washington (called Antimony), and Michael
Pederson at the University of Edinburgh [133]. Blinov, Faeder, Goldstein and Hlavacek
developed BioNetGen [16] which is a rules based format for representing systems with
multiple states. Cyto-Sim incorporates an interesting human readable language for repre-
senting biochemical systems. The SBML community [183] has also developed a human
readable script called SBML-shorthand. This notation maps directly onto SBML but is
much easier to hand write compared to SBML. The shorthand is also much less verbose
and uses infix to represent expressions rather than MathML. Finally, we should mention a
Lisp based language called little b (http://www.littleb.org/) being developed at Har-
vard University. The aim of little b is to allow biologists to build models quickly and easily
from shared parts.

G.7 Databases

Along with the standardization of model representation, there has been an obvious de-
sire to create model repositories where models published in journals can be stored and
retrieved. There are currently five repositories with varying degrees of quality and usabil-
ity. The most promising is the UK based BioModels Database, which at the current time
(July 2013) holds over nine hundred and sixty three curated and working models that can
be downloaded in standard SBML and other formats. BioModels also has the great benefit
of providing programmatic access to its database via web services, which allows any soft-
ware program to access the database seamlessly across the internet. Models stored in the
BioModels Database are curated, meaning that models will reproduce the author’s origi-
nal intention. In addition, the models are liberally annotated so model components can be

http://www.littleb.org/

G.7. DATABASES 363

referenced from other database sources.

Another large database has been assembled by the CellML community [97]. From their site
one can convert the CelIML into standard C code for compilation into a working model.

The JSim group at the University of Washington has a large database of physiological
models http://nsr.bioceng.washington.edu/Models/ stored in the mathematical lan-
guage used by the JSim simulation application.

Another useful database is the JWS online database developed by Brett Olivier and Jacky
Snoep [124] which has over seventy fully working models. JWS allows export in both
SBML and the script format PySCeS which can be easily translated to other formats such
as Jarnac script.

Another database called, DOQCS http://doqcs.ncbs.res.in/focuses on signaling net-
works and contains over two hundred models. Models in DOQCS can only be downloaded
in Genesis format [14] however, which limits portability to other frameworks.

http://nsr.bioeng.washington.edu/Models/
http://doqcs.ncbs.res.in/

364 APPENDIX G. MODELING STANDARDS AND DATABASES

Modeling with Python

In this appendix a brief description of the Python programming language will be given plus
a brief introduction to the Antimony reaction network format and libRoadRunner.

Python Python is an easy to learn general purpose interactive programming language. It
has similar usability characteristics to Matlab or Basic. As such it is a good language
to use for doing pathway simulations and is easily learned by new users. In recent
years Python has also become more widely used as a general purpose scientific pro-
gramming language and now supports many useful libraries and tools for modelers.
All the scripts we provide in this book are written in Python.

Antimony SBML has become a de facto standard for exchanging models of biological
pathways. Any tool we use should therefore be able to support SBML. However
SBML is a computer readable language and it is not easy for humans to read or write
SBML. Instead more human readable formats have been developed. In this text book
we will be using the Antimony pathway description language [163]. Models can be
described in Antimony then converted to SBML or vice versa.

libRoadRunner To support SBML from within Python we developed a C/C++ simulation
library called libRoadRunner [164] that can read and run models based on SBML. In
order to use libRoadRunner within Python, we also provide a Python interface that
makes it easy to carry out simulations with Python.

Spyder Integration of the various tools including Python is achieved by using spyder2
(https://code.google.com/p/spyderlib/). Spyder2 offers a Matlab like expe-
rience in a friendly, cross-platform environment.

365

https://code.google.com/p/spyderlib/

366 APPENDIX H. MODELING WITH PYTHON

H.1 Introduction to Python

One great advantage of the Python language is that is runs on many computer platforms,
most notably Windows, Mac and Linux and is freely downloadable from the Python web
site. To execute Python code we will need access to what is often referred to as a Python
IDE (Integrated Development Environment). In the Python world there are many IDEs to
choose from, ranging from very simple consoles to sophisticated development systems that
includes documentation, debuggers and other visual aids. In this book we use the cross-
platform IDE called spyder2 (https://code.google.com/p/spyderlib/).

The best way to learn Python is to download a copy and start using it. We have pre-
pared installers that install all the relevant components you need, these can be found at
tellurium.analogmachine.org. The Tellurium distribution includes some additional
helper routines which can make life easier for new users. The Tellurium version can be
downloaded for Mac and Windows computers. We will use the Windows version here. To
download the installer go to the web site tellurium.analogmachine.org, and click on
the first link you see called Download Windows version here. Run the installer and follow
the instructions.

Once Tellurium is installed go to the start menu, find Tellurium and select the application
call Tellurium spyder. If successful you should see something like the screen shot in Fig-
ure H.1 but without the plotting window. The screen-shot shows three important elements,
on the left we see an editor, this is where models can be edited. On the lower right is the
Python console where Python commands can be entered. At the top right we show plotting
window that illustrates some output from a simulation. For those familiar with IPython, the
latest version of spyder2 supports the IPython console directly.

Once you have started the Tellurium IDE, let us focus on the Python console at the bottom
right of the application. A screen-shot of the console is shown in Figure H.2.

The >>> symbol marks the place where you can type commands. The following examples
are based on Python 2.7. To add two numbers, say 2 + 5, we would type the following:

>>> print 2 + b5
7
>>>

Listing H.1 Simple Arithmetic

Just like Matlab or Basic we can assign values to variables and use those variables in other
calculations:

>>> a = 2

>>> b =5

PP ® = & 1
>>> print c

https://code.google.com/p/spyderlib/
tellurium.analogmachine.org
tellurium.analogmachine.org

H.1. INTRODUCTION TO PYTHON

367

Spyder for tellurium (Python 2.7)

JHid > PrEr S A
Editor - C: Python27\ib'site-packages\elurium \example 1.py

3| [P exampieLpy @

Y

bl ?" 5‘.7 Kb E

il %

b |

=

3 Created on Thu Feb 27 18:56:59 2014
2

5 Gauthor: mgaldzic

g
5 import tellurium as te
9 import roadrunner

10 import libantimony

1

12 antstr = "

13 model feedback()
Reactions:

= 54) /

EETE

/4 Species initia
51 -8; 52 - 8; 53 -
54 =0; X0 = 105 X1 = @;

/4 Variable initialization:
6 VML - 10; Keql - 105 h -
27end" "

28

29 rr = te.loadAntimonyModel (antStr)
30 result - rr.simulate(e, 4@, 508)
=1 te.plotiithLegend (rr, result)

(1+53 +54);

105 V4 = 2.5; KS4 = 0.5;

s4°h);

TYPE ~SCIENTtITIC Tor more details.
>> runfile('C:/Python27/1ib/site-packages/telluriun/exanplel.py’, wdir=r'c:/
Python27/1ib/site-packages/tellurium')

here

lNotice: performing conserved moiety conversion

>> runfile('C:/Python27/1ib/site-packages/telluriun/examplel.py’, wdir=r'C:/
Python27/1ib/site-packages/tellurium')

here

lNotice: performing conserved moiety conversion

Console | Hstorylog | IPython console |

Permissions: Ril End-of-lines: CRLF Encoding: UTF-8 Line 31 Column: 24 Memory: 88 %

Figure H.1 Screen-shot of Tellurium, showing editor on the left, Python console bottom
right and plotting window top-right.

>>>

Console

3| ® Pythant (@

g X

&

02 00:33:50

Python 2.7.6 (default, Mov 10 2013, 19:24:18) [MSC v.1500 32 bit (Intel]] on win32
Type "help", "copyright", "credits" or "license" for more information.

Imported RoadRunner 1.2.3, libAntimeny v2.0, sbml2matlab 1.2.2, TePlugins 1.0.14, NumP
y 1.8.0, Matplotlib 1.3.1, and Tellurium 1.1.2 as 'te'

Type "scientific" for more details.

Bz

Figure H.2 Screen-shot of Tellurium, focusing on the Python console.

Listing H.2 Assigning values to variables

The types of values we can assign to variables include values such as integers, floating point
numbers, Booleans (True or False), strings and complex numbers.

>>>
>>>
>>>
>>>
>>>
>>>

2
3.1415
False

O Q& 0 T

3 + 6j

"Hello Python"

Listing H.3 Different kinds of values

368 APPENDIX H. MODELING WITH PYTHON

Many functions in Python are accessible via modules. For example to compute the sin of a
number we can’t simply type sin (30). Instead we must first load the math module. We
can then call the sin function:

>>> import math

>>> print sin (3.1415)
9.265358966049026e-05
>>>

Listing H.4 Importing modules (libraries) into Python

In Tellurium we preload some libraries including the math library.

Repeating Calculations

One of the commonest operations we do in computer programming is iteration. We can
illustrate this with a simple example that loops ten times, each time printing out the loop
index. This example will allow us to introduce the IDE editor. The editor is the panel on
the left side of the IDE. In the editor we can type Python code, for example we could type:

a=4.0
b =28.0
c = a/b
print "The answer is:", c

Listing H.5 Writing a simple program in the IDE editor

When we’ve finished typing this in the editor window, we can save our little program to a
file (Select Menu: File/Save As...) and run the program by clicking on the green arrow in
the tool bar of the IDE (Figure H.3). If we run this program we will see:

The answer is: 0.5
>>>

Listing H.6 Writing a simple program in the IDE editor

Spyder for tellurium (Python 2.

File Edit Search

=

Editor - C:\Usersthsauro\DocH

gun Debug Interpreters Tools View 7

_[:5 HHbie 3 2 pE EI A =)

#Mtellurium-fles\untitted 17.py

Figure H.3 Screen-shot of Tellurium, focusing on the Toolbar with the run button circled.

The IDE allows a user to have as many program files open at once, each program file is

H.1. INTRODUCTION TO PYTHON 369

given its own tab so that it is easy to move from one to the other. This is useful if one is
working on multiple models at the same time.

We will now use the editor to write the simple program that loops ten times, this is shown
below:

for i in range (10):
print i,

Listing H.7 A simple loop in python

This will generate the sequence:
01234567289

Listing H.8 Result from simple loop program

There are a number of new concepts introduced in this small looping program. The first
line contains the for keyword can be translated into literal English as “for all elements in
a list, do this”. The list is generated from the range () function and in this case generates
a list of 10 numbers starting at 0. i is the loop index and within the loop, i can be used in
other calculations. In this case we will just print the value of i to the console. Each time
the program loops it extracts the next value from the list and assigns it to i.

Two things are important to note in the print line. The first and most important is that
the line has been indented four spaces. This isn’t just for aesthetic reasons but is actually
functional. It tells Python what code should be executed within the loop. To elaborate we
could add more lines to the loop, such as:

for i in range (10):

a=1
b = a*x2
print b,

print "Finished Loop"

Listing H.9 A simple loop illustrating multiple statements

In this example there are three indented lines, this means that these three lines will be
executed within the loop. The last line which prints a message, is not indented and therefore
will not be executed within the loop. This means we only see the message appear once right
at the end. The output for this little program is shown below.

02468 10 12 14 16 18 Finished Loop

Another important point worth noting is the use of the , after the loop print statement. The

370 APPENDIX H. MODELING WITH PYTHON

comma is used to suppress a newline. This is why the output appears on one line only. If
we had left out the comma each print statement would be on its own line.

A final word about range (). Range takes up to three arguments. In the example we only
gave one argument, 10. A single argument means create a list starting at zero, incrementing
one for each item until the incremented value reaches 10. A second argument such as range
(5, 10) means start the list at 5 rather than zero. Finally, a third argument can be used to
specify the increment size. For example the command range (1, 10, 2) will yield the
list:

[1, 3, 5, 7, 9]

The easiest way to try out the various options in range is to type them at the console to get
immediate feedback.

The use of variables, printing results, importing libraries and looping are probably the min-
imum concepts one needs to start using Python. However there are a huge range of re-
sources online to help learn Python. Of particular interest is the codecademy web site
(http://www.codecademy.com/). This site offers an interactive means to learn Python
(including other programming languages).

H.2 Describing Reaction Networks using Antimony

The code shown in the panel below illustrates the description of a very simple model
using the Antimony syntax [163] followed by two lines of Python that uses libRoad-
Runner to run a simulation of the model. In this section we will briefly describe the
Antimony syntax. A more detailed description of Antimony can be found at http:
//antimony.sourceforge.net/index.html.

import tellurium as te

r = te.loada (
->

)

r.simulate (0, 50, 100)
r.plot()

Listing H.10 Simple model Antimony and simulated using libRoadRunner

The main purpose of Antimony is to make it straight forward to specify complex reaction
networks using a familiar chemical reaction notation.

A chemical reaction can be an enzyme catalyzed reaction, a binding reaction, a phospho-

http://www.codecademy.com/
http://antimony.sourceforge.net/index.html
http://antimony.sourceforge.net/index.html

H.2. DESCRIBING REACTION NETWORKS USING ANTIMONY 371

rylation, a gene expressing a protein or any chemical process that results in the conversion
of one of more species (reactants) to a set of one or more other species (products). In
Antimony, reactions are described using the notation:

A+ ... ->P+ ...

where the reactants are on the left side and products on the right side. The left and right are
separated by the -> symbol. For example:

A ->B

describes the conversion of reactant A into product B. In this case one molecule of A is
converted to one molecule of B. The following example shows non-unity stoichiometry:

2 A->38B

which means that two molecules of A react to form three molecules of B. Bimolecular and
other combinations can be specified using the + symbol, that is:

2A+B->C+3D

tells us that two molecules of A combine with one molecule of B to form one molecule of C
and three molecules of D.

To specify species that do not change in time (boundary species), add a dollar character in
front of the name, for example:

$A +B ->C

means that during a simulation A is fixed.

Reactions can be named using the syntax J1:, for example:

Ji: A+B ->C

means the reaction has a name, J1. Named reaction are useful if you want to refer to the
flux of the reaction; kinetic rate laws come immediately after the reaction specification. If
only the stoichiometry matrix is required, it is not necessary to enter a full kinetic law, a
simple ... -> S1; v; is sufficient. Here is an example of a reaction that is governed by
a Michaelis-Menten rate law:

A -> B; Vm*xA/(Km + A);

Note the semicolons. Here is a more complex example involving multiple reactions:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);
TopBranch: S1 -> $X1; Vm1#S1/(Km1 + S1);
BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);

There is no need to pre-declare the species names shown in the reactions or the parameters
in the kinetic rate laws. Strictly speaking, declaring the names of the floating species is
optional, however this feature is for more advanced users who wish to define the order
of rows that will appear in the stoichiometry matrix. For normal use there is no need to
pre-declare the species names. To pre-declare parameters and variables see the example

372 APPENDIX H. MODELING WITH PYTHON

below:

const Xo, X1, X2; // Boundary species

var S1; // Floating species
MainFeed: $X0 -> S1; Vm*X0/(Km + X0);
TopBranch: S1 -> $X1; Vml1*S1/(Kml + S1);

BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);

We can load an Antimony model into libRoadRunner using the short-cut command loada.
For example:

r = te.loada ('"'
const Xo, X1, X2; // Boundary species

var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1#S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);
11 I)

To reference model properties and methods, the property or method must be proceeded
with the roadrunner variable. e.g. r.S1 = 2.3;

When loaded into libRoadRunner the model will be converted into a set of differential
equations. For example, consider the following model:

$Xo -> S1; +vi;
S1 -> 852; v2;
S2 -> $X1; v3;

will be converted into:

dSq
o ST
dsS,
ST

Note that there are no differential equations for X, and X;. This is because they are fixed
and do not change in time. If the reactions have non-unity stoichiometry, this is taken into
account when the differential equations are derived.

H.3. USING LIBROADRUNNER IN PYTHON 373

H.2.1 Initialization of Model Values

To initialize the concentrations and parameters in a model we can add assignments after the
network is declared, for example:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);
TopBranch: S1 -> $X1; Vm1#S1/(Km1 + S1);
BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);

X0 = 3.4; X1
S1 =0.1;

Vm = 12; p.Km = 0.1;
Vml = 14; p.Kml = 0.4;
Vm2 = 16; p.Km2 = 3.4;

1]
(@]

.0;

H.3 Using libRoadRunner in Python

libRoadRunner is a high performance simulator [164] that can simulate models described
using SBML. In order to use Antimony with libRoadRunner it is necessary to first convert
an Antimony description into SBML and then load the SBML into libRoadRunner. Tel-
luirum provides a handy routine called 1loadAntimonyModel to help with this task (The
short-cut name is loada). To load an Antimony model we first assign an Antimony descrip-
tion to a string variable, for example:

model = ''!
S1 -> S82; ki1xS1;

51 = 10; k1 = 0.1;

We now use the loadAntimonyModel (model) or loada to load the model into libRoad-
Runner.

>>> r = te.loadAntimonyModel (model)

Listing H.11 Loading an Antimony model

In this book we generally use the short-cut command as follows:

r = te.loada (
>

374 APPENDIX H. MODELING WITH PYTHON

>>>

Listing H.12 Loading an Antimony model using the short-cut command

Note that loadAntimonyModel and loada are part of the Tellurium Python package sup-
plied with the Tellurium installer. If the Tellurium packages hasn’t been loaded, use the
following command to load the Tellurium package:

>>> import tellurium as te

Listing H.13 Importing the Tellurium Package

H.3.1 Time Course Simulation

Once a model has been loaded into libRoadRunner, performing a simulation is very straight
forward. To simulate a model we use the libRoadRunner simulate method. This method has
many options but for everyday use four options will suffice. The following panel illustrates
a number examples of how to use simulate.

>>> result =
>>> result
>>> result
>>> result

.simulate ()

.simulate (0, 10)

.simulate (0, 10, 100)

.simulate (0, 10, 100, ['time', 'S1'])

o
H B KR R

Listing H.14 Calling the simulate method

Argument Description

1st Start Time

2nd End Time

3rd Number of Points
4th Selection List

Let us focus on the forth version of the simulate method that takes four arguments. This
call will run a time course simulation starting at time zero, ending at time 10 units, and
generating 100 points. The results of the run are deposited in the matrix variable, result.
At the end of the run, the result matrix will contain columns corresponding to the time
column and all the species concentrations as specified by the forth argument. The forth
argument can be used to change the columns that are returned from the simulate method.
For example:

>>> result = r.simulate (0, 10, 1000, ['S1'])}

H.3. USING LIBROADRUNNER IN PYTHON 375

will return a matrix 1,000 rows deep and one column wide that corresponds to the level of
species S1.

Note that the special variable Time is available and represents the independent time variable
in the model.

Finally we plot the results.

result = r.simulate (0, 10, 1000, ['Time', 'S1', 'J1', 'J2', 'J3']);
r.plot()

or if we are not interested in the result data itself we can use the libRoadRunner plot:

It is possible to set the output column selections separately using the command:
r.selections = ['time', 'S1']

This can save some typing each time a simulation needs to be carried out. By default the
selection is set to time as the first column followed by all molecular species concentrations.
As such it is more common to simply enter the command:

>>> result = r.simulate (0, 10, 50)

In fact even the start time and end time and number of points are optional and if missing,
simulate will revert to its defaults.

>>> result = r.simulate()

H.3.2 Plotting Simulation Results

Tellurium comes with Matplotlib which is a common plotting package used by many
Python users. To simplify its use we provide two simple plotting calls:

te.plot (array)
te.plotWithLegend (rr, array)

The first takes the resulting array generated by a call to simulate and uses the first col-
umn as the x axis and all subsequent columns as y axis data. The second call takes the
roadrunner variable as well as the array and does the same kind of plot but this time adds
a legend to the plot. We will use the first plotting command in the next section where we
merge together multiple simulations.

376 APPENDIX H. MODELING WITH PYTHON

H.3.3 Applying Perturbations to a Simulation

Often in a simulation we may wish to perturb a species or parameter at some point during
the simulation and observe what happens. One way to do this in Tellurium is to carry out
two separate simulations where a perturbation is made in between the two simulations.
For example, let’s say we wish to perturb the species concentration for a simple two step
pathway and watch the perturbation decay. First, we simulate the model for 10 time units;
this gives us a transient and then a steady state.

import numpy
import tellurium as te

r = te.loada (
$ =
_>$

ml = r.simulate (0, 40, 50)

We then make a perturbation in S1 as follows:

r.S1 = r.51 * 1.6

which increases S1 by 60%. We next carry out a second simulation:

m2 = r.simulate (40, 80, 50)

Note that we set the time start of the second simulation to the end time of the first simula-
tion. Once we have the two simulations we can combine the matrices from both simulations

using the Python command vstack

% Merge the two result array together
m = numpy.vstack ((ml, m2))

Finally, we plot the results, screen-shot shown in Figure H.4.

te.plotArray (m)

H.3. USING LIBROADRUNNER IN PYTHON 377

200+~ BEV

35

30

25

20

15

10

5

0 10 20 30 40 50 60 70 80

Figure H.4 Screen-shot from Matplotlib showing effect of perturbation in S1.

H.3.4 Steady State and Metabolic Control

To evaluate the steady-state first make sure the model values have been previously initial-
ized, then enter the following statement at the console.

>>> r.getSteadyState()

This statement will attempt to compute the steady state and return a value indicating how
effective the computation was. It returns the norm of the rate of change vector (i.e. sqrt
(Sum of dydt)). The closer this is to zero, the better the approximation to the steady state.
Anything less that 10~# usually indicates that a steady state has been found.

Once a steady state has been evaluated, the values of the metabolites will be at their steady
state values, thus S1 will equal the steady state concentration of S1.

The fluxes through the individual reactions can be obtained by either referencing the name
of the reaction (e.g. J1), or via the short-cut commandrv. The advantage to looking at the
reaction rate vector is that the individual reaction fluxes can be accessed by indexing the
vector (see example below). Note that indexing is from zero.

>>> print r.J1, r.J2, r.J3
3.4,

>>> for i in range (0, 2):
.. print r.rv() [i]

3.4
etlc
->

To compute control coefficients use the statement:
getCC (Dependent Measure, Independent parameter)

The dependent measure is an expression usually containing flux and metabolite references,

378 APPENDIX H. MODELING WITH PYTHON

for example, S1, J1. The independent parameter must be a simple parameter such as a
Vmax, Km, ki, boundary metabolite (X0), or a conservation total such as cm_xxxx. Exam-
ples include:

r.getCC ('J1', 'Vmaxl')

r.getCC ('J1', 'Vml') + rr.getCC ('J1', 'Vm2')
r.getCC ('J1', 'X0')

r.getCC ('J1', 'cm_xxxx')

To compute elasticity coefficients use the statement:
getEE (Reaction Name, Parameter Name)
For example:

r.getEE ('J1', 'X0')
r.getEE ('J1', 'S1')

Since getCC and getEE are built-in functions, they can be used alone or as part of larger
expressions. Thus, it is easy to show that the response coefficient is the product of a control
coefficient and the adjacent elasticity by using:

R = r.getCC ('J1', 'X0'")
print R - r.getCC ('J1', 'Vm') * r.getEE ('J1', 'X0')

To obtain the conservation matrix for a model use the model method, getConservation-
Matrix. Note that in the Antimony text we use the var word to predeclare the species so
that we can set up the rows of the stoichiometry matrix in a certain order if we wish. This
allows us to obtain conservation matrices with only positive terms.

import tellurium as te

r = te.loada (

print r.getConservationMatrix()
print r.fs()

L e lo Do @cd
[Lia @ @ | 117
[IESI, lSll’ lSQl’ lEl]

H.4. GENERATING SBML AND MATLAB FILES 379

The result given above indicates that the conservation relations, ES + S1 + EandE + ES
exist in the model. As a result, Tellurium would generate two internal parameters of the
form cm corresponding to the two relations.

H.3.5 Other Model Properties of Interest

There are a number of predefined objects associated with a reaction network model which
might also be of interest. For example, the stoichiometry matrix, sm, the rate vector rv, the
species levels vector and dv which returns the rates of change.

print r.sm()
print r.rv()
print r.sv()
print r.dv(Q)

The names for the parameters and variables in a model can be obtained the short-cuts:

print r.fs() # List of floating species names
print r.bv() # List of boundary species names
print r.ps() # List of parameter names

print r.rs() # List of reaction names

print r.vs() $ List of compartment names

The jacobian matrix can be returned using the command: r.getFullJacobian()).

H.4 Generating SBML and Matlab Files

Tellurium can import and export standard SBML [76] as well as export Matlab scripts for
the current model. To load a model in SBML, load it directly into libRoadRunner. For
example:

>>> r = roadrunner.RoadRunner ('mymodel.xml')
>>> result = r.simulate (0, 10, 100)

There are two ways to retrieve the SBML, one can either retrieve the original SBML loaded
using r.getSBML () or retrieve the current SBML using r.getCurrentSBML(). Retriev-
ing the current SBML can be useful if the model has been changed. To save the SBML to
a file we can use the Tellurium helper function saveToFile (), for example:

>>> te.saveToFile ('mySBMLModel.xml', r.getCurrentSBML())

To convert an SBML file into Matlab, use the getMatlab method:

380 APPENDIX H. MODELING WITH PYTHON

import tellurium as te

r = te.loada (
N
N

te.saveToFile ('model.xml', r.getSBML())

te.saveToFile ('model.mat', r.getMatlab())

H.5 Exercise

Figure H.5 shows a two gene circuit with a feedforward loop. Assume the following rate
laws for the four reactions:

V1 = k1X0
Vp = kle
V3 = k3X0

Vg4 = k4X1X2

Assume that all rate constants are equal to one and that X, = 1. Assume X, is a fixed
species.

V2

i

v
Xo !

3:'2 —
—E-i Uy

U3

Figure H.5 Two gene circuit with feedfoward loop.

1. Use Tellurium to model this system.

H.5. EXERCISE 381

2. Run a simulation of the system from 0O to 10 time units.

3. Next, change the value of X, to 2 (double it) and rerun the simulation for another 10
time units from where you left off in the last simulation. Combine both simulations and
plot the result, that is time on the x-axis, and X, and x5 on the y-axis.

4. What do you see?
5. Write out the differential equations for x; and x».

6. Show algebraically that the steady state level of x» is independent of X,,.

382 APPENDIX H. MODELING WITH PYTHON

References

[1] 2006. SBW-a modular framework for systems biology. Winter Simulation Conference
WSC 06 Proceedings of the 38th conference on Winter simulation.

[2] Alberty, R. A. 2005. Thermodynamics of biochemical reactions. Wiley. com.
[3] Aldrich, J. 1997. Statistical Science 12 (3):162-176.

[4] Alon, U. 2006. An Introduction to Systems Biology: Design Principles of Biologi-
cal Circuits (Chapman & Hall/Crc Mathematical and Computational Biology Series).
Chapman & Hall/CRC.

[5] Aparicio, O., Joseph V Geisberg, and Kevin Struhl. 2004. Curr Protoc Cell Biol Chap-
ter 17:Unit 17.7.

[6] Barabasi, A. 2003. Linked. Plume.
[7] Barabasi, A. L., and Z N Oltvai. 2004. Nat Rev Genet 5 (2):101-113.

[8] Baralla, A., Wieslawa I Mentzen, and Alberto De La Fuente. 2009. Annals of the New
York Academy of Sciences 1158 (1):246-256.

[9] Barnett, V., and Toby Lewis. 1994. Outliers in statistical data, vol. 3. Wiley New York.

[10] Bennett, B. D., Elizabeth H Kimball, Melissa Gao, Robin Osterhout, Stephen J
Van Dien, and Joshua D Rabinowitz. 2009. Nature chemical biology 5 (8):593-599.

[11] Bergmann, F. T., Ravishankar R Vallabhajosyula, and Herbert M Sauro. 2006a. Cur-
rent Proteomics 3 (3):181-197.

[12] Bergmann, F. T., R. R. Vallabhajosyula, and H. M. Sauro. October 2006b. Current
Proteomics 3:181-197(17).

[13] Bevington, P. R., and D Keith Robinson. 1969. Data reduction and error analysis for
the physical sciences, vol. 2. McGraw-Hill New York.

[14] Bhalla, U. S. 2002. Methods Enzymol 345:3-23.

[15] Biondi, E. G., Sarah J Reisinger, Jeffrey M Skerker, Muhammad Arif, Barrett S Per-
chuk, Kathleen R Ryan, and Michael T Laub. 2006. Nature 444 (7121):899-904.

383

384 REFERENCES

[16] Blinov, M. L., J R Faeder, B Goldstein, and W S Hlavacek. 2004. Bioinformatics 20
(17):3289-3291.

[17] Bode, A. M., and Zigang Dong. 2004. Nat Rev Cancer 4 (10):793-805.

[18] Brett, D., H. Pospisil, J. Valcarcel, J. Reich, and P. Bork. 2002. Nature genetics 30
(1):29-30.

[19] Brilli, M., Marco Fondi, Renato Fani, Alessio Mengoni, Lorenzo Ferri, Marco Bazz-
icalupo, and Emanuele Biondi. 2010. BMC Systems Biology 4 (1):52.

[20] Burns, J. 1969. FEBS Lett 2 Suppl 1:S30-S33.

[21] Burns, J. A. 1971. Studies on Complex Enzyme Systems. PhD thesis University of
Edinburgh. http://www.sys-bio.org/jim-burns-thesis/.

[22] Cai, L., Nir Friedman, and X Sunney Xie. 2006. Nature 440 (7082):358-362.

[23] Cao, Y., D.T. Gillespie, and L.R. Petzold. 2005. Journal of Chemical Physics 123
(14).

[24] Cash, J. R., and Alan H. Karp. 1990. ACM Trans. Math. Softw. 16 (3):201-222.
[25] Chance, B. 1943. Journal of Biological Chemistry 151 (2):553-577.

[26] Chen, K. C., Laurence Calzone, Attila Csikasz-Nagy, Frederick R Cross, Bela Novak,
and John J Tyson. 2004. Molecular biology of the cell 15 (8):3841-3862.

[27] Chickarmane, V., B. N. Kholodenko, and H. M. Sauro. 2007. J Theor Biol 244 (1):68—
76.

[28] Chickarmane, V., C. Troein, U. A. Nuber, H. M. Sauro, and C. Peterson. 2006. PLoS
Comput Biol 2 (9).

[29] Chylek, L. A., Leonard A Harris, Chang-Shung Tung, James R Faeder, Carlos F
Lopez, and William S Hlavacek. 2014. Wiley Interdisciplinary Reviews: Systems Biol-
ogy and Medicine 6 (1):13-36.

[30] Clarke, B. L. 1980. Stability of complex reaction networks., vol. 42 of Adv. Chem.
Phys. Wiley, New York.

[31] Cohen, P. 2000. Trends in Biochemical Sciences 25 (12):596-601.
[32] Cohen, S. D., and A. C. Hindmarsh. 1996. Comput. Phys. 10:138——143.

[33] de Graauw, M., (ed.), 2009. Phospho-Proteomics, vol. 527 of Methods in Molecular
Biology. Humana Press.

http://www.sys-bio.org/jim-burns-thesis/

REFERENCES 385

[34] Deckard, A., F T Bergmann, and H M Sauro. 2006. Bioinformatics 22 (23):2966—
2967.

[35] Dickson, R. C., and M. D. Mendenhall. , (ed.), 2004. Signal Transduction Protocols,
vol. 284 of Methods in Molecular Biology. Humana Press, 2nd Edition.

[36] Dormand, J. R., and Peter J Prince. 1980. Journal of computational and applied math-
ematics 6 (1):19-26.

[37] Draper, N. R., and H Smith. 1998. Applied Regression Analysis. Wiley, 3rd edition.
[38] Efron, B., and Robert Tibshirani. 1986. Statistical science :54-75.

[39] Egbert, R. G., and Eric Klavins. 2012. Proceedings of the National Academy of
Sciences 109 (42):16817-16822.

[40] Elowitz, M., A.J. Levine, E.D. Siggia, and P.S. Swain. 2002. Science Signalling 297
(5584):1183.

[41] Entus, R., B Aufderheide, and H. M. Sauro. 2007. Systems and Synthetic Biology
10.1007/s11693-007-9008-6.

[42] Faeder, J. R., M L Blinov, B Goldstein, and W S Hlavacek. 2005. Complexity 10:22—
41.

[43] Fell, D. 1997. Understanding the Control of Metabolism. Portland Press., London.

[44] Ferrell, J. E., and Wen Xiong. 2001. Chaos: An Interdisciplinary Journal of Nonlinear
Science 11 (1):227-236.

[45] Fields, S., and O Song. 1989. Nature 340 (6230):245-246.

[46] Friedland, A. E., Timothy K Lu, Xiao Wang, David Shi, George Church, and James J
Collins. 2009. Science 324 (5931):1199-1202.

[47] Gama-Castro, S., Verénica Jiménez-Jacinto, Martin Peralta-Gil, Alberto Santos-
Zavaleta, Monica I Pefialoza-Spinola, Bruno Contreras-Moreira, Juan Segura-Salazar,
Luis Muiiz-Rascado, Irma Martinez-Flores, Heladia Salgado, César Bonavides-
Martinez, Cei Abreu-Goodger, Carlos Rodriguez-Penagos, Juan Miranda-Rios, Enrique
Morett, Enrique Merino, Araceli M Huerta, Luis Trevifio-Quintanilla, and Julio Collado-
Vides. 2008. Nucleic Acids Res 36 (Database issue):D120-D124.

[48] Gardner, T. S., and J. J. Collins. 2000. Nature 405:520-521.
[49] Garfinkel, D. 1968. Comput. Biomed. Res. 2:31-44.

[50] Garfinkel, D., L Garfinkel, M Pring, S B Green, and B Chance. 1970. Annu Rev
Biochem 39:473-498.

386 REFERENCES

[51] Gauges, R., U. Kummer, S. Sahle, and K. Wegner. 2006. Bioinformatics 22
(15):1879-1885.

[52] Gavin, A.-C., Patrick Aloy, Paola Grandi, Roland Krause, Markus Boesche, Mar-
tina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bastuck, Birgit Diimpelfeld, An-
gela Edelmann, Marie-Anne Heurtier, Verena Hoffman, Christian Hoefert, Karin Klein,
Manuela Hudak, Anne-Marie Michon, Malgorzata Schelder, Markus Schirle, Marita
Remor, Tatjana Rudi, Sean Hooper, Andreas Bauer, Tewis Bouwmeester, Georg Casari,
Gerard Drewes, Gitte Neubauer, Jens M Rick, Bernhard Kuster, Peer Bork, Robert B
Russell, and Giulio Superti-Furga. 2006. Nature 440 (7084):631-636.

[53] Gear, C. W. 1971. Numerical Initial Value Problems in Ordinary Differential Equa-
tions. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

[54] Gekas, V., and M. Lopez-Leiva. 1985. Process biochemistry 20 (1):2—12.
[55] Gibson, M. A., and J. Bruck. 2000. J. Phys. Chem. A 104 (9):1876-1889.
[56] Gillespie, D. T. 1976. J.Comp. Phys. 22:403-434.

[57] Gillespie, D. T. 1977. J. Phys. Chem. 81:2340-2361.

[58] Goldberg, D. 1989. Addison Wesley, New York. Eiben AE, Smith JE (2003) Intro-
duction to Evolutionary Computing. Springer. Jacq J, Roux C (1995) Registration of

non-segmented images using a genetic algorithm. Lecture notes in computer science
905:205-211.

[59] Golding, 1., Johan Paulsson, Scott M Zawilski, and Edward C Cox. 2005. Cell 123
(6):1025-1036.

[60] Goodyear, C., and G.J. Silverman. 2008. Cold Spring Harbor Protocols 2008 (9).

[61] Hairer, E., Syvert Paul Ngrsett, and Gerhard Wanner. 1991. Solving ordinary differ-
ential equations, vol. 2. Springer.

[62] Hansen, P. C., Victor Pereyra, and Godela Scherer. 2012. Least squares data fitting
with applications. JHU Press.

[63] Harris, L. A., Justin S Hogg, Jose-Juan Tapia, John AP Sekar, Sanjana Gupta, Ilya
Korsunsky, Arshi Arora, Dipak Barua, Robert P Sheehan, and James R Faeder. 2016.
Bioinformatics 32 (21):3366-3368.

[64] Hatzimanikatis, V., and J. E. Bailey. 1997. Biotechnol Bioeng 54 (2):91-104.

[65] Hedley, W. J., N. R. Melanie, D. Bullivant, A. Cuellar, Yi Ge, M. Grehlinger, K. Jim,
S. Lett, D. Nickerson, P. Nielsen, and H. Yu. 2001. Available via the World Wide Web
athttp://www.cellml.org.

REFERENCES 387

[66] Heijnen, J. J. 2005. Biotechnol Bioeng 91 (5):534-545.

[67] Heinrich, R., S. M. Rapoport, and T. A. Rapoport. 1977. Prog. Biophys. Molec. Biol.
32:1-82.

[68] Henry, C. S., Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben Linsay, and
Rick L Stevens. 2010a. Nature biotechnology 28 (9):977-982.

[69] Henry, C. S., Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben Linsay, and
Rick L Stevens. 2010b. Nature biotechnology 28 (9):977-982.

[70] Herrera, F., Manuel Lozano, and Jose L. Verdegay. 1998. Artificial intelligence review
12 (4):265-319.

[71] Hindmarsh, A. C. 1983. In: Stepleman, R., (ed.), Scientific Computing, p. 55-64.
North-Holland, Amsterdam.

[72] Hoefnagel, M., A Van Der Burgt, DE Martens, J] Hugenholtz, and JL. Snoep. 2002.
Molecular biology reports 29 (1-2):157-161.

[73] Hofmeyr, J.-H. 1995. J Bioenerg Biomembr 27 (5):479—-490.
[74] Hofmeyr, J.-H., and K. J. van der Merwe. 1986. Comp. Appl. Biosci. 2:243-249.

[75] Hoops, S., S Sahle, R Gauges, C Lee, J Pahle, N Simus, M Singhal, L Xu, P Mendes,
and U Kummer. 2006. Bioinformatics 22 (24):3067-3074.

[76] Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, L. I. Goryanin, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J.
Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le NovAZESAAlre,
L. M. Loew, D. Lucio, P. Mendes, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F.
Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang. 2003. Bioinformatics 19:524-531.

[77] Huerta, A. M., H. Salgado, D. Thieffry, and J. Collado-Vides. 1998. Nucleic Acids
Res 26 (1):55-59.

[78] Ingalls, B. 2013. Mathematical Modeling in Systems Biology: An Introduction. MIT
Press.

[79] Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. 2001. Proc Natl
Acad Sci U S A 98 (8):4569-4574.

[80] Jabbari, S., John T Heap, and John R King. 2011. Bulletin of mathematical biology
73 (1):181-211.

388 REFERENCES

[81] Jeong, H., S. P. Mason, A. L. Barabasi, and Z. N. Oltvai. 2001. Nature 411 (6833):41-
42,

[82] Kacser, H., and J. A. Burns. 1973. In: Davies, D. D. , (ed.), Rate Control of Bi-
ological Processes, vol. 27 of Symp. Soc. Exp. Biol. p. 65-104. Cambridge University
Press.

[83] Karp, P. D., I. M. Keseler, A. Shearer, M. Latendresse, M. Krummenacker, S. M.
Paley, I. Paulsen, J. Collado-Vides, S. Gama-Castro, M. Peralta-Gil, A. Santos-Zavaleta,
M. I. Pefialoza-Spinola, C. Bonavides-Martinez, and J. Ingraham. 2007. Nucleic Acids
Res 35 (22):7577-7590.

[84] Kashtan, N., S. Itzkovitz, R. Milo, and U. Alon. 2002. Mfinder tool guide.

[85] Keseler, I. M., Julio Collado-Vides, Alberto Santos-Zavaleta, Martin Peralta-Gil, So-
corro Gama-Castro, Luis Muiiz-Rascado, César Bonavides-Martinez, Suzanne Paley,
Markus Krummenacker, Tomer Altman, Pallavi Kaipa, Aaron Spaulding, John Pacheco,
Mario Latendresse, Carol Fulcher, Malabika Sarker, Alexander G Shearer, Amanda
Mackie, Ian Paulsen, Robert P Gunsalus, and Peter D Karp. 2011. Nucleic Acids Res
39 (Database issue):D583-D590.

[86] Kim, K. H., Hong Qian, and Herbert M Sauro. 2008. arXiv preprint arXiv:0805.4455

[87] Kirkpatrick, S., D. Gelatt Jr., and Mario P Vecchi. 1983. science 220 (4598):671-680.

[88] Kitano, H., A Funahashi, Y Matsuoka, and K Oda. 2005. Nat Biotechnol 23 (8):961—
966.

[89] Kroeze, W. K., Douglas J Sheffler, and Bryan L. Roth. 2003. Journal of Cell Science
116 (24):4867-4869.

[90] Krogan, N. J., Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo, Alexandr
Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P Tikuisis, Thanuja Punna, José¢ M
Peregrin-Alvarez, Michael Shales, Xin Zhang, Michael Davey, Mark D Robinson, Al-
berto Paccanaro, James E Bray, Anthony Sheung, Bryan Beattie, Dawn P Richards,
Veronica Canadien, Atanas Lalev, Frank Mena, Peter Wong, Andrei Starostine, Myra M
Canete, James Vlasblom, Samuel Wu, Chris Orsi, Sean R Collins, Shamanta Chandran,
Robin Haw, Jennifer J Rilstone, Kiran Gandi, Natalie] Thompson, Gabe Musso, Peter St
Onge, Shaun Ghanny, Mandy H Y Lam, Gareth Butland, Amin M Altaf-Ul, Shigehiko
Kanaya, Ali Shilatifard, Erin O’Shea, Jonathan S Weissman, C. James Ingles, Timo-
thy R Hughes, John Parkinson, Mark Gerstein, Shoshana J Wodak, Andrew Emili, and
Jack F Greenblatt. 2006. Nature 440 (7084):637-643.

[91] Kuzmic, P. 1996. Analytical biochemistry 237 (2):260-273.
[92] Larson, D.R., R H Singer, and D Zenklusen. 2009. Trends Cell Biol 19 (11):630-637.

REFERENCES 389

[93] Le Novere, N., Andrew Finney, Michael Hucka, Upinder S Bhalla, Fabien Campagne,
Julio Collado-Vides, Edmund J Crampin, Matt Halstead, Edda Klipp, Pedro Mendes,
Poul Nielsen, Herbert Sauro, Bruce Shapiro, Jacky L Snoep, Hugh D Spence, and
Barry L Wanner. 2005. Nature biotechnology 23 (12):1509-1515.

[94] Le Novere, N., M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir,
K. Wegner, M.I. Aladjem, S.M. Wimalaratne, et al.. 2009. Nature biotechnology 27
(8):735-741.

[95] Lee, T. 1., Nicola J Rinaldi, Frangois Robert, Duncan T Odom, Ziv Bar-Joseph,
Georg K Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, Itamar
Simon, Julia Zeitlinger, Ezra G Jennings, Heather L Murray, D. Benjamin Gordon, Bing
Ren, John J Wyrick, Jean-Bosco Tagne, Thomas L Volkert, Ernest Fraenkel, David K
Gifford, and Richard A Young. 2002. Science 298 (5594):799-804.

[96] Leroux, A. E., Jurgen R Haanstra, Barbara M Bakker, and R Luise Krauth-Siegel.
2013. Journal of Biological Chemistry .

[97] Lloyd, C. M., J R Lawson, P J Hunter, and P F Nielsen. 2008. Bioinformatics .

[98] Longabaugh, W., E.H. Davidson, and H. Bolouri. 2005. Developmental Biology 283
(1):1-16.

[99] Longabaugh, W., EH Davidson, and H. Bolouri. 2008. Biochim Biophys Acta .

[100] Luciano, J. S., and R D Stevens. 2007. BMC Bioinformatics 8 Suppl 3:8 Suppl 3:
S3.

[101] Maarleveld, T. R., Ruchir A Khandelwal, Brett G Olivier, Bas Teusink, and Frank J
Bruggeman. 2013. Biotechnology Journal .

[102] Macek, B., F. Gnad, B. Soufi, C. Kumar, J.V. Olsen, 1. Mijakovic, and M. Mann.
2008. Molecular & Cellular Proteomics 7 (2):299.

[103] MacNamara, S., A.M. Bersani, K. Burrage, and R.B. Sidje. 2008. Journal of Chem-
ical Physics 129 (9).

[104] Mangan, S., S Itzkovitz, A Zaslaver, and U Alon. 2006. J Mol Biol 356 (5):1073—
1081.

[105] Manninen, T., E Makiraatikka, A Ylipaa, A Pettinen, K Leinonen, and M L Linne.
2006. Conf Proc IEEE Eng Med Biol Soc 1:2013-2016.

[106] Manning, G., D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. 2000. Sci-
ence 298:1912-1934.

[107] Mardis, E. R. 2007. Nat Methods 4 (8):613-614.

390 REFERENCES

[108] Markevich, N. 1., J B Hoek, and B. N. Kholodenko. 2004. J. Cell Biol. 164:353-9.
[109] Marquardt, D. 1963. J. Soc. Ind. Appl. Math 11 (2):431-441.
[110] Mattick, J. 2004. Pharmacogenomics J 4:9-16.

[111] Maus, C., Stefan Rybacki, and Adelinde M Uhrmacher. 2011. BMC Systems Biol-
ogy 5 (1):166.

[112] McCollum, J. M., Gregory D Peterson, Chris D Cox, Michael L. Simpson, and Nag-
iza F Samatova. 2006. Comput Biol Chem 30 (1):39-49.

[113] McLachlan, G., Kim-Anh Do, and Christophe Ambroise. 2004. Analyzing microar-
ray gene expression data, vol. 422. Wiley.com.

[114] Medley, J. K., Kiri Choi, Matthias Konig, Lucian Smith, Stanley Gu, Joseph Heller-
stein, Stuart C Sealfon, and Herbert M Sauro. 2018. PLoS computational biology 14
(6):¢1006220.

[115] Milo, R., S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer,
and U. Alon. 2004. Science 303 (5663):1538.

[116] Milo, R., Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer. 2010.
Nucleic acids research 38 (suppl 1):D750-D753.

[117] Milo, R., N. Kashtan, S. Itzkovitz, MEJ Newman, and U. Alon. 2003. eprint arXiv:
cond-mat/0312028 .

[118] Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.
Science 298:824-7.

[119] Monod, J., J Wyman, and J. P. Changeux. 1965. J Mol Biol 12:88-118.

[120] Montgomery, D. C., Elizabeth A Peck, and G Geoffrey Vining. 2012. Introduction
to linear regression analysis, vol. 821. Wiley.

[121] Miiller, T., N Noykova, M Gyllenberg, and J Timmer. 2002. Mathematical Bio-
sciences 177:147-160.

[122] Myers, C. J., Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen, and
Nam-Phuong D Nguyen. 2009. Bioinformatics 25 (21):2848-2849.

[123] Nelder, J., and R. Mead. 1965. The Computer Journal 7 (4):308.
[124] Olivier, B., and J.L. Snoep. 2004. Bioinformatics 20 (13):2143-2144.

[125] Olivier, B. G., J. M. Rohwer, and J. H. Hofmeyr. 2005. Bioinformatics 21:560-1.

REFERENCES 391

[126] Ozbudak, E., M. Thattai, I. Kurtser, A.D. Grossman, and A. van Oudenaarden. 2002.
Nature genetics 31 (1):69-73.

[127] Ozbudak, E. M., M Thattai, H N Lim, B I Shraiman, and A Van Oudenaarden. 2004.
Nature 427 (6976):737-740.

[128] Pahle, J. 2009. Briefings in bioinformatics 10 (1):53-64.

[129] Palsson, B. 2011. Systems biology: simulation of dynamic network states. Cam-
bridge University Press.

[130] Palsson, B. O. 2007. Systems Biology: Properties of Reconstructed Networks. Cam-
bridge University Press.

[131] Park, D.J. M., and B. E Wright. 1973. Comput. Progm. Biomed. 3:10-26.

[132] Paulsson, J., O G Berg, and M Ehrenberg. 2000. Proc Natl Acad Sci U S A 97
(13):7148-7153.

[133] Pedersen, M., and G. Plotkin. 2008. In: Computational Methods in Systems Biology
. Springer,. in press, http://homepages.inf.ed.ac.uk/s0677975/papers/lbs.
pdf.

[134] Phillips, R., Jane Kondev, Julie Theriot, Hernan Garcia, Bernard Chasan, et al.. 2010.
American Journal of Physics 78:1230.

[135] Phillips, R., and Ron Milo. 2009. Proceedings of the National Academy of Sciences
106 (51):21465-21471.

[136] Phizicky, E., PI.H. Bastiaens, H. Zhu, M. Snyder, and S. Fields. 2003. Nature 422
(6928):208-215.

[137] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1988. Numerical
Recipies in C. The Art of Scientific Computing. Cambridge University Press, Cambridge.

[138] Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona,
A. Breitkreutz, R. Sopko, et al.. 2005. Nature 438 (7068):679—684.

[139] Ptacek, J., and M. Snyder. 2006. Trends in Genetics 22 (10):545-554.

[140] Ramsey, S., David Orrell, and Hamid Bolouri. 2005. Journal of bioinformatics and
computational biology 3 (02):415-436.

[141] Rao, C., and A.P. Arkin. 2003. Journal of Chemical Physics 118 (11):4999-5010.

[142] Rawlings, J. B., and John G Ekerdt. 2002. Chemical reactor analysis and design
fundamentals. Nob Hill Pub.

http://homepages.inf.ed.ac.uk/s0677975/papers/lbs.pdf
http://homepages.inf.ed.ac.uk/s0677975/papers/lbs.pdf

392 REFERENCES

[143] Reich, J. G., and E. E. Selkov. 1981. Energy metabolism of the cell. Academic Press,
London.

[144] Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger,
J. Schreiber, N. Hannett, E. Kanin, T. L. Volkert, C. J. Wilson, S. P. Bell, and R. A.
Young. 2000. Science 290 (5500):2306-2309.

[145] Ribeiro, A. S., and Jason Lloyd-Price. 2007. Bioinformatics 23 (6):777-779.
[146] Sanft, K., DT Gillespie, and LR Petzold. 2011. Systems Biology, IET 5 (1):58-69.
[147] Sauro, H., and Frank Bergmann. 2008. Essays Biochem 45:211-222.

[148] Sauro, H. M. 2000. In: Hofmeyr, J.-H. S., J. M. Rohwer, and J. L. Snoep. ,
(ed.), Animating the Cellular Map: Proceedings of the 9th International Meeting on
BioThermoKinetics, . Stellenbosch University Press.

[149] Sauro, H. M. 2011. Enzyme Kinetics for Systems Biology. Ambrosius Publishing.
First Edition.

[150] Sauro, H. M. 2012. Enzyme Kinetics for Systems Biology. Ambrosius Publishing.
2nd Edition.

[151] Sauro, H. M., and J. Barrett. 1995. Molecular and Cellular Biochemistry 145:141—
150.

[152] Sauro, H. M., and D. A. Fell. 1991. Mathl. Comput. Modelling 15:15-28.

[153] Sauro, H. M., M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle, and H. Kitano.
2003. OMICS 7(4):355-372.

[154] Sauro, H. M., and B. Ingalls. 2004. Biophys Chem 109 (1):1-15.

[155] Sauro, H. M., Totte T Karlsson, Maciej Swat, Michal Galdzicki, and Andy Somogyi.
2013. bioRxiv .

[156] Sauro, H. M., and B. N. Kholodenko. 2004. Prog Biophys Mol Biol. 86:5-43.
[157] Schleich, K., and Inna N Lavrik. 2013. Cell Communication and Signaling 11 (1):44.
[158] Schreiber, F., and H. Schwobbermeyer. 2005. Bioinformatics 21 (17):3572-3574.

[159] Seshasayee, A. S. N., P. Bertone, G. M. Fraser, and N.M. Luscombe. 2006. Current
Opinion in Microbiology 9 (5):511-519.

[160] Shen-Orr, S. S., R. Milo, S. Mangan, and U. Alon. 2002. Nature Genetics 31:64—68.

[161] Siegal, M. L., Daniel E L Promislow, and Aviv Bergman. 2007. Genetica 129 (1):83—
103.

REFERENCES 393

[162] Smith, G. P. 1985. Science 228 (4705):1315-1317.

[163] Smith, L. P, Frank T Bergmann, Deepak Chandran, and Herbert M Sauro. 2009.
Bioinformatics 25 (18):2452-2454.

[164] Somogyi, E. T., Jean-Marie Bouteiller, James A. Glazier, Matthias Konig, J. Kyle
Medley, Maciej H. Swat, and Herbert M. Sauro. 2015. Bioinformatics (Oxford, England)

[165] Stolovitzky, G., Robert J Prill, and Andrea Califano. 2009. Annals of the New York
Academy of Sciences 1158 (1):159-195.

[166] Storn, R., and Kenneth Price. 1997. Journal of global optimization 11 (4):341-359.
[167] Straume, M., and ML Johnson. 1992. Methods in enzymology 210:87.

[168] Straume, M., and Michael L Johnson. 2010. Essential Numerical Computer Methods
:55.

[169] Sundararaj, S., Anchi Guo, Bahram Habibi-Nazhad, Melania Rouani, Paul Stothard,
Michael Ellison, and David S Wishart. 2004. Nucleic acids research 32 (suppl 1):D293—
D295.

[170] Taft, R., and JS Mattick. 2004. Arxiv preprint g-bio.GN/0401020 .

[171] Teusink, B., J. Passarge, K.A. Reijenga, E. Esgalhado, C.C. van der Weijden,
M. Schepper, M.C. Walsh, B.M. Bakker, K. van Dam, H.V. Westerhoff, and J.L. Snoep.
2000. Eur. J. Biochem 267:5313-5329.

[172] Thiele, I., and Bernhard @ Palsson. 2010. Nature protocols 5 (1):93-121.
[173] Thron, C. 1996. Biophysical chemistry 57 (2):239-251.
[174] Toledo, F., and Geoffrey M Wahl. 2006. Nat Rev Cancer 6 (12):909-923.

[175] Tyson, J. J., K. C. Chen, and B. Novak. 2003. Current Opinion in Cell Biology
15:221-231.

[176] Uetz, P, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lock-
shon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin,
D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and
J. M. Rothberg. 2000. Nature 403 (6770):623-627.

[177] van Eunen, K., José AL Kiewiet, Hans V Westerhoff, and Barbara M Bakker. 2012.
PLoS computational biology 8 (4):e1002483.

[178] Visser, D., and J. J. Heijnen. 2003. Metabolic Engineering 5:164-76.

394 REFERENCES

[179] Wang, E., R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S.F. Kingsmore,
G.P. Schroth, and C.B. Burge. 2008. Nature 456:470—476.

[180] Warner, J. R. 1999. Trends in biochemical sciences 24 (11):437-440.
[181] Wernicke, S., and F. Rasche. 2006. Bioinformatics 22 (9):1152-1153.

[182] Westerhoff, H. V., and K. Van Dam. 1987. Thermodynamics and control of biological
free-energy transduction. Elsevier Amsterdam et al.

[183] Wilkinson, D. J. 2007. http://www.staff.ncl.ac.uk/d.j.wilkinson/
software/sbml-sh/.

[184] Wilkinson, D. J. 2012. Stochastic Modelling for Systems Biology. Chapman &
Hall/CRC Press, Boca Raton, Florida, 2nd edition.

http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/
http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/

History

. VERSION: 1.00 (Gildas)

Date: 2014-18-3
Author(s): Herbert M. Sauro
Title: Essentials of Biochemical Modeling

Modification(s): First edition, first printing
. VERSION: 1.01 (Vortiporius)

Date: 2014-1-5
Author(s): Herbert M. Sauro
Title: Essentials of Biochemical Modeling

Modification(s): Minor corrections to most chapters, thanks to Joseph Hellerstein.
. VERSION: 1.02 (Caninus)

Date: 2014-8-6
Author(s): Herbert M. Sauro
Title: Essentials of Biochemical Modeling

Modification(s): Correction to figure in exercise 12 in chapter 3
. VERSION: 1.03 (Malgo)

Date: 2014-20-8

Author(s): Herbert M. Sauro

Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Republished under a new title and new ISBN number. All model-
ing scripts converted to Python

. VERSION: 1.04 (Cadfan)

Date: 2014-1-8
Author(s): Herbert M. Sauro

395

396

REFERENCES

10.

Title: Systems Biology: An Introduction to Pathway Modeling
Modification(s): LaTeX typo on page 75 fixed.

VERSION: 1.05 (Cunedda)

Date: 2014-23-12
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Minor clarification to linearization on page 90.
VERSION: 1.06 (Owain)

Date: 2015-24-1
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Fixed typo in Taylor series second order approximation of sine on
page 339 and fixed equation typo for normalized propensity function on page
141.

VERSION: 1.07 (Bede)

Date: 2015-1-8
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Added index entries for fast reactions and fixed typo on page 123.
Rewrote the introduction to the chapter on stoichiometry networks. Modified
Tellurium scripts to match the latest version where the need to include ‘model’
to reference variables and parameters has been relaxed.

VERSION: 1.08 (Ceolfrith)

Date: 2015-14-9

Author(s): Herbert M. Sauro

Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Added more detailed algorithm for the simplex. Correct small er-
ror in the Differential evolution algorithm.

VERSION: 1.09 (Sigfrith)

Date: 2015-14-12
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

REFERENCES 397

Modification(s): Fixed code typo in the python script Steady state band detector
11. VERSION: 1.1 (Eosterwine)

Date: 2016-4-08
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Fixed typo on page 214, Chap 10: 95.5% should be 97.5%. Page
210, ‘contingence’ should be ‘confidence’. Chap 9: Rewritten section on Levenberg-
Marquardt method to fix some errors and added new section on Gauss-Newton.
Minor formatting issues fixed.

12. VERSION: 1.11 (Benedict Biscop)

Date: 2016-1-11

Author(s): Herbert M. Sauro

Title: Systems Biology: An Introduction to Pathway Modeling
Modification(s): Updated script that generates the phase diagram Figure 12.3

13. VERSION: 1.12 (Offa)

Date: 2017-17-8
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): The Tellurium scripts 5.1 and 5.2 were wrongly transcribed. A
few remaining references to Jarnac removed and substituted with Tellurium.
Bad figure references in Chapter 6 fixed and Gillespie scripts updated.

14. VERSION: 1.13 (Egfrid)

Date: 2018-21-7

Author(s): Herbert M. Sauro

Title: Systems Biology: An Introduction to Pathway Modeling

Modification(s): Chapter 1 to 9 have been reedited, a few minor typographical cor-
rections and improvements to some explanations.

15. VERSION: 1.14 (Eanbert)

Date: 2018-25-7
Author(s): Herbert M. Sauro
Title: Systems Biology: An Introduction to Pathway Modeling

398 REFERENCES

Modification(s): Went through every Tellurium example to make sure the code worked.
Only a couple of instances where they didn’t due to changes in the Tellurium
syntax. Errata can be found at books .analogmachine.org. This version cor-
rects those errors.

books.analogmachine.org

INDEX

Symbols
Ky oo 36
Ky oo 36
Koo 328
Vi e 328
N o 54
X o 347
X 172, 349
o 20 347
SIN(X) ettt e 89
C ottt e 134
D 134
Ui et 34
A
absolute sensitivities 246
ACCUTAte i e ittt iie e 73
2o 5 A 221 (o) S 42
additivity 87
allostericconstant. 332
allostericcontrol 3
allostery ... 333
Alon. ... 321
alternative splicing 16
AMP ... 62
anabolic................. 3
analytical solutions. 104
Antimonyooviivennnnnn... 44
approximations 93
association constant 36
ATP ... 3,62
Avogadro’sconstant................... 85
B
baitprotein...................a... 7
bellcurve, 348

Bevington...........ol 356

bifurcationplot.................. 267,275
bimodal............... ... L 307
BioModels ...l 362
BioNetGen................ooiuie.. 362
bionumbersl 321
BIONUMBRSt 20
BioPAX. ... 361
Biotapestry ..., 46
bistable......................... 268, 269
bistable system 306
Boltzmann probability................ 187
bootstrap. ... 214
bootstrapping.ooi.... 352
boundary............... ...l 69
boundary variables.................... 78
BRENDA ... 21
Briggs-Haldane...................... 328
Brownian motion 81
brute force fitting 174
BSD...oo 117
buildingamodel 84
Burns. ... 247
bursting, 300, 301
C
Calvincycle ..., 2
CAMP ... 13
Carsonellaruddii...................... 15
catabolic ol il 3
Cde2-Cdel3 ... 10
CellDesigner.................... 118, 155
CellML ... 359
chatter.............oooiiiiiii.., 306
chemical equilibrium.................. 35
chi-square 172, 349
ChIP-chip............oooiiiii.. 13

2 INDEX
ChIP-seq.......oovvieiiiiiiii i, 13 dimensions................ooiiiiina.. 84
clamp........ ... 78 directmethod........................ 140
classification of models................ 86 discreteevents.............ciuiiinn... 45
Claude Bernard 156 discrete variable 81
closed.......cooiiii 70 disequilibriumratio 37
clusterplots.................oooiiat. 221 dissociation constant 36
COCNZYME A ...ttt 63 distributed models..................... 87
cofactorsoo i, 3 disturbance..............., 256
combination of molecules............. 134 Dizzy....ooviiiiiiiiiii i 140
COMPEtitive. . .. ovvvi 330 DOQCS ... 363
competitive inhibition................ 329 dynamicmodels 86
complex number..................... 266
compute steady state 233 E
confidence interval 351 EcoCyc...........oooiiii, 1, 18,20
confidence intervalso\ .. 711 eigenvalues................ ...l 258
conjugate Pairoooovveeen.. 266 €IZENVECIOTS.viviiiiii .. 223
conservedcycles. ...l 60 elasticity ... 98,274, 335
CONSEANES . ..o\ o et 77 elasticity matrix ... 260
continuous variable g1 elasticity values....................... 98
COOPErativitycooovevnenn... 33] elementary reaction 39
COPASI............. .. 115, 118, 155, 195 elementary reactions 39
COVARIANCE . oo oo 348 elitism......... ... 189
covariance matriX 212 endergonic ... 62
cross-sectional area 161 enzymeaction....................... 327
CTOSSOVET . . v v o eee e e e 190 enzyme inhibitor complex 330
cumulative probability function 139 enzyme kinetics 327
CUMVALUTE . . o ovv vt e e e 306 enzyme-reactant complex............. 327
CVODE ... oo 114 equilibration model 299
CyberCell 20 equilibrium 149
cybercell ... 321 equilibrium approximation............ 122
equilibrium constant. 36
D Eulermethod........................ 106
damped Newton method 240 evolutionary algorithms 189
Darren Wilkinson 145 exclusivemodel 332
dataformodels 96 explicit regulation..................... 58
databasel 359
databases 362 F
dependent variable 78 F-test..... ...l 351
deterministic . . . oo v oo go falsifiablity 73
differential evolution................. 191 fastproceses................ 122
diffusion 159 FBA ... 86
diffusion coefficient 160 Fell......o..oo.oo.... 247
Fick’sfirstlaw....................... 160

dimensional analysis 85

INDEX 3
FindRoot.............. 243 Hillequationsccoe.... 334
first reaction method 140 HIV Proteinase 221
first-orderoo i 85 homeostasiS..................... 156, 244
fitness landscape 174 homogeneitycoouo... 87
fixedpoints.................oon... 227 human...............ccoviiiiiinnn... 11
fixed species. ... 45
flux.....oooo 153 I
flux balance analysis 86 ?BIOS:II'I’I """" e 118
forcing functions...................... go implicitregulation 58
Frank Herbert . ix independent variable 79
Frankenstein.......................... X ndex ... 78
FSOIVE .+ v e e 243 Ingalls........... 147
functional Partsooeeen... 3g inhibitor ... 42
initial rate 328
G ionchannel.......................... 301
BALC oo e 301 irreversible bistability 276
Gauss-Newton method 179 isolated oo, 70
Gaussian distribution................. 348
genenetworksl 58 . J
genetic algorithm 189 JacobTan SRIRIRIRRRRRERERESREERY 181
GEPASI -+« e 240 Jacobian matrix............. 241,257, 261
Gillespieovviiieeiniin. .. 134 Jacobian of biochemical system 260
Gillespie algorithm. 140 JAMAC....ooi 44,240
Gillespieonagrid 142 JDemgnf?r """""""""""" 53, 118
Gillespie SSA ... vvoveeeei 140 JWSonline.......................... 363
global and local searches 193 K
global error..................... 106, 110 Racser.ooove 247
global minimum 175 KEGG . .. 1,97
Glycolysis. ... 2 Kinetic data.ooee 97
goodness Of fit...................... 207 Kinetic mechanism 327
Goodsell ... 20 Kinetic order.oveei 98
GPLlicensecovvviinn. .. 117 KISAO 361
ar adient. ... 160 thp 156
gradientsearch 182 KUZMiC « . o oo 196
graphical layout 360
GregBearl X L
GSL library..................... 117,187 lacrepressor.........coeveeevnnnnn... 13
large number of molecules 49
H layout extension 360
Haldane relationship 329 1eastSq .. 197
Hessian.................... 179, 213, 223 Levenberg-Marquardt 182
Heunmethod................ooonn O JibSBML. ... 360
heuristicmodel 72

4 INDEX
lin-log approximation 98 moiety conservedcycles............... 60
linear approximation............... 90,97 molarity.............coiiiiiiii., 85
linearmodel 86, 87 molecular weight 85
linear pathway 51 moles.......ooovueiiiiiiiiii .. 85
linear time invariant systems 87 Monod, Wyman, Changeax 96
linearization.................... ..., 89 Monte Carlo simulations.............. 213
littleb ... 362 multicompartment systems............ 159
Imdif ... 197 multiple steady states................. 268
Imfitlibrary 183 mutationsc.oevviieiinn... 190
LSODA ...t 115,116 MWCmodel 332
LTI 87 Mycoplasma genitalium 16
lumped models 87 N

M NAD ...ttt 3
mass-action kinetics................... 35 NAD/NADHc.cooiiiiiiinn.. 63
mass-action ratio. 37 negative cooperativity 331
mass-balance equation................. 46 negative feedback.................... 156
Mathematicao.... 150 Nelder-Mead 184
Mathematical models.................. 72 network topology 261
Matlab............... ... 52,155 Newton algorithm.................... 239
Matlab solvers....................... 115 Newton-Raphson method............. 234
Maxima.......coovvuivininnineenn.. 150 nextreaction method................. 140
maximal velocity 328 NLEQ2. ... 240
McCollum ..o, 140 noise propagation.................... 305
00170) 347 non-elementary reactions 42
mechanistic details 43 non-unity stoichiometry 41
median ... 347 nonlinearmodel 86, 87
membrane.co.oiiiiiian.. 163 normal distribution................... 348
metabolic control analysis 247 numbers ... 321
metabolic reconstruction............... 97 numerical solution 104
metabolism................ 3
MetaCyc....oovi i 97 O
MIASE ... 361 observability problem 223
Michaelis-Menten kinetics 327 Occam................... ...l 74
Milo. . oo 321 odelSs...........l 116
minipack....... ... 197 odedS ... 115, 116
MIRIAM . . oo 360 odepack..................ool 115
model composition..................... 45 ontologies........................... 361
model fitlingcoveeeeennnn... 169 OPEM. ...t 70
model variables....................... 77 OPCNMSOUICE ... 117
models. ...t 71 Operating point....................... 92
modified Buler.o 110 Operator sit€......................... 268
OLELY - v e ee e e 61 optimization......................... 174

INDEX 5
OSCill8. ...t 277 R
OULPULS .« v v e ettt e e eeeeie e e 79 Rstate..........cooviiiiiiiennnn. 332
overfitting L. 210 radioiSotopeseiiiiiiiiia... 3
random telegraph model 301
P rapid-equilibrium 43
Pahle 140 rate constanto, 36, 85
Palsson ...t 65 rate of Change ..o e 34
parameter ..., 7T reaction KINEticscouo... 33
particular model ... 72 LeaCtON TALE . o' e e e 34
percentile values..................... 216 reaction Tates.ooeeeeenn... 54, 85
periodic behavior 263 reduced Chi-SqUarecoovun... 172
periodic solutions 265 reference SIALevnureeeeeeenns, 98
permeability coefficient............... 160 regularintervalsc.o.... 142
perturbations 231 regular time grid 142
phaseplot.......................... 262 regulatory link 43
phase portrait........................ 262 RegulonDBovoeeeii . 1,13
Phillips ... 321 relative sensitivities 247
phosphate ... 03 relaxed.oeuereie 332
phosphofructokinase. 3 replacementoouiiininn.. 352
phosphorylation. 100 residualsvooeeeeee i 203
positive cooperativity................. 331 response timesooeeeeeennn.. 21
positive feedback loop................ 268 reversibilityo.iiiiiinn 40, 55
positive feedback: stability............ 272 peversible 35
PottersWheel ... 196 reversible rate 1aw.o.venven.. .. 329
predictability, 73 RK4 110
predictive ... 73 toadRUNDET« 114
prey protein ..., 7 rOadrunNer e e 240
probability ... 134 1obustnessoovveeeeeenai 156, 244
probability distribution function....... 138 roulette wheel selection. 189
product inhibition 328,330 Ruml...voeeeei 10
pI‘OOf 73 Runge—Kutta """""""""""" 110
propensity function 135
Proteasomeoovvveeeeennn.... 10 S
proteinkinase............ 9 saddlenode 264
protein porec.eiiiiiiiia.... 163 SBGN.........ccciiiiiiiia, 46, 360
pure competitive inhibitor............. 330 SBML................... 52,97, 118, 359
PySCeS............ 44, 140, 240, 362,363 SBML-shorthand 362
Python.............................. 196 SBO.... ..o 361
SBST ..o 195
Q SCAMPooovi i, 240
quadratic function.................... 343 gcience fiction.ooeiiiiiiii ix
quality of fit............ 210 seilab. ..o 117
quasi-equilibrium ... IST SeiPy ..o 196

6 INDEX
SCIPY « et 187 stochastic trajectory 143
second-orderl 85 stochastic variance 143
Sensitivity measures 246 stochastic: events.................... 147
sigmoid responseo.... 331 stochkit............. ..., 140
signaling networks 57 stoichiometric amount................. 33
simplex ... 184 stoichiometric coefficient........... 34,50
simulated annealing.................. 187 stoichiometric network 39
simulationmodel 74 stoichiometry matrix 54
smalleffect....................... ... 94 STRING.......ooiiiiiiiiiiii.. 1
softwareol 117 Stuckiooovviiiiiiiii .. 156
software: bifurcation................. 275 SuBliMinal............... 97
software: curve fitting 195 sum of propensities 142
software: steady state 240 sundials........................ 114, 240
software:stochastic................... 140 superpositionc.c.ouuvuuuen... 87
software:time course 117 surroundingsc.cooeina... 69
spiral trajectories 265 synthetic biology ix
SQUATE TOOL . . oo et iiie e 235 syntheticdataset..................... 216
SSA . 140 SsyStem.........ccvvviiiininnennnnnnnn. 69
SSA: multiple reactions 141 systembehavior..................... 149
stabilityoo .l 244,255 system equation....................... 63
stable 256 systems biology ontolog.............. 361
stablenode............ 264

standard deviation............... 212, 347 T

standard erroro ne 348 Tstatecooviiiiii . 332
standard scores 349 TaylorSeries ... 341
standards . . . oo 359 Taylorseries.....................o.... 89
staticmodels ol go telegraphmodel...................... 133
stationary State 227 Tellurium........... 53,64, 118, 154, 155
steady Stateoorieii 152,227 temperaturecooeiinnna... 188
steady state: analytical 229 tense......... REEEEEEEEEEREEERRERRE 332
steady state: computation.............. 733 textrepresentation 44
steady state: graphical................ 208 thermodynamic equilibrium........... 152
SEEUET ..ottt 156 thermodynamic properties 98
stochastiCcooiiiiiia... go timedependent...................... 150
stochastic bursting 300, 301 timeinvariant............. oo ... 86
stochastic chatter 306 time invariant models.................. 86
stochastic defocusing................. 306 fmescale..............o 60
stochastic focusing. 303 timetoreaction...................... 137
stochastic kinetics.................... 133 Torriellilaw ..., 75
stochastic mean 143 tournament selection................. 189
stochastic processes.................. 143 MAJECLOry ... 143
stochastic rate constant. 134, 135 transcription factor 58,268

transientooveiiiiineinn... 155

INDEX

trunCation error 106
two dimensional system 93
Tyson.....ooooiiiiiiiiiiiiii... 276
U
Ullah ...t 148
uncompetitive inhibition.............. 330
uniform random number.............. 139
unit balancing 85
UNIES .« v vttt 84
unscaled elasticity 335
unstablenode........................ 264
\'
validationcooiiei.... 73
Van der Pol equations 111
VArianceovvviineei.. 172, 347
VCell...oovi 195
w
Warner. ..., 321
water tank model...................... 74
weighing............. L 172
well-stirred reactor.................... 47
Whiskfern........................... 15
Wilkinson 145, 148
working hypothesis 72
X
X-gal oo 8
XML .o 118
Y
YEASt. . 6
Yeast two-hybrid....................... 7
y4

	Preface
	Cover Image
	A Note about Software
	Prologue
	Cellular Networks
	Overall Organization
	Network Representation
	Metabolic Networks
	Protein Networks
	Gene Regulatory Networks
	Genome Sizes
	E. coli
	Network Motifs
	Further Reading
	Exercises

	Kinetics in a Nutshell
	Introduction
	Definitions
	Elementary Mass-Action Kinetics
	Chemical Equilibrium
	Mass-action and Disequilibrium Ratio
	Modified Mass-Action Rate Laws
	Further Reading

	Stoichiometric Networks
	Stoichiometric Networks
	Standard Visualization Notation
	Mass-Balance Equations
	Stoichiometry Matrix
	Reversibility
	Signaling Networks
	Gene Regulatory Networks
	Moiety Conserved Cycles
	The System Equation
	Tellurium
	Further Reading
	Exercises

	Introduction to Modeling
	Introduction
	Open, Closed, and Isolated Systems
	What is a Model?
	Building a Model
	Variables, Parameters and Absolute Constants
	Mathematical Descriptions of Models
	Example
	Dimensions and Units
	Classification of Models
	Linear and Nonlinear Models
	Linearization
	Approximations
	Example Model
	Where to get Data for Building Models
	Of Exactitude in Science
	Further Reading
	Exercises

	Differential Equation Models
	Introduction
	Differential Equation Models
	Matlab Solvers
	Python Solvers
	Other Software
	Moiety Conserved Cycles
	Exploiting Fast Processes
	Further Reading
	Exercises

	Stochastic Models
	Stochastic Kinetic Models
	Stochastic Kinetics
	Time to Reaction
	Running Stochastic Simulations
	Events at Regular Intervals
	Stochastic Trajectories
	Further Reading
	Exercises

	How Systems Behave
	System Behavior
	Equilibrium
	Steady State
	Transients
	Setting up a Model in Software
	Robustness and Homeostasis
	Further Reading
	Exercises
	Tellurium Scripts

	Multicompartmental Systems
	Multicompartment Systems
	Simple Diffusion
	Membrane Transporter Protein
	Three Compartment Model
	Further Reading
	Exercises

	Fitting Models
	Introduction
	Optimization Algorithms
	Model Fitting Software
	Using Python to Fit Data
	Further Reading
	Exercises
	Tellurium Scripts

	Parameter Estimation
	Introduction
	Analysis of Residuals
	2-Goodness of Fit Test
	Estimating Confidence Intervals
	Cross-validation
	Case studies
	Final Comments
	Further Reading
	Exercises

	The Steady State
	Steady State
	Effect of Different Kinds of Perturbations
	Computing the Steady State
	Introduction to Stability
	Sensitivity Analysis
	Further Reading
	Exercises
	Tellurium Scripts

	Stability
	Stability
	Jacobian for Biochemical Systems
	External Stability
	Phase Portraits
	Bifurcation Plots
	Further Reading
	Exercises
	Appendix

	Modeling FeedForward Networks
	Coherent Type I Motif
	Incoherent Type I Motif
	Further Reading
	Exercises
	Tellurium Scripts

	Behavior of Stochastic Models
	Introduction
	Stochastic Bursting
	Stochastic Focusing
	Chatter
	Further Reading
	Tellurium Scripts

	Appendix List of Symbols and Abbreviations
	Appendix Useful Numbers
	Useful Numbers

	Appendix Answers to Questions
	Appendix Enzyme Kinetics in a Nutshell
	Michaelis-Menten Kinetics
	Reversibility and Product Inhibition
	Reversible Rate laws
	Haldane Relationship
	Competitive Inhibition
	Cooperativity
	Allostery
	Elasticities
	Further Reading

	Appendix Math Fundamentals
	Notation
	Short Table of Derivatives
	Logarithms
	Partial Derivatives
	Differential Equations
	Taylor Series
	Total Derivative
	Eigenvalues and Eigenvectors
	Further Reading

	Appendix Statistics Reminder
	Mean
	Deviation
	Standard Error
	Covariance
	Normal Distribution
	Z-Scores or Standard Scores
	Null Hypothesis
	2 Distribution
	F-test
	Confidence Intervals
	Bootstrapping
	Maximum Likelihood
	Further Reading

	Appendix Modeling Standards and Databases
	Introduction
	Graphical Layout
	MIRIAM
	SBO – Systems Biology Ontology
	Other Ontologies and Formats
	Human Readable Formats
	Databases

	Appendix Modeling with Python
	Introduction to Python
	Describing Reaction Networks using Antimony
	Initialization of Model Values

	Using libRoadRunner in Python
	Time Course Simulation
	Plotting Simulation Results
	Applying Perturbations to a Simulation
	Steady State and Metabolic Control
	Other Model Properties of Interest

	Generating SBML and Matlab Files
	Exercise

	References
	History
	Index

