
A quick guide to Tellurium and libRoadRunner1

What is libRoadRunner?
libRoadRunner is a C/C++ software library that supports the
simulation and analysis of biochemical pathways. Models are
read into libRoadRunner in the Systems Biology Markup
Language (SBML) format and can be modeled either using
differential equations or stochastic approaches. libRoadRunner
can be accessed through a number of APIs, including a C API,
a C++ API and a Python API. A simple standalone
application also exists that enables a user to run simulations
from the command line. libRoadRunner is available on
Windows, Mac and Linux. See tellurium.analogmachine.org

and libroadrunner.org.

Special Features of libRoadRunner
libRoadRunner has a number of unique features: 1) The API
has been designed for modelers with particular emphasis on
ease of use; 2) libRoadRunner compiles model using LLVM,
this allows us to achieve maximum performance.

What is Tellurium?
Tellurium is an integrated platform based on Python that
includes libRoadRunner as one of its supporting libraries. In
addition to libRoadRunner, Tellurium comes with spyder2 as
the cross-platform IDE (giving a Matlab like experience),
Antimony, that allows user to write models in a more human
readable form, SBML2Matlab, that allows user to export
models in Matlab format, and libSBML that allow users
detailed access to model particulars. In addition Tellurium
comes preloaded with the Python plotting library Matplotlib
and the array package numpy. Tellurium also comes with a
small number of helper subroutines to make it easier for the
average modeler.

SBML
The Systems Biology Markup Language (SBML) is a
representation format, based on XML, for communicating and
storing computational models of biological processes. It is a
free and open standard with widespread software support.
SBML can represent many different classes of biological
phenomena, including metabolic networks, cell signaling
pathways, regulatory networks, infectious diseases, and many
others. As an XML format, SBML is not meant to be read or
written by Humans.

Antimony
The Antimony language provides a way for researchers to use
simple text statements to create, import, and combine
biological models, allowing complex models to be built from
simpler models. It is fully compatible with SBML such that
SBML and Antimony can be converted from one to the other.

Examples of Antimony Models
1.

Simple Decay process

S1 -> S2; k1*S1;

k1 = 0.1; S1 = 10; S2 = 0

2.

Consecutive reactions

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0;

3.

Bimolecular reactions

S1 + S2 -> S3; k1*S1*S2;

S3 -> S1 + S2; k2*S3;

Branched System

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

S2 -> S4; k3*S2;

4.

Open system with fixed boundaries

’$’ indicates a fixed species

$S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

S3 -> $S4; k3*S3;

5.

Open system with empty boundaries

-> S2; k1*S1;

S2 -> S3; k2*S2;

S3 -> ; k3*S3;

6.

Simple Feedback System

-> S2; k1*S1/(k2 + S1 + S3/Ki);

S2 -> S3; k2*S2 - k3*S3;

S3 -> ; k4*S3;

7.

Named reactions and events

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.3;

S1 = 10;

at (time > 10): k2 = 0.6

8.

Modeling Gene expression

Modeling an activator P0 that

results in expression of P1

G1: -> P1; Vm1*P0^n/(K1 + P0^n);

Modeling a repressor P0

J2: S2 -> S3; Vm1/(K1 + P0^n);

Loading SBML and Antimony Models

The easiest way to load a SBML model is to use the loada

function:

Load the model from a SBML file

r = te.loada (’mymodel.xml’)

Load a model from an antimony string

r = te.loada (antimonyString)

loada is simply a short-cut for loadAntimonyModel.

The methods return a reference to a copy of libRoadRunner.

Simulation
libRoadRunner supports two kinds of simulation, differential
equation based and stochastic based simulations. After a
model has been loaded into libRoadRunner, the user has the
option to either carry out a deterministic simulation based on
solving differential equations, or a stochastic simulation based
on the Gillespie Algorithm.

Differential Equation Based Simulations

To simulate model based on differential equations use the
simulate command:

result = r.simulate (0, 10, 100)

In its basic form, simulate takes three arguments, time start,
time end and the number of points to generate. If the
arguments are omitted default values are chosen. The simulate
command returns an array that contains the results of the
simulation. The first column holds data that represents the
time axis, all subsequent columns represent the floating species
in the model. The particular columns in the result array can
be changed with a selection list, for example:

result = r.simulate (0, 10, 100, [’Time’, ’S1’, ’k1’])

means that the first column will hold time, the second column
S1 and the third column k1.

1Version 1.03

tellurium.analogmachine.org
libroadrunner.org

Stochastic Based Simulations
To simulate a model based on Gillespie stochastic method use
the gillespie command:

result = r.gillespie (0, 10)

In its basic form, gillespie takes two arguments, time start, and
time end. If the arguments are omitted default values are
chosen. The gillespie command returns an array that contains
the results of the simulation. The first column hold data that
represents the time axis, all subsequent columns represent the
floating species in the model. The particular columns in the
result array can be changed with a selection list, for example:

result = r.gillespie (0, 10, 50, [’Time’, ’S1’, ’S4’])

means that the first column will hold time, the second column
S1 and the third column S4. The Gillespie method by its
nature returns values in the time column at irregular intervals.
We provide a variant where the output is returned on a regular
time grid which is why the 50 is present in the call above.

Changing Values
In a simulation it is often necessary to make changes to values
in a model and rerun the simulation. Consider the following
code:

r = te.loada (’’’

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

S3 -> S4; k3*S3;

k1 = 0.1; k2 = 0.2; k3 = 0.3;

S1 = 10

’’’)

Modify the k1 rate constant

r.k1 = 12.0

Changing species levels

r.S1 = 24.5

Plotting
A common need is to be able to plot simulation results. To do
this we use the plot command

r = te.loada (’’’

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

S3 -> S4; k3*S3;

k1 = 0.1; k2 = 0.2; k3 = 0.3;

S1 = 10

’’’)

result = r.simulate (0, 50, 50)

r.plot ()

For more complex plots use the Python library matplotlib
directly.

import pylab

r = te.loada (’’’

S1 -> S2; k1*S1;

k1 = 0.1;

S1 = 10

’’’)

result = r.simulate (0, 50, 50)

pylab.ylabel (’Concentration’)

pylab.xlabel (’Time’)

pylab.plot (result[:,0], result[:,1], linewidth=2)

pylab.plot (result[:,0], result[:,2], linewidth=2)

Resetting the Model
A common operation when doing interactive simulation is
resetting a model back to some initial state.

Reset a model back to the state it was

when it was first loaded or created

r.resetToOrigin()

Reset the current species values back

to their initial conditions

r.reset()

Reset the current species values back

to their initial conditions and reset

all parameters back to when the model was

first loaded or created

r.resetAll()

Exporting a Model
Models can be exported in threes different formats: SBML,
Antimony or Matlab

Export the model as SBML

print r.getCurrentSBML()

Export the model as Matlab

print r.getMatlab()

Export the mode as Antimony

print r.getAntimony()

Computing the Steady State
To compute the steady state for a model use:

r.steadyState()

print r.getFloatingSpeciesConcentrations()

Short-cut:

print r.sv() # Species vector

The steadyState function returns a value indicating how close
the the solution is to the steady state. The smaller the value
the better. Values less than 10−4 usually indicate that the
steady state was found.

Useful Matrices
There are a variety of matrices that can be obtained from the
model, only two will be described here.
The stoichiometry matrix:

print r.getFullStoichiometryMatrix()

Short-cut:

print r.sm()

The Jacobian matrix:

print r.getFullJacobian()

Short-cut:

print r.fjac()

Useful Vectors
The reaction rate vector:

print r.getReactionRates()

Short-cut:

print r.rv()

The rates of change vector:

print r.getRatesOfChange()

Short-cut:

print r.dv()

The species concentration vector:

print r.getFloatingSpeciesConcentrations()

Short-cut:

print r.sv()

The names of all floating species

print r.getFloatingSpeciesIds()

Short-cut:

print r.fs()

The names of all kinetic parameters in the model

print r.getGlobalParameterIds

Short-cut:

print r.ps()

Resources
http://libroadrunner.org/
http://antimony.sourceforge.net/
http://tellurium.analogmachine.org/

http://libroadrunner.org/
http://antimony.sourceforge.net/
http://tellurium.analogmachine.org/

	What is libRoadRunner?
	Special Features of libRoadRunner
	What is Tellurium?
	SBML
	Antimony
	Examples of Antimony Models
	Loading SBML and Antimony Models

	Simulation
	Differential Equation Based Simulations
	Stochastic Based Simulations

	Changing Values
	Plotting
	Resetting the Model
	Exporting a Model
	Computing the Steady State
	Useful Matrices
	Useful Vectors
	Resources

