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1
Modeling

1.1 Introduction

This booklet introduces some of the basic ideas that are involved in
modeling biochemical networks. The main purpose of this booklet
is to introduce the software package JDesigner, a visual biochemical
network simulation tool and Jarnac, a script based modeling pack-
age (www.sys-bio.org).

1.1.1 Biochemical Systems

A biochemical system consists of a network of coupled chemical re-
actions. These reactions may be enzyme-catalyzed reactions, trans-
porters or simple spontaneous reactions. Such networks encompass
metabolic, genetic, and signaling pathways.

1



2 CHAPTER 1. MODELING

Why Model?

This question is often asked by traditional biochemists and molec-
ular biologists. However, what is not fully appreciated is that bio-
chemistry and molecular biology are already full of models, though
generally not quantitative models. An inspection of any of the pop-
ular textbooks reveals page after page of colorful diagrams, each a
model (hypothesis) derived from thousands of painstaking experi-
ments. Such models form the basis of a new generation of models,
quantitative models.

The utility of quantitative modeling is that it offers an ability to eval-
uate the completeness and usefulness of a hypothesis. Such an un-
dertaking will often reveal gaps in information or inconsistencies
in evidence, as well as producing predictions for further testing.
Quantitative models are more exact and demanding on the available
evidence and are a natural progression from the current qualitative
models.

The System

For the purposes of this discussion, we will define a system to be a
collection of connected chemical reactions and the boundary of the
system where the set of reactions intersects with its environment.
In our discussions, we will assume that the boundary is made up of
fixed species levels.

Inside the system, there is a set of reactions that connect the internal
species. In addition, there will also be a set of reactions that connect
the system to a set of boundary (fixed) species; it is only the internal
species that evolve in time. External species may change but only
under the control of the modeler. For example, a modeler might
simulate a bolus injection of a substance in the form of a square
wave pulse. However the pulse is imposed on the system and is not
affected by changes occurring inside the system.
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Figure 1.1 Internal and External Molecular Species. Ix represent
internal molecular species and Bx external fixed molecular species.

Time Evolution and Steady States
It is almost without exception that dynamical systems exist in one
of three possible states, these are:

� Thermodynamic Equilibrium

� Transient State

� Steady State

Thermodynamic equilibrium is of little interest in biology since the
chief characteristic of biological systems is that they are out of equi-
librium. Equilibrium is the state where no energy is dissipated and
all energy or mass gradients within or between the system and the
environment are nonexistent.

The remaining states, transient and steady state, are of much more
interest. When the boundary of a system is fixed, it is often the case
that the system will evolve to some stable unchanging state called
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the steady-state. By unchanging we mean that all internal concen-
trations and all reaction rates are steady. However, even though the
system appears quiescent, it is in fact dissipating energy across the
system boundary and there will be a net movement of mass from
one boundary to another. In mathematical terms, the steady-state
is characterized by the rates of change of all internal species being
zero,

dSi

dt
D 0 for all i

where i represents all internal species.

Source and Sinks
The terms source and sink are sometimes used to refer to the bound-
ary species and are meant to suggest that some boundary species
supply mass to the system, while others provide mass exit points
from the system.

Kinetic Rate Laws
One of the most important decisions when building a biochemical
model is deciding on the form of each reaction rate law. Many read-
ers will probably be familiar with the fundamental mass-action rate
laws, these are the basic rate laws from which all others, includ-
ing aggregated forms such as Michaelis-Menten rate laws, are built.
The reader is referred to the text book, Enzyme Kinetics fort Sys-
tems Biology, Sauro HM (2011), ISBN-10: 0982477317. for more
information on rate laws and their selection.

1.1.2 Chemical Equations

Chemical equations are commonly written in the following way:

AC B ! C CD
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indicating that speciesA andB react together to form species C and
D. From the chemical equation, we can easily write down rate laws
based on mass-action kinetics.

Mass-Action Rate Laws
Consider the simple mass-action reaction shown below:

S ! P

This simple reaction is often described using a first-order rate equa-
tion of the form:

v D k1S

where v is the rate of conversion of substrate (S) into product (P) and
k1 is the rate constant. If the reaction is elementary then the order
of the reaction can determined by the stoichiometry of the reaction.
For example the reaction:

2S ! P

often has a rate equation described by:

v D k1S
2

where S is now second-order with respect to the rate. In the most
general case where we have the following reaction:

˛1S1 C ˛2S2 C ˛3S3 C : : :!

The generalized rate for this reaction is given by:

v D k1S
˛1

1 S
˛2

2 S
˛3

3
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Reversible rate laws are treated in a similar fashion, for example the
rate law for the reaction:

S 
 P

can be written as

v D k1S � k2P

that is the rate of reaction is the forward rate minus the reverse rate.

Aggregate Rate Laws
Aggregate rate laws tend to be more useful in modeling metabolic
pathways where enzymes catalyze the individual reaction. In the
early days of modeling (50s and 60s), researchers often described
enzyme catalyzed reactions explicitly in terms of individual mass-
action rate laws. For example the simple irreversible Michaelis-
Menten mechanism:

S CE 
 ES! E C P

would be described explicitly using the differential equations:

dS

dt
D k2ES � k1ES

dE

dt
D k1ES � k2ESC k3ES

dP

dt
D k3ES

However, such a representation requires knowledge of the individ-
ual rate constants, k1; k2 and k3, information that is rarely available.



1.1. INTRODUCTION 7

Instead people realized that they could use aggregate equations de-
rived using steady-state assumptions resulting in much simpler rate
laws.

The most well-known aggregate rate law in this family is the single
substrate irreversible Michaelis-Menten rate law:

v D
VmS

Km C S

Aggregate equations proved much easier to use and although they
are derived using the steady-state assumption there has been little
evidence that this affects the model dynamics. In addition, the num-
ber of parameters required to describe an aggregate rate law is much
fewer.

In biochemical modeling, probably the most commonly used rate
law is the reversible Michaelis-Menten rate law described by:

v D
Vm=Km1

.S � P=Keq/

1C S=Km1
C P=Km2

Stoichiometry

Stoichiometry refers to the numbers of molecules that take part in a
particular reaction. Thus the molecular species, S , in the reaction

S ! P

has a stoichiometry of unity. Where as in the reaction

2S ! P

has a stoichiometry of 2.
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Mass-balance Equations

All physical systems must obey the law of conservation of mass, that
is any disappearance of mass must be accompanied somewhere by
an appearance of an equal amount of mass. Thus, given a molecular
species, Si , sometimes termed a species pool, we can describe how
Si changes in time by taking into account the flow into and out of
the pool due to the various reactions that impinge on it.

Figure 1.2 Mass-conservation means that changes in the concen-
tration of Si must be the sum of all input rates minus the sum of all
output rates.

The rate of change in the concentration in Si is given by the mass
balance equation:

dSi

dt
D .v1 C v2 C v3/ � .v4 C v5/

Where the v terms represent the rates of reaction for the processes
that produce and consume Si . An entire model is described by a se-
ries of mass conservation equations, one equation for every internal
species in the model. In compact form, such a series of equations is
often expressed as a matrix equation:

ds

dt
D Nv (1.1)

where N is called the stoichiometry matrix, and v the rate vector.
An example will be given in the next few pages.
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A Simple Model

The following simple pathway comprise of four reactions, v1, v2, v3
and v4; three internal species, S1, S2, S3; and two external species,
Xo and X1.

Xo
v1

�! S1
v2

�! S2
v3

�! S3
v4

�! X1 (1.2)

By considering mass-conservation, we can write down the three dif-
ferential equations that govern the dynamics of the pathway as fol-
lows:

dS1

dt
D v1 � v2

dS2

dt
D v2 � v3

dS3

dt
D v3 � v4

Note that we do not specify differential equations for the two exter-
nal species, Xo and X1 since they are assumed to be fixed boundary
species.

The solution of the equations is usually carried out by some standard
integration procedure, yielding the concentration of S1, S2, and S3,
as a function of time.

As mentioned in a previous section, the differential equations given
above are more conveniently described using a matrix notation. Re-
call that the systems equation was given by:

ds

dt
D Nv
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where N is the stoichiometry matrix and v the rate vector. For ex-
ample, in the case of the simple model, the stoichiometry matrix is
given by: 24 0 �1 0 0

0 1 �1 0

0 0 1 �1

35 (1.3)

And the rate vector, v, is given by:2664
v1
v2
v3
v4

3775 (1.4)

The purpose of JDesigner and associated software is to permit
users to graphically specify the model, derive the set of differen-
tial equations automatically and generate a solution.



2
The Systems Biology

Workbench

2.1 Systems Biology Workbench

2.1.1 Installation

Download the Systems Biology Workbench from

http://www.sys-bio.org/downloads/

and follow the instructions given by the setup program.

11
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2.1.2 How to Start JDesigner

During installation, an icon will automatically appear in a new pro-
gram group called Systems Biology Workbench. To start JDesigner,
double-click on the JDesigner icon that can be found in the model
editor section.

2.1.3 How to Start Jarnac

During installation, an icon representing the Jarnac program will au-
tomatically appear in a new program group called Systems Biology
Workbench. To start Jarnac, double-click on the Jarnac icon that can
be found in the model editor section.

Getting Help

There are a number of ways to get help when using Jarnac. The first
is the Help menu. The Help menu has four help options, a traditional
Windows help file under ’Contents’, a hyperlinked library reference
that opens into a browser, the Jarnac Web site and email feedback to
the author.

The other kind of help is at the console itself. To get quick help on
a function you know the name of, type a question mark followed
by the name of the function. For example to get help on the graph
function, type:

->?graph

graph (matrix) or graph (vector)

->

2.1.4 Using JDesigner

On start up the user is presented with the screen shown in Figure 2.1.
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Figure 2.1 Basic JDesigner Controls.

Some useful toolbar buttons:

Add species node: After selecting this button, drag the cursor to
any location on the drawing canvas and click to place a node.
Each node represents a specific entity in the system, such as a
chemical species , a protein or a transcription factor.

Add reaction: JDesigner has the capability to represent reactions
involving one, two, or three substrates and one, two, or three
products. To add a reaction, select the button with the de-
sired numbers of substrates and products, and then click on
each node involved in the reaction. In order to ensure that a
reaction placed on the canvas has the desired substrates and
products, click on each substrate node first, then each product
node. The reaction will appear on the canvas as a set of line
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segments emanating from each substrate node terminating in
arrows pointing at each product node. Note that even if a reac-
tion is defined as reversible (see below), the arrows will point
only at the nodes defined as products in this step.

Add text: Click on the canvas to add descriptive text, i.e. the name
of a reaction, compartment, or system.

Moving elements on the canvas

It may be useful to move certain elements around on the canvas, ei-
ther to highlight an important feature of the system or for aesthetic
reasons. To move an element, make sure the arrow button has been
depressed. Click on an element on the canvas to select it for move-
ment. The border of a selected element will turn red (in the case of
a reaction or text, the entire element will turn red). The way each
element may be moved is as follows.

Nodes: Click and drag the node to the desired location. Line seg-
ments for all reactions involving the node will curve and length-
en/shorten to accommodate the new location.

Compartment: To move the compartment, click and drag any edge
of the compartment. Moving the compartment will also move
any node, which has been placed, in the compartment. To
change the size of the compartment, hover the cursor over its
lower right corner. Click and drag the compartment to the
desired size.

Reaction: Clicking on a reaction curve will display line segments
tangent to where the curve meets each node involved in the
reaction. These segments end in small circles. Click and drag
these circles to change the curvature.

Text: Click and drag to move the text to the desired location.



3
JDesigner Tutorials

3.1 Tutorial 1 – Basic Skills

Let us begin by building a simple network. This network will com-
prise of four molecular species and three reactions. The first thing
to do is add the nodes that represent the molecular species. Click on
the add node button (see Figure 3.1), move the mouse to the drawing
area and click on the left mouse button to ‘drop’ four nodes on the
canvas. Once you have completed this, click on the pointer button,
this prevents you from dropping any further nodes onto the canvas.
Your screen should look something like Figure 3.1, note that the
exact placement of the network nodes may differ.

15
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Figure 3.1 Species Nodes Placed onto Canvas.

3.1.1 Change Names, Concentrations and Status
of Nodes

To change the properties of a particular node, right-click over the
node and select the properties menu item. This will bring up the
node properties dialog box, from here you can change a variety of
things, including the name of the node, its initial concentration and
its status as a boundary condition or not (see Figure 3.2).

Move the mouse over the first node, right-click and select the prop-
erties item. You will see the screen shown in Figure 3.2.

Once the property window is visible, you can change the properties
of other nodes simply by clicking on the node and the properties
window will automatically change to reflect the new node.

In our example, you should make the following change:

Set the concentration of the first node (Node0) to 10 units.
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Figure 3.2 Setting node properties.

Note: Units
Throughout this discussion you will find that we do not mention
the units used in any of the models. It is up to the user to ensure
that values used to initialize concentrations, rate constants etc.,
are dimensionally consistent with each other.

Close the properties window by clicking on the red close button at
the top right corner (see Figure 3.2).

Note that a species node can represent any kind of molecular species,
for example, small molecules, such as ATP or glucose, large mol-
ecules such as proteins, in their phosphorylated or unphosphorylated
state, or nucleic acids such as mRNA or tRNA. JDesigner deals with
generalized network models and thus any biological chemical net-
work can be represented.

We are now ready to add some reactions.

On the left side tool bar, you will see nine different reaction types.
These range from simple uni-uni to tri-tri reactions. We will add
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three uni-uni reactions to the model. These reactions will go from
the first node to the second node, the second node to the third node
and third node to the forth node. To add the first reaction select
the uni-uni button, this is the first reaction button (see Figure 3.3).
Select the reactant by clicking on Node0 (it should highlight by turn-
ing red), then click on the product (Node1). Once you click on the
product node, a reaction arc will automatically appear.

Proceed to do this for the other two reactions. Once you have fin-
ished, make sure that you unselect the reaction button by clicking on
the arrow button. If all has gone well you should see the following
screen:

Figure 3.3 Reactions and Species Nodes added to a model.

By default, JDesigner assigns a simple irreversible mass-action rate
law to every reaction. You can check this by right-clicking over a
reaction arc and selecting the properties item (see Figure 3.4).

From this panel you can change things like the name of the reaction
or its stoichiometry and the reaction rate law. You will notice that
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the reaction by default has been assigned a simple first-order mass-
action rate law. Note also that the rate constant has been assigned a
default value of 0.1.

Figure 3.4 Reaction Properties Window.

As an exercise, we will make the following changes to the rate con-
stants:

1. Set the rate constant for the first reaction to 0.6

2. Set the rate constant for the second reaction to 1.0

3. Set the rate constant for the third reaction to 0.15

To change the rate constants just select each reaction in turn using
the mouse and the reaction panel will change to reflect the current
reaction.

We are now ready to carry out a simple time course simulation. This
simulation will show the pathway undergoing a transition as mass
flows out from the first node (Node0) to the other nodes in the path-
way.

First, close the reaction properties window; this will leave more
room on the screen. Click on the red close button in the top right-
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hand corner.

Note: Selecting a Simulator
JDesigner itself has no simulation capability, but there is choice
of simulators available in JDesigner which can be accessed by
selecting ’File’ and then clicking on ’Preferences’ from where
you can select a simulator. By default, the roadRunner simulator
is selected.

To carry out a simulation you need to bring up two windows, the
time course simulation window and the graph plotting window. Go
to the horizontal tool bar and select the analysis button, choose
Time Course Simulation. Select the viewer button and chose, ’View
Graphical Output’. Two new panels should appear. Your screen
should look like Figure 3.5:

Figure 3.5 Time Course Control Panel and Graph Panel.

You can carry out a simulation immediately by simply clicking on
the run button that you can see in the time course control panel. If
you do this, you should get the screen shown in Figure 3.6.
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The graph in the lower panel shows how all four nodes change in
time. As you can see the concentration of Node0 declines as the
other nodes fill and empty in turn.

Figure 3.6 A Typical Run Generated from the Time Course Control
Panel.

Let us do the simulation again, but this time over a longer period.
By default, simulations are run from zero to ten time units. We can
change the end time by simply entering a new value into the Time
End edit box that you can find below the run button.

Let us set this time to 30 time units. In order to repeat the simula-
tion, we must also reset the simulation back to its initial condition.
To do this, simply click on the reset button next to the run button
(Figure 3.7). If you do not reset the model, the next simulation will
simply carry on from the data generated in the last simulation.
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The sizes of the various panels in the screen can be changed, for
example you can make the graph panel larger by moving the splitter
bar (see Figure 3.7). The graph can also be copied to the clipboard
or printed.

Now run the simulation again by clicking on the run button, you
should see the graph shown in Figure 3.7 and 3.8. Figure 3.8 was
obtained by clicking on the Copy to Clipboard button (Figure 3.7)
and pasting the image into Word.

Figure 3.7 Changing Time to Run and Rerunning the Simulation.
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Figure 3.8 Final Output from the Graph Panel.

3.1.2 Saving and Loading Models

All models are saved using native SBML (Systems Biology Markup
Language) with additional annotations for storage of graphical ele-
ments. These files are compatible with other modeling tools that can
import SBML. JDesigner supports both SBML Level 1 and 2. For
normal use, it is recommended the models be saved in SBML Level
2 format.

3.1.3 Setting Reaction Rate Laws

We are now going to make a change to the model by setting differ-
ent rate laws for the three reactions. In the earlier version, all the
rate laws were simple irreversible mass-action rate laws. For many
models this may not be realistic, instead we will employ in the next
version, reversible Michaelis-Menten rate laws.

To change a rate law, move the mouse over the reaction of interest
and right-click, this will bring up a popup menu, from this select the
reaction properties option. This will bring up the reaction properties
panel that we saw in Figure 3.4. Let us have a closer look at the
rate law setting section (Figure 3.9). This shows the list of built-in
kinetic laws. If you move the mouse over one of the rate laws, and
right-click, a popup menu will appear from where you can obtain
more details.

In this example, you should select the rate law marked Reversible
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Figure 3.9 Example of a standard list of rate laws.

Michaelis-Menten. Notice that a new list of parameters has been
displayed to reflect the selected rate-law. From this panel you can
set the values of the different parameters. Change the kinetic param-
eters to the following values:

Reaction 1: Vmax = 2.5; Keq = 0.8
Reaction 2: Vmax = 1.2; Keq = 0.2
Reaction 3: Vmax = 0.5; Keq = 4.8

Close the reaction properties panel and bring up the time course
control panel and graph display panel. Set the time end to 10 time
units and press the run button. You should see something like this:

Notice the difference between the new simulation and the earlier
one shown in Figure 3.10. Whereas in Figure 3.10, all the mass
ended up in the last node (Node3), in the new simulation the mass is
distributed. Given the values for the equilibrium constants (0.8, 0.2,
4.8) you should be able to predict the final ratio between Node0 and
Node3. Your prediction should correspond to the simulation values.
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Figure 3.10 Time course using reversible Michaelis-Menten Rate
Laws.

NOTE: Adding new built-in rate laws.
The list of rate laws is determined by an external file called
ratelaws.xml. When JDesigner starts up, it reads this file, from
which it builds the list shown in the rate law panel.

3.1.4 Obtaining Raw Data from a Simulation

Until now, we have plotted results from simulations. There will be
times when the raw data is required. This can be easily accom-
plished by selecting the Table Viewer and rerunning the simulation.
Note that you can have the graph and table viewer visible at the same
time.

Select the table viewer from the views toolbar button (see Figure 2.1)
and select the table viewer. Click on the reset button on the time
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course simulation control panel and set the number of points to 10.
If you now rerun the simulation and select the table viewer tab you
should see the following table of results:

Figure 3.11 Simulation which uses the table viewer.

You can copy the raw numerical data to the clipboard if you wish
to process the simulation data in another application, for example
Excel. Here we have just copied the raw data into word.

Time Node1 Node2 Node0 Node3

0.00000 0.00000 0.00000 10.00000 0.00000

2.22222 2.65173 0.37993 6.58836 0.37998

4.44444 3.36137 0.54675 5.35900 0.73287

6.66667 3.50309 0.60903 4.86980 1.01808

8.88889 3.49168 0.62939 4.63056 1.24837

11.11111 3.44503 0.63468 4.48326 1.43703

13.33333 3.39460 0.63464 4.37640 1.59436

15.55556 3.34798 0.63265 4.29170 1.72767

17.77778 3.30643 0.62996 4.22149 1.84212

20.00000 3.26967 0.62704 4.16188 1.94141
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Referring to the earlier question about the predicted ratio of Node3
to Node0 we can compute the ratio from the equilibrium constants
by computing first the overall equilibrium constant as (0.8 x 0.2 x
4.8 = 0.768). To make sure that the system reaches equilibrium we
must simulate for a longer time period so that the concentrations
settle to constant values. The following table was derived from a
simulation with a time end of 300 time units.

Time Node0 Node1 Node2 Node3

0.00 10.00 0.00 0.00 0.00

75.00 3.72 2.97 0.59 2.72

150.00 3.67 2.93 0.59 2.81

225.00 3.67 2.93 0.59 2.81

300.00 3.67 2.93 0.59 2.82

The ratio of Node3 to Node0 is 2.82/3.67 is 0.768 as predicted theo-
retically. Note also that since the system is closed, the total mass re-
mains the same, that is at the end of the simulation, Node0 + Node1
+ Node2 + Node3 = 10

3.1.5 Setting Boundary Conditions

In the previous model all the molecular species, Node0 to Node3,
were free to change during the simulation, the system was a closed
system. Biological systems are however open, that is, there is a net
and steady flow of mass from one model boundary to another. In a
real system, the system boundaries are usually fixed and as a result
the system will reach a steady state rather than equilibrium. Let us
now change the previous model by fixing Node0 and Node3, rerun
the simulation, and compare it to the original version.

First, close all viewer and time course windows. Changing nodes
from float to fixed status is very straightforward. One can either
bring up the node properties window and change the setting from
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this window, or one can use the shortcut from the popup menu. Ei-
ther way, change the status of Node0 and Node3 to boundary nodes.
Boundary nodes are indicated by shadowed edge compared to float-
ing nodes.

Once you have changed the status of the two edge nodes, bring up
the time course simulation and graph panels and run the simulation.
The graph below illustrates the evolution of the new system.

Figure 3.12 Time Course Simulation Showing Evolution to Steady-
state.

Notice this time, that the system reaches a steady state.

3.1.6 Steady State Simulations

Before we continue to the next stage, close any time course control
panels or viewing panels such as the graphing panel.

What if we wanted to compute the steady-state immediately rather
than using a time course simulation? Under the analysis toolbar but-
ton there is an additional analysis option, called Steady State Anal-
ysis. Selecting the steady-state option will bring up the steady-state
panel. This is shown below.

The steady-state panel is very simple, it has a single button marked
Run. By clicking run, JDesigner will attempt to find the steady state
(assuming there is one) for the system. If a steady-state is located,
the values for the steady-state concentrations are indicated in the
table below the run button.
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Figure 3.13 Steady-state Control Panel.

3.1.7 Printing Models

Model diagrams may be printed using the print menu item under the
File menu. If you have acrobat or CutePDF Writer installed you can
also print to pdf files.

3.2 Tutorial 2 – Modeling a Simple Branch

In this tutorial, we will study some of the basic properties of a simple
metabolic branch and introduce the notion of a pathway flux.

Enter the model shown in Figure 3.14 into JDesigner.

Let Xo, X1 and X2 be boundary species. S1 will be an internal
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Figure 3.14 Branched Pathway.

species. Assign Reversible Michaelis-Menten rate laws to all three
reaction rates. The default values for the parameters can remain
unaltered except for the Vm’s which should be set to:

Parameter Value

Vm1
1.5

Vm2
2.0

Vm3
4.0

Set the initial concentration for Xo to be 10 concentration units. All
other concentrations leave at zero. Bring up both the steady-state
control panel and the table viewer. Compute the steady-state by
clicking on the run button. Note that the output only shows a single
item, the concentration of S1 which should be at a value of about
0.031.

We are now going to introduce the notion of a pathway flux.

At any time during the evolution of a pathway, the rates through the
different reactions as well as the species concentrations will evolve
in time, eventually settling to some steady-state values. The reaction
rates that we measure during a simulation are termed fluxes.

We can examine the fluxes of our simple branch very easily. On the
steady-state control panel, below the run button you should find the
‘Edit Output List’ button. If you click on this button you will get the
following dialog page
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Figure 3.15 Output List Selector Panel.

This panel permits one to select what attributes of a pathway one
might like to view. By default, all internal molecular species are
displayed. On the left side one can see the kinds of attributes to
display, in this case we are interested in the fluxes. Click on the
fluxes entry and it should open up to reveal the list of fluxes. In
the case of a simple branch, there will be three fluxes, these are
indicated by the reaction names, J0, J1 and J2 (see Figure 3.16).

There are two ways to select attributes, one way is to select each
one individually, the first flux, the second flux, and so on, each time
clicking on the add button. However, in this case we want to view all
three fluxes, it is quicker to select the name ’Fluxes’ and hit the add
button, this will select all three fluxes and add them to the selected
list on the right-hand side.

Once you have completed this, click on the OK button and recom-
pute the steady-state. You should now see the following results in
the table viewer:

S1 J0 J1 J2

0.03141 1.43404 0.47801 0.95603

What do you observe about the flux values, what pattern is there?
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Figure 3.16 Selector Panel showing Flux Symbols.

Can you explain the pattern?

We will now try one final experiment which will investigate the ef-
fect of increasing the activity of the enzyme on the second limb, that
is we will change the Vmax of J2
Change the second Vmax from 2.0 to 6.0. Recompute the steady-
state of the network.

S1 J0 J1 J2

0.01706 1.45735 0.87441 0.58294

What do you observe? Compare the flux values with the values from
the earlier experiment. Explain for example the change in J2
Comment: J2 decreases by almost 50%, J0 increases slightly and
J3 almost doubles. The explanation for this is simple, when we
increase the Vmax on J2 this results in a decrease in the concen-
tration of S1. This means that the flux through J2 decreases. The
flux through J2 increases because we have increased the Vmax even
though S1 decreases. The change in J0 is marginal and increases
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because the product inhibition of S1 has decreased. The net effect is
a redistribution of flux from one branch to another.

3.3 Tutorial 3 – Modeling a Simple Cycle

In this tutorial, you will investigate the basic properties of a simple
cycle and introduce the idea of parameter scans. Such cycles are
very common in signaling networks and thus an understanding of
their properties is important.

Enter the model shown in Figure 3.17 into JDesigner.

Figure 3.17 Cycle Model.

The differential equations for this model are easily written:

dS1

dt
D v2 � v1

dS2

dt
D v1 � v2

Note that this network has as an important property, namely that

dS1

dt
D �

dS2

dt
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This means that at all times:

S1 C S2 D constant

In biological terms, the forward arm, v1 might be catalyzed by a
kinase and the reverse arm, v2, a phosphatase.

Set both reactions to have irreversible Michaelis-Menten rate laws.
We are going to investigate the effect of varying the activity of v1
on the steady-state concentrations of S2 and see how this response is
effected by the values of enzyme Kms. We can change the activity
of v1 by changing the Vmax.

Set the following parameter values for each reaction:

Reaction Parameter Value

v1 Vm 0.1

Km 5.0

v2 Vm 1.0

Km 5.0

Initialize the values of S1 and S2 to 3 concentration units each.

We are now going to use the parameter scan feature to investigate
how the activity of the first vm affects the steady-state concentration
of S2.

To make sure that you have entered everything correctly, compute
the steady-state with the current values. You should get the follow-
ing steady-state values for S1 and S2.

S1 D 5:7182

S2 D 0:28179

Once you can reproduce the above values we can begin to scan the
parameter range. To do this, select the scan parameter tab on the
steady-state control panel.
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Figure 3.18 Steady-state Control Panel.

First thing to do is select the particular parameter we wish to scan,
in this case it will be the first Vm, in this case J0 Vm. Note, you
may have named it something else so make sure the correct one is
selected.

Next we must set the Min, Max and Density parameters. Set these
to 0.1, 4.0 and 80 respectively. These indicate where to start the
scan, when to finish and how many values to compute. Now run the
simulation. You should get the following graph:

This graph shows a simple hyperbolic response as the Vm is in-
creased, nothing particularly interesting. We will now see the effect
of changing the two reaction Kms on this response.

Change both reaction Kms from 5.0 to 2.0. Run the simulation at
these new values. You should get the following graph:

The response has changed from a simple hyperbolic to a sigmoid
response. Decrease the Kms further to 0.25.

and further to 0.05. Also reduce the Max value from 4 to 2 in order
to rescale the graph. As the Kms fall, the sigmoid character becomes
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Figure 3.19 Simulation carried out with high Km = 5.0, note change
hyperbolic response.

more and more pronounced. In fact, it becomes almost switch like.
This property is well known and is called ultrasensitivity. The prop-
erty enables the network to convert a graded input into an on/off
response.

3.4 Tutorial 4 – Modeling True Bistable Sys-
tems

Bistable switches are commonly found as network motifs in prokary-
otes and in sometimes in eukaryotes. They represent the biochemi-
cal equivalent of a light toggle switch. In this tutorial, we will intro-
duce a bistable model and illustrate its unique switching properties
as well as introducing the notion of free-format rate laws.

Enter the following model shown in Figure 3.23 into JDesigner (see
below for details)

This model illustrates a simple regulatory loop from S1 to v1. The
regulation is positive in the sense that when the concentration of
S1 increases, the rate through v1 increases. The problem however
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Figure 3.20 Simulation carried out with Km = 2.0, note change to
sigmoid response.

Figure 3.21 Simulation carried out with Km = 0.25.

is that there is not a built-in rate law with this property. Instead,
JDesigner permits one to enter a ’free-format’ rate law.

To build this model, follow the steps below:

1. Drop down three species nodes and rename them X0, S1, and X1

2. Set X0 and X1 as boundary species.

3. Add uni-uni reactions between

X0 and S1

S1 and X1.
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Figure 3.22 Simulation carried out with Km = 0.05.

Figure 3.23 Simple network that exhibits bistability.

You should have the following on your screen:

Right-click over the first reaction to bring up the reaction properties
panel.

5. Select the tab marked Free-Format

You should see the following:

At the edit box containing J0_k*X0, type in the following expres-
sion:

10+X0*3.2*((S1/0.75)�3.2)/(1+((S1/4.3)�3.2))

6. Hit the tab key, this moves the focus and ensures that the equation
has been entered. You should see the following on your screen.

7. Next select the second reaction, this time choose an irreversible
mass-action rate law with a rate constant of 12.0
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Figure 3.24 Free-Format Rate Law entry.

Figure 3.25 Setting the rate law for the first reaction using the free
format panel.

8. Set the concentration of X0 to 0.12 units

9. Set the initial concentration of S1 to 0.1

Next close the reaction properties panel and open the time course
control panel plus a graph panel .

Set the time end to 1 time unit and run a simulation. If you have
correctly entered the model, you should see a graph as shown in
Figure 3.26.

Notice that the system approaches a steady-state with a value of
roughly 1.0, nothing out of the ordinary there. Let us now change
the initial concentration of S1 to 4.0 and carry out the same simula-
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Figure 3.26 Evolution to bistable system towards the lower stable
steady-state.

tion.

You will also need to change the axis limits, right click over the
Y-axis and set the lower limit to zero and the upper limit to 10, thus:

Figure 3.27 Setting the Y-axis limits – obtained by right-clicking
on a graph axis.

If you run the simulation (do not click on reset) you should observe
the graph shown in Figure 3.28.

What is unusual is that the model has clearly settled to a different
steady-state, a high steady-state, compared to the first run. You can
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Figure 3.28 Evolution to bistable system towards the high stable
steady-state.

return the initial condition of S1 back to 0.1 and run it again and
you will see the system settles to the lower steady-state. This model
appears to have two quite different steady-states for the same set of
parameter values.

To explain this behavior, the graph shown in Figure 3.29 plots the
two reaction rates against the concentration of S1. Where the lines
intersect is the point when the two rates are equal, these correspond
to the steady-state points. Because of the particular nature of the
positive feedback, the model admits three intersection points, corre-
sponding to three unique steady-state solutions.

The middle intersection point is unstable, but the two outer ones are
stable. Note that the lower stable state corresponds to a S1 value of
about 1.0, while the upper steady-state corresponds to a S1 value of
about 8.5. Both these values correspond to the values obtained from
the simulations described previously.
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Figure 3.29 Plots of reactions rates, v1 and v2 versus S1. Intersec-
tion points show steady-state points.

3.5 Tutorial 5 – Oscillators and Sliders

Circadian rhythms are common occurrences in biological systems,
many of these rhythms are controlled by biochemical oscillators.
In this tutorial we will investigate a well-known oscillator called
the Brusselator. This oscillator is a highly simplified model of the
famous Belousov-Zhabotinskii chemical oscillator. The reaction
scheme is given below:

A! X

2X C Y ! 3X

B CX ! Y C C

X ! D

One of the characteristic features of the scheme is the autocatalytic
nature of the second reaction. That is, for every 2 X species con-
sumed, 3 X species are produced. This reaction is therefore quite



3.5. TUTORIAL 5 – OSCILLATORS AND SLIDERS 43

unstable. However, as X increases exponentially, it also removes Y
exponentially, the result being that at a critical point, the second re-
action stops due to lack of Y and the concentration of X collapses.
Y now starts to build again due to the third reaction, and in turn
will eventually stimulate the autocatalytic reaction. This process of
crash and boom continues indefinitely (or until the source material,
A and B are used up in a real experiment). In this tutorial we are go-
ing to use the interactive slider capability to study the effect of the
different rate constants on the oscillatory properties of this reaction
network.

This model introduces a new concept – non-unity stoichiometry (see
reaction two) – which we need to deal with.

The first step is to place the molecular species on the drawing area.
These include:

Species Name Fixed Concentration

A Yes 0.5
B Yes 3.0
C Yes 0.0
D Yes 0.0
X No 3.0
Y No 3.0

The second step is to add the reactions, if you have done this cor-
rectly you should see something like the following. Note that your
particular arrangement of reaction arcs might be different, use the
mouse to rearrange the nodes and reaction arcs as desired.

Note that to add bimolecular reactions, select the bi-bi reaction type
from the left-side toolbar. Use the mouse to select in turn, the two
substrates and the two products.

The next step is to change two stoichiometries. Select the second
reaction where X is autocatalytically transformed. This should bring
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Figure 3.30 Brusselator as Drawn using JDesigner.

up the following reaction properties panel. Locate the stoichiometry
settings and adjust the first X stoichiometry to be 2 and the second
X stoichiometry to be 3.

The next thing is to change the rate law. The rate law for this reac-
tion is given by:

k2XXY

Make sure you include the rate constant and set its value to one, use
the free-format entry to enter this rate law.

For the other reactions, use the following rate laws:

Reaction Rate Law Value of Rate Constant

A! X k1A 1
2X C Y ! 3X k2XXY 1
B CX ! Y C C k3BX 1
X ! D k4X 1
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Figure 3.31 Setting Stoichiometries and Rate Laws.

Once the model is entered, bring up the time course simulation panel
and the graph panel.

Set the time end to a value of 100 time units, and carry out a simu-
lation. You should observe the following oscillatory output.

Figure 3.32 Simulation of the Brusselator Reaction Model.

We are now going to investigate how the different rate constants
affect the dynamics of this model.
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At the lower end of the time-course panel you should see two but-
tons, one marked Define and the other marked Display . Click on
the Define button and you will be presented with a window that per-
mits you to attach slider controls to parameters in the model. We
will select all parameters. To select a parameter, select the param-
eter and click the Add button. Do this for each parameter until the
define slider window looks like the display shown in Figure 3.33. If
this is the case, click on the close button.

Figure 3.33 Attach Sliders to Parameters.

To display the sliders, click on the button marked Display, this will
bring up the slider window (see Figure 3.33). For convenience you
may dock this window onto the time-course panel (see Figure 3.34).
You will now find that by gently moving the sliders the simulation
curves will change. If you move the sliders out of range you may
find the differential equation solver complaining about numerical
difficulties. If this happens try to move the slider back to it original
position, it may take some tries to accomplish this.

Figure 3.34 Slider Window
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Figure 3.35 Slider Panel Docked with Time Course Panel.
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4
Jarnac Tutorials

Jarnac is a script based simulation application. Biochemical models
are described by specifying reaction schemes in the form of text.
In the following tutorials we repeat the earlier tutorials based on
JDesigner but using Jarnac instead.

4.1 Tutorial 1

4.1.1 Basic Pathway Model

Let us begin by building a simple network. This network will com-
prise of four molecular species and three reactions. First, we will
define our network object, species, reactions, and corresponding rate
laws. The pathway, p, is the variable that represents the model. Our
species can take on any name, such as glucose or ATP but here they

49
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are named Node0, Node1, Node2, and Node3.

// Define Pathway

p = defn Pathway

// Declare species

var Node0, Node1, Node2, Node3;

// Define each reaction (J0,J1,J2) and rate law

// Here, we use irreversible mass-action rate laws

J0: Node0 -> Node1; k0*Node0;

J1: Node1 -> Node2; k1*Node1;

J2: Node2 -> Node3; k2*Node2;

end;

Next, we will set the initial concentrations for our species and values
for the rate constants. Node1 will start with 10 concentration units
and the other species with 0. Note we have named the reactions J0,
J1, and J2. The rate constants will be 0.6, 1.0, and 0.15 for reactions
J0, J1, and J2, respectively.

// Initialize the parameters and variables

p.Node0 = 10; p.Node1 = 0; p.Node2 = 0;

p.Node3 = 0; p.k0 = 0.6; p.k1 = 1.0;

p.k2 = 0.15;

To run a time course simulation, we create a matrix using the method
sim.eval and pass it to the graph function:

// Perform simulation

// First argument Time Start

// Second argument Time End

// Third argument Number Of Points

m = p.sim.eval(0, 10, 100);

graph(m);
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The arguments in the eval method correspond to the time start, time
end and the number of points to generate. Running this script will
create the following graph:

Figure 4.1 Jarnac Generated Graph.

The graph can be copied by clicking the copy to clipboard button
and the axes and other graph properties using the Edit Chart button.
To obtain the raw data, simply add the line

print m;

which displays the matrix we created in a tabular format. The eval
method can also take an optional 4th argument which lists the entries
in the columns of the returned matrix. Without the 4th argument,
the default is to return the first column as time and the remaining
column as the floating species in the model. the script below shows
that we have selected a different set of columns, note we can include
simple expressions such as 10*p.Node1.

// Perform simulation

m = p.sim.eval(0, 10, 100,

[<p.Time>, <10*p.Node1>, <p.Node2+Node3>]);

graph(m);
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4.1.2 Setting Reaction Rate Laws

We are now going to make a change to the model by setting different
rate laws for the three reactions. In the earlier version, all the rate
laws were simple irreversible mass-action rate laws. For some mod-
els this may not be realistic, instead we will use in the next version,
reversible Michaelis-Menten rate laws.

We have the option of typing in our own free-format rate laws or we
can take advantage of Jarnac’s built-in rate laws:

The built-in function uur evaluates the single substrate reversible
Michaelis-Menten model, given by the equation:

v D
Vm=Km1

.S � P=Keq/

1C S=Km1
C P=Km2

The arguments to uur must be in the order: uur(S,P,Vm1,Km1,Km2,Keq);

Rewriting our network from 1.1, we create the following:

// Define Pathway

p = defn Pathway

// Declare species

var Node0, Node1, Node2, Node3;

// Define rxn and rate law (reversible Michaelis-Menten)

J0: Node0 -> Node1;

uur(Node0, Node1, J0_Vm, J0_Km1, J0_Km2, J0_Keq);

J1: Node1 -> Node2;

uur(Node1, Node2, J1_Vm, J1_Km1, J1_Km2, J1_Keq);
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J2: Node2 -> Node3;

uur(Node2, Node3, J2_Vm, J2_Km1, J2_Km2, J2_Keq);

end;

Initializing our parameters and variables we have:

p.Node0 = 10; p.Node1 = 0; p.Node2 = 0; p.Node3 = 0;

p.J0_Vm = 2.5; p.J0_Km1 = 0.1; p.J0_Km2 = 0.1; p.J0_Keq = 0.8;

p.J1_Vm = 1.2; p.J1_Km1 = 0.1; p.J1_Km2 = 0.1; p.J1_Keq = 0.2;

p.J2\_Vm = 0.5; p.J2_Km1 = 0.1; p.J2_Km2 = 0.1; p.J2_Keq = 4.8;

If we run this updated script we should get the following graph:

4.1.3 Setting Boundary Conditions

In the previous model all the molecular species, node0 to node3,
were free to change during the simulation, the system was a closed
system. Biological systems are however open, that is, there is a net
and steady flow of mass from one model boundary to another. In a
real system, the system boundaries are usually fixed and as a result
the system will reach a steady state rather than equilibrium. Let us
now change the previous model by fixing Node0 and Node3, rerun
the simulation, and compare it to the original version. To set Node0
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and Node3 as boundary species, we declare them as ext variables
and put a $ symbol in front of the species in the reaction declaration.

// Define Pathway

p = defn Pathway

// Declare species

ext Node0, Node3; // create boundary nodes

var Node1, Node2; // create floating nodes

// boundary nodes are denoted by a $ preceding the node

J0: $Node0 -> Node1;

uur(Node0, Node1, J0_Vm, J0_Km1, J0_Km2, J0_Keq);

J1: Node1 -$>$ Node2;

uur(Node1, Node2, J1_Vm, J1_Km1, J1_Km2, J\_Keq);

J2: Node2 -$>$ $Node3;

uur(Node2, Node3, J2_Vm, J2x

Km1, J2_Km2, J2_Keq);

end

// perform simulation, this time giving data

// for only Node1 and Node2

m = p.sim.eval(0, 10, 100,

[<p.Time>, <p.Node1>,<p.Node2>]);

graph(m);

The graph should look like this:

Notice this time, the system approaches a steady state.
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4.1.4 Steady State Simulations

What if we wanted to compute the steady-state immediately rather
than using a time course simulation? We can remove the time course
simulation code and instead run a steady state Simulation using the
p.ss.eval method and print the final concentrations of our floating
species:

// run Steady State Simulation and print data

p.ss.eval;

println "Node1 =", p.Node1, "Node2 =", p.Node2;

The output should look like this:

Node1 = 5.78434, Node2 = 0.679977

// Another way to print this data is to use the console

// and enter the method which returns the names of

// the floating species and the method which returns

// concentrations of the species:

->p.fs

Node1, Node2

->p.sv

5.784, 0.68

->

4.2 Tutorial 2 - Modeling a Simple Branch

In this tutorial, we will study some of the basic properties of a simple
metabolic branch and introduce the notion of a pathway flux. Enter
the following model into a Jarnac script, where Xo;X1 and X2 are
boundary species and S1 is an internal species.

Your script should look like this:

// Define Pathway
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p = defn Pathway

// Declare species

ext X0, X1, X2;

var S1;

// Define each reaction and rate law

// (here a reversible Michaelis-Menten)

v1: $X0 -> S1; uur(X0, S1, v1_Vm, v1_Km1, v1_Km2, v1_Keq);

v2: S1 -> $X1; uur(S1, X1, v2_Vm, v2_Km1, v2_Km2, v2_Keq);

v3: S1 -> $X2; uur(S1, X2, v3_Vm, v3_Km1, v3_Km2, v3_Keq);

end;

Parameter Value

Vm1
1.5

Vm2
2.0

Vm3
4.0

Set the initial concentration for Xo to be 10 concentration units.

All other concentrations leave at zero:

// Initialize the parameters and variables

p.X0 = 10; p.X1 = 0; p.X2 = 0; p.S1 = 0;

p.v1_Vm = 1.5; p.v1_Km1 = 0.1; p.v1_Km2 = 0.1; p.v1_Keq = 0.1;

p.v2_Vm = 2.0; p.v2_Km1 = 0.1; p.v2_Km2 = 0.1; p.v2_Keq = 0.1;

p.v3_Vm = 4.0; p.v3_Km1 = 0.1; p.v3_Km2 = 0.1; p.v3_Keq = 0.1;

To make sure your script is running correctly, calculate the steady
state and print your results for the steady state concentration of S1:

// run steady state simulation

p.ss.eval;

println "S1 =", p.S1;
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The output should be:

S1 = 0.0314073

We are now going to introduce the notion of a pathway flux. At
any time during the evolution of a pathway, the rates through the
different reactions as well as the species concentrations will evolve
in time, eventually settling to some steady-state values. The reaction
rates that we measure during a simulation are termed fluxes.

To display this data (calculated by ss.eval) we can add the following
lines which will print the flux information:

println "Flux v1 =", p.v1;

println "Flux v2 =", p.v2;

println "Flux v3 =", p.v3;

The output should be:

S1 = 0.0314073

Flux v1 = 1.43404

Flux v2 = 0.478015

Flux v3 = 0.95603

Another way to print this data is to use the console and enter the rs
method which returns the names of the reactions and the rv method
which returns the reaction rates (fluxes):

->p.rs

["v1", "v2", "v3"]

->p.rv

{ 1.434, 0.478, 0.956 }

->
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4.3 Tutorial 3 - Modeling a Simple Cycle

In this tutorial, you will investigate the basic properties of a simple
cycle and introduce the idea of parameter scans. Such cycles are
very common in signaling networks and thus an understanding of
their properties is important. The network we will be model is the
same as shown below:

Figure 4.2 Cycle Network

The differential equations for this model are easily written:

dS1

dt
D v2 � v1

dS2

dt
D v1 � v2

Note that this network has as an important property, namely that

dS1

dt
D �

dS2

dt

This means that at all times:

S1 C S2 D constant
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In biological terms, the forward arm, v1 might be catalyzed by a
kinase and the reverse arm, v2, a phosphatase.

Set both reactions to have irreversible Michaelis-Menten rate laws.
We are going to investigate the effect of varying the activity of v1
on the steady-state concentrations of S2 and see how this response is
effected by the values of enzyme Kms. We can change the activity
of v1 by changing the Vmax.

Initialize the values of S1 and S2 to 3 concentration units each. In
biological terms, the forward arm, v1 might be catalyzed by a kinase
and the reverse arm, v2, a phosphatase.

We will set both reactions to have irreversible Michaelis-Menten
rate laws. We are going to investigate the effect of varying the activ-
ity of v1 on the steady-state concentrations of S2 and see how this
response is effected by the values of enzyme Kms. We can change
the activity of v1 by changing the Vmax.

Set the following parameter values for each reaction:

Reaction Parameter Value

v1 Vm 0.1

Km 5.0

v2 Vm 1.0

Km 5.0

Initialize the values of S1 and S2 to 3 concentration units each. Your
script up to this point should look like this:

// Define Pathway

p = defn Pathway

// Declare species

var S1, S2;

// Define each reaction and rate law

// (here, reversible Michaelis-Menten)
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v1: S1 -$>$ S2; uui(S1, v1_Vm, v1_Km);

v2: S2 -$>$ S1; uui(S2, v2_Vm, v2_Km);

end;

// Initialize the parameters and variables

p.S1 = 3; p.S2 = 3;

p.v1_Vm = 0.1; p.v1_Km = 5.0;

p.v2_Vm = 1.0; p.v2_Km = 5.0;

We are now going to use the parameter scan feature to investigate
how the activity of the first Vmax affects the steady-state concentra-
tion of S2.

To make sure that you have entered everything correctly, compute
the steady-state with the current values. You should get the follow-
ing steady-state values for S1 and S2.

S1 D 5:7182

S2 D 0:28179

Once you can reproduce the above values we can begin to scan the
parameter range. The first thing to do is select the particular param-
eter we wish to scan, in this case it will be the first Vmax, p.v1_Vm.

Next we must set the Min, Max and Density parameters. Set these
to p.v1_Vm, 4.0 and 80 respectively. These indicate where to start
the scan, when to finish, and how many values to compute:

// Initialize Scan Parameters

ScanMin = p.v1_Vm;

ScanMax = 4.0;

ScanDensity = 80;

Next, we will create a matrix which will hold the data we will
will generate as we change the values of Vmax. The function m

= matrix(i,j) creates a matrix with i rows and j columns. We
can access individual cells with the syntax m[i,j]. The function
SetColumnName is useful for labeling our matrix and uses the syn-
tax SetColumnName(m, i, "ColName"), where m is the matrix, i
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is the column number, and "ColName" is the string name we wish
to assign to the column.

// Create matrix with ScanDensity

// of rows and 3 columns

m = matrix(ScanDensity, 3);

SetColumnName (m, 1, "Vmax");

SetColumnName (m, 2, "S1");

SetColumnName (m, 3, "S2");

After creating the matrix, we will write a for loop which calculates
the steady state at each different Vmax value, populating the matrix.
Then we graph the matrix:

for i=1 to ScanDensity do

begin

// short simulation to avoid errors in steady-state

p.sim.eval(0, 10, 10, []);

p.ss.eval;

// add new data to row i in vector form

m[i] = {p.v1_Vm, p.S1, p.S2};

// increment Vmax

p.v1_Vm = p.v1_Vm + (ScanMax-ScanMin)/ScanDensity;

end;

graph(m);

Now run the simulation. You should get the graph shown in Fig-
ure 4.3.

This graph shows a simple hyperbolic response as the Vmax is in-
creased, nothing particularly interesting. We will now see the effect
of changing the two reaction Kms on this response.

Change both reaction Kms from 5.0 to 0.25. Run the simulation at
these new values. You should get the graph show in Figure ??.

Reduce the Max value from 4 to 2 in order to rescale the graph
and then decrease the Kms further to 0.25. As the Km falls, the
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Figure 4.3 Cycle Network

Figure 4.4 Cycle Network

hyperbolic character becomes sigmoidal. In fact, it becomes almost
switch like is the Km is low enough. This property is well known
and is called ultrasensitivity. The property enables the network to
convert a graded input into an on/off response:
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4.4 Tutorial 4 - Modeling a Bistable Sys-
tem

Bistable switches are commonly found as network motifs in prokary-
otes and in sometimes in eukaryotes. They represent the biochemi-
cal equivalent of a light toggle switch. In this tutorial, we will intro-
duce a bistable model and illustrate its unique switching properties
as well as introducing the notion of free-format rate laws.

We will be entering the model shown in Figure 4.5 into Jarnac (see
below for details).

Figure 4.5 Simple network that exhibits bistability.

This model illustrates a simple regulatory loop from S1 to v1. The
regulation is positive in the sense that when the concentration of S1
increases, the rate through v1. Since there is not a built-in rate law
with this property, we will instead enter a ’free-format’ rate law:

v1: $X0 -> S1;

10+X0*3.2*((S1/0.75)^3.2)/(1+((S1/4.3)^3.2));

Our second reaction will be an irreversible mass action rate law:

v2: S1 -> $X1; k0*S1;

Our variables will be initialized as follows:

p.X0 = 0.12; p.S1 = 0.1; p.X1 = 0;

p.k0 = 12;
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We will then run a time course simulation. Our script should look
like this:

// Define Pathway

p = defn Pathway

// Declare species

ext X0, X1;

var S1;

// Define each reaction and free-format rate law

v1: $X0 -> S1; 10+X0*3.2*((S1/0.75)^3.2)/(1+((S1/4.3)^3.2));

v2: S1 -> $X1; k0*S1;

end;

// Initialize the parameters and variables

p.X0 = 0.12; p.S1 = 0.1; p.X1 = 0;

p.k0 = 12;

// Define simulation variables

TimeStart = 0;

TimeEnd = 1;

NumDataPoints = 100;

// perform simulation

m = p.sim.eval(TimeStart, TimeEnd, NumDataPoints,

[<p.Time>, <p.S1>]);

Figure 3.26 shows the low steady state and Figure 3.28 the high
steady state.

We will now do something different and write a script to repeat a
simulation multiple times. In this case we will carry out a time
course simulation ten times, each time using a different initial value
for S1. If the system is bistable we should see different trajectories
depending on where the initial condition is.

p = defn Pathway
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// Declare species

ext X0, X1;

var S1;

// Define each reaction and free-format rate law

v1: $X0 -> S1; 10+X0*3.2*((S1/0.75)^3.2)/(1+((S1/4.3)^3.2));

v2: S1 -> $X1; k0*S1;

end;

// Initialize the parameters and variables

p.X0 = 0.12; p.S1 = 0.1; p.X1 = 0;

p.k0 = 12;

// Define simulation variables

TimeStart = 0;

TimeEnd = 1;

NumDataPoints = 100;

// perform simulation

m = p.sim.eval(TimeStart, TimeEnd, NumDataPoints,

[<p.Time>, <p.S1>]);

initialS1 = 0.2;

for i = 1 to 10 do

begin

p.S1 = initialS1;

m1 = p.sim.eval(TimeStart, TimeEnd, NumDataPoints, [<p.S1>]);

m = augc (m, m1);

initialS1 = initialS1 + 0.5;

end;

graph (m);

4.5 Tutorial 5 - Reaction Stoichiometry and
Oscillators

Circadian rhythms are common occurrences in biological systems,
many of these rhythms are controlled by biochemical oscillators.
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Figure 4.6 Simple network that exhibits bistability.

In this tutorial we will investigate a well-known oscillator called
the Brusselator. This oscillator is a highly simplified model of the
famous Belousov-Zhabotinskii chemical oscillator. The reaction
scheme is given below:

One of the characteristic features of the scheme is the autocatalytic
nature of the second reaction. That is, for every 2 X species con-
sumed, 3 X species are produced. This reaction is therefore quite
unstable. However, as X increases exponentially, it also removes Y
exponentially, the result being that at a critical point, the second re-
action stops due to lack of Y and the concentration of X collapses.
Y now starts to build again due to the third reaction, and in turn will
eventually stimulate the autocatalytic reaction. This process of crash
and boom continues indefinitely (or until the source material, A and
B are used up in a real experiment). In this tutorial we are going
to study the effect of the different rate constants on the oscillatory
properties of this reaction network.

This model introduces a new concept – non-unity stoichiometry (see
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reaction two) – which we need to deal with.

The first step is to identify the species we will be dealing with. These
include:

Species Name Fixed Concentration

A Yes 0.5
B Yes 3.0
C Yes 0.0
D Yes 0.0
X No 3.0
Y No 3.0

The second step is to identify the reactions. In this case, we have
reactions with coefficients larger than one. We include this in the
reaction definition by simply placing integer coefficients in front of
the different species.

The reactions and rate laws we will be using in this example are
listed below:

Reaction Rate Law Value of Rate Constant

A! X k1A 1
2X C Y ! 3X k2XXY 1
B CX ! Y C C k3BX 1
X ! D k4X 1

When we add a time course simulation to 100 time units, our com-
plete script should look like the following:

// Define Pathway

p = defn Pathway

// Declare species

ext A, B, C, D;
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var X, Y;

// Define each reaction and rate law

J1: A -> X; k_1*A;

J2: 2X + Y -> 3X; k_2*X*X*Y;

J3: B + X -> Y + C; k_3*B*X;

J4: X -> D; k_4*X;

end;

// Initialize the parameters and variables

p.A = 0.5; p.B = 3.0; p.C = 0.0;

p.D = 0.0; p.X = 3.0; p.Y = 3.0;

p.k_1 = 1.0; p.k_2 = 1.0; p.k_3 = 1.0;

p.k_4 = 1.0;

// Define simulation variables

TimeStart = 0;

TimeEnd = 100;

NumDataPoints = 1000;

// Perform simulation

m = p.sim.eval(TimeStart, TimeEnd, NumDataPoints,

[<p.Time>, <p.X>, <p.Y>]);

graph(m);

Figure 4.7 shows the graph produced by the script above

Changing the rate constants will give us different oscillating pat-
terns. For example, setting k1 D 2:6; k2 D 1; k3 D 1:3; and k4 D
1:7 produces the graph shown in Figure 4.8.

4.6 Tutorial 6 - Stochastic Simulation

Stochastic simulation is an important modeling approach given what
we now know about the low number of molecules involved in some
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Figure 4.7 Brusselator Simulation Using Jarnac

Figure 4.8 Brusselator Simulation Using Jarnac

biochemical processes. Jarnac offers a command gillespie that
can be used to invoke a Gillespie based simulator. By way of an
example the script below shows how a simple stochastic simulation
can be carried out. Figure 4.10 shows the output from this simula-
tion.

p = defn newModel

$Xo -> S1; k1*Xo;

S1 -> S2; k2*S1;

S2 -> $X1; k3*S2;

end;
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p.k1 = 0.2; p.k2 = 0.4; p.k3 = 2;

p.Xo = 50; p.S1 = 0; p.S2 = 0;

m = gillespie (p, 0, 30, [<p.time>, <p.S1>, <p.S2>]);

graph (m);
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Figure 4.9 Stochastic Simulation

As in the previous simulations we can also invoke events during
simulations. Figure 4.10 shows a simulation where at a time 30, the
k1 rate constant is reduced and the simulation continued. Note the
use of augr to merge the two simulations.

p = defn newModel

$Xo -> S1; k1*Xo;

S1 -> S2; k2*S1;

S2 -> $X1; k3*S2;

end;

p.k1 = 0.2; p.k2 = 0.4; p.k3 = 2;
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p.Xo = 50; p.S1 = 0; p.S2 = 0;

// Simulate the first part up to 20 time units

m1 = gillespie (p, 0, 30, [<p.time>, <p.S1>, <p.S2>]);

p.k1 = p.k1 / 6;

m2 = gillespie (p, 30, 60, [<p.time>, <p.S1>, <p.S2>]);

graph (augr(m1,m2));

The gillespie call takes four arguments, the model variable, the
time start, time end and a list of values to return to the caller. Note
that the number of points is not given.
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Figure 4.10 Using events in a stochastic simulation
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