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Endre T. Somogyi

SIMULATION OF ELECTROCHEMICAL AND STOCHASTIC SYSTEMS
USING JUST IN TIME COMPILED DECLARATIVE LANGUAGES

Computational biology is a relatively new discipline which sits at the intersection of
computer science, physics, chemistry and biology. One of the primary goals of computational
biology is to develop predictive algorithmic and mathematical models of biological processes.

A model description in a declarative language such as SBML express the structure of
the model without having the specify the explicit control flow. Declarative descriptions
have numerous advantages over lower level programming languages. The SBML language is
specifically oriented towards describing biochemical systems: one simply has to list reactants
and the relationships, as opposed to lower level procedural languages, where one would have
to explicitly specify the computational details. Models may also be readily exchanged and
reused in a variety of applications.

A number of interpreters exist for simulating SBML models, but to our knowledge, there
are no Just In Time (JIT) compilers. Compiled languages often offer hundred fold perfor-
mance improvements over interpreters. As simulations of cellular systems become more
complex, particularly in multicellular models, the need for reusable and high performance
simulation engines is becoming clear.

This thesis will describe the SBML JIT compiler, simulation and analysis library that
was developed. The library has been designed to be extensible and offers superior perfor-
mance to standard desktop simulators and supports a variety of analyses including time
course simulation and a wide range of analysis features such as steady state and metabolic
control analysis.

The library was used to develop a physically based model of the first component of
the mitochondrial electron transport chain. Mitochondria play a essential role in cellular

biology, and there exists a need for a physically accurate and interchangeable models of
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mitochondrial processes. Additionally, to demonstrate the stochastic capabilities of the

library, a stochastic bistable chemical system was modeled and analyzed.
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Chapter 1

Introduction

A constructionist methodology begins with a known set of building blocks and attempts to
assemble them into a larger, more complex system. This is the approach that an engineer
or condensed matter physicist would take to build or understand a complex system. There
is no better way to understand a system than to build it. The fundamental goal here is not
discovering the underlying quantum-mechanical laws, but rather understanding how com-
plex systems composed of simpler components behave and interact — in understanding the
new laws that emerge when these building blocks interact. The constructionist perspective
is complementary to the reductionist perspective that particle physicist would take. Here,
the goal is to look ever lower and lower to finally arrive at the ultimate building blocks.
Originally, these blocks were the atoms. Then it was discovered that atoms were made of
electrons, protons and neutrons. These were then discovered to be made of quarks, and
these in turn are perhaps made of strings.

There can be little doubt of the tremendous advancements in science that a reductionist
perspective has had, however such a perspective may not be the most useful way of ap-
proaching the complex systems such as seen in biology or condensed matter physics. As
Paul Anderson said, “The ability to reduce everything to simple fundamental laws does
not imply the ability to start from those laws and reconstruct the universe” |4]. Knowing
the exact properties of quarks in excruciating detail is not terribly helpful in understand-
ing how a biological cell functions. Quantum chromo-dynamics simulations of quarks can
take a months of super computer time [22]. Similarly with quantum-mechanical calcula-
tions, although these may be useful for calibrating larger scale molecular dynamics models.

Molecular dynamics on the other hand start with the building blocks of amino acids and



molecules and these are useful for calibrating models of larger scale components such as,
say, ion pumps. A cell however contains millions if not billions of ion pumps and these
pumps are constantly reacting with a large collection of reactants. A choice of quarks or
elementary particles is not an appropriate choice as the building blocks of a cellular model,
much as grains of sand would not be an appropriate choice of building block with which to
construct the great pyramids. Because of their appropriate size and well defined behavior,
the set of amino acids is an appropriate building block to construct protein models. The
important point here is to choose the appropriate building blocks.

The software library developed in this thesis was developed as a tool for biophysics re-
search and facilitates the construction, simulation and analysis of complex biological models
that are composed of a set of potentially heterogeneous simpler models or building blocks.
The development of tools and techniques has always gone hand in hand with the progression
of scientific understanding. Hans Lippershey, an obscure spectacle-maker from Middleburg
Zeeland — who was referred to as an “illiterate mechanick” by Huygens [48] — is generally
credited with the invention of the telescope in 1608. Yet this illiterate mechanick’s invention
was used by the likes of Galileo, Kepler, Newton and Huygens himself to collect data and
bring about a revolution in our understanding of the cosmos and physics. New tools have
allowed the study of systems of ever decreasing as well as increasing size. The telescope
allowed the observation of larger systems such as our solar system. The development of
refrigeration techniques has allowed the study of smaller and smaller quantum mechanical
systems.

The development of advanced refrigeration techniques in the industrial revolution of
late nineteenth century allowed researchers such as Heike Kamerlingh Onnes to super-cool
materials to near absolute zero, resulting in the discovery of super conductivity. This
experimental observation lacked a theoretical explanation for thirty years [4].

Possibly one of the greatest innovations of the industrial revolution is the notion of
interchangeable parts. Before the 1800’s nearly all mechanisms were bespoke — each was
typically custom built for a specific purpose, and one could not take a component from one
mechanism and readily use it in another. Each building block here was custom made, from

screws to springs to gears. One could not build a mechanism without first building the



building blocks.

Much as the industrial revolution brought about radical change in the 1800’s, the com-
puter revolution has and is bringing about radical changes in how science is performed
today. This revolution is rapidly opening up new avenues of scientific advancement. The
computational hardware resources available today are allowing scientists of all fields to
develop larger and more sophisticated simulations and analyze ever-increasing data sets.

The computer revolution would not have been possible without the notion of interchange-
able parts. Engineers have long since known of the benefits of component interoperability.
When an engineer designs a circuit board or a mechanism, these systems are constructed
out of a number of standard building blocks. Boards are constructed of a set of integrated
circuit (IC) elements. These in turn are constructed of basic elements such as transistors,
resistors, etc. These IC elements have standardized packages and interfaces which allow
them to be assembled to form more complex systems. It is a tremendous advantage to
be able to browse a catalog and choose a set of blocks to develop a novel component by
connecting them. The notion of interoperability is commonly found in nature itself as evi-
denced by the great many numbers of conserved gene circuits and protein complexes that
are found in a large number of species.

This notion of interoperability is not as prevalent as it could be in the areas of biolog-
ical modeling and computer software. A computational model of physical phenomena is
a mathematical representation meant to quantitatively describe the salient aspects of the
biological system they represent, as well as provide insights and predict the system’s dy-
namics in response to changing conditions. A mathematical model need not replicate every
internal detail of the system it is describing. Models of simpler biological systems form the
building blocks of more complex systems of biological models. This dissertation presents
a software library that was developed to combine a potentially large set of heterogeneous
biological models into a larger and potentially more complex system of models. This process
of assembling simpler models into systems gives insights into how these larger and more
complex systems form and function in nature.

In the constructionist or “bottom-up” modeling approach [3}/14.36], a multitude of mod-

els may be connected to represent more complex higher level biological systems. However,



guaranteeing the validity and predictability of the compounded ensemble may become in-
creasingly challenging as more components are integrated. Such modeling platforms may
combine very heterogeneous models from different scales, ranging from bimolecular detail
to sub-cellular networks to the continuum spatial level. At the molecular level, such plat-
forms contain a large number of kinetic models (e.g., ionotropic receptors, channels and
exchangers) as well as complex second-messenger pathways, all integrated at the cellular
level into morphologically detailed neuronal models. As a result, such platforms contain
an overwhelmingly large number of models and parameters. Each of the models present in
the platform must be independently calibrated and validated with respect to experimental
results.

As more experimental data becomes available, as our understanding of biochemical
interactions increases, so will the size and complexity of biochemical models. Not only is
the size of chemical network models increasing, but so is the complexity and sophistication
of these models’ rate laws and reaction dynamics. These complex networks contain an ever-
increasing number of parameters that must be fitted from experimental data. Chemical
networks are also being used to model the sub-cellular reaction network in a variety of
cellular and virtual tissue simulators. Thus, there is a need for a modular, high-performance
simulation library that can excel at simulating and analyzing such increasingly complex
models.

Currently, the only way to determine the values for such model parameters is by simu-
lating the models and comparing the simulation results to experimental data. This entails a
very large number of simulations and consumes a significant amount of computational time
and resources. The Systems Biology Markup Language (SBMLJ) simulation library devel-
oped here enables the development of such complex biological models [15]. No other SBMTI

simulation engine has the level of performance or interoperability as the one developed here.

1.1 Interoperability and Heterogeneous Models

For a mathematical model to be useful, not only must it provide some predictive, or at least

explanatory capability, but it must also be interchangeable among different platforms and



programs. For many years (and very sadly, even still) mathematical models were distributed
as FORTRAN programs. These programs typically have some proprietary input and output
file formats. The most common way to re-use these programs is to attempt to compile them
oneself, then write a generator/parser to create input files and parse output files, and then
(of course) a script to actually execute the program.

Programmatically interfacing with external programs (assuming one can even compile
them) is fraught with error primarily due to the large amount of state that these programs
may require to be present on the file system. These programs are typically written under
the assumption that they will be run once, for one particular calculation and then discarded.
This presents a difficulty for calling programs, as they must determine the current state of
the file system, copy and convert large portions of internal state into input files, call these
programs, parse the output, and finally clean up after these programs are run.

Perhaps worse still are models published in a proprietary format such as MATLAB.
This requires that the user also purchase and use MATLAB which may be a significant
financial outlay. Worse even still are models published only as equations in a journal.
These models are typically missing terms, missing parameters, or use unusual mathematical
conventions. Thus there is a need for mathematical models published in a self-contained
reusable interchange format.

Cellular and virtual tissue simulators such as CompuCell3D [75] or V-Cell [70], or CELL-
SZY'ZS [43] operate on complex spatial cellular and virtual tissue domains which have much
longer time and length scales than the typical sub-cellular reaction network. The sub-cellular
reaction network is however still kept in inter-cellular domains such as the cytoplasm and
these reaction networks are typically represented as models. Thus, there is a need for
software components that can easily be used as a component of existing cellular simulators.

Many of these simulators have used SOSLib [56]. This is an older simulation library
that has the benefits of being fairly small and self contained, however it does not appear
to have been maintained in some time and has a very limited Application programming
interface (API). SOSLib is also very difficult to build on modern operating systems as
it relies on a number of older versions of software packages which are difficult to build

on modern operating systems. Some virtual tissue simulators such as CompuCell3D have



previously used SOSLib but have already switched to the libRoadRunner library developed
here.

The problems encountered in biology tend to be much more heterogeneous than those
in condensed matter physics. In condensed matter physics, one frequently deals with a
ensembles of homogeneous particles such as a gas or liquid composed of one chemical species.
Highly complex behavior can arise from a collection of simple fluid particles; even a collection
of particles interacting with only a Van Der Walls potential is sufficient to reproduce most
of the behaviors encountered in Newtonian fluid dynamics. Biological building blocks tend
to be more complex, and they tend to be heterogeneous. For example, a cell has a set of
internal reactions which may be modeled via a reaction-kinetics model (such as the ones
which will be described in this thesis). Cells are typically found in a aqueous environment
which allows free diffusion of reactants to and from the cell. This environment is most
efficiently treated as a continuum fluid model. The library developed here has been used
in such simulations, for example, spatial models of complex biological processes such as
glutameric synapse simulations [336]. These simulations use a chemical network model
to simulate the reactions and distributions of compounds in the synaptic cleft. These
simulations also contain a large number of free parameters that can only be determined by
running a large number of simulations, hence the need for a high performance simulation
library.

Another example of such a heterogeneous system is the growth of tumor cells. Here
again, the internal cell cycle is modeled with a reaction-kinetics network, and the cells exist
in a fluid environment which supports free diffusion of reactants such as oxygen. A time

series of this simulation, developed by Powathil, Chaplain and Swat [62] is shown in fig.

1.2 Declarative Model Specification

As mentioned in many biological models are published in FORTRAN or MATLAB
format. MATLAB is an excellent environment for developing a numerical algorithm or
performing data analysis; however, it may not be the ideal environment to develop and

publish a biological model.



Figure 1.1: A heterogeneous model of the growth of cancer tumor cells from . Here,
the internal cell cycle dynamics is modeled as a reaction-kinetics network and this network is
coupled continuum fluid model which supports free diffusion. The background field represents
oxygen concentration.

MATLAB, FORTRAN, and to an extent, C are all what are called procedural languages.
In a procedural language, the exact details of the computation are encoded in a sequence of
language statements. To define a biological simulation in a procedural language, one must
first identify all the state variables, store these in a state vector, write a series of routines
which calculate the rate of change of the state vector and finally explicitly specify all the
exact details of calling an integrator.

Biological reaction-kinetics models however can be much simpler. At a minimum, all one
should be required to do is list a set of reactants and products, and list a set of reactions that
they participate in. It can be up to the language runtime to determine low level details such
as the exact layout of the state vector and what the actual low-level differential equations
are that must be solved. In a declarative language, the user never needs to be concerned
with these low-level details.

This is exactly what the declarative language, Systems Biology Markup Language
(SBMI), allows users to accomplish — define a biological model by specifying only a list
of reactants and products, and a list of reactions. Users can optionally specify a list of rules
or relationships the parameters or reactants must abide by as well. Therefore, SBMII can
be thought of as more of a declarative rather than a procedural language. In a declarative
language, the programmer must explicitly define the exact computation to be performed.
The compiler of a declarative language must infer semantic meaning from a set of poten-

tially disjointed pieces of information. In a procedural language, however, the onus is on



the programmer to explicitly define the exact computation to be performed. The task of
compiling a procedural language is typically much simpler than compiling a declarative
language, as a procedural language places more of the burden for explicitly defining the
computation on the programmer rather than the compiler.

One of the primary advantages of using a declarative format to specify chemical models is
its interoperability with a wide range of existing software. Much like (standard) Hypertext
Markup Language (HTML), can be displayed on a very wide range of platforms
ranging from handheld phones like iOS and Android devices all the way up to desktop
computers, and a variety of operating systems such as OSX, Linux, FreeBSD, Solaris, and
evidently even Windows can display web pages encoded in [HTMIl SBMII is similar in this
respect to [HTMII as it is designed as an interchange format.

A wide range of software exists for graphically building [SBMI] models. At the time of
writing, 263 different software packages can import or export models. These are
listed in the software guide at [67]. A number of graphical model builders such as
Cell Designer [19], COPASI [44], and a variety of other tools can graphically display and
allow users to create and manipulate models. Using such graphical builders, users
do not even have to write a single line of code.

Specifying the model in a higher level, declarative format such as allows software
tools to perform a wide range of analyses (such as stoichiometric analysis of the model)
which would be exceedingly difficult to perform if the model were explicitly specified in
a low level procedural format. Declarative languages are ideal for such tasks as biological
model specification, although it may not be appropriate for all circumstances: one would not
want to write applications or operating systems in declarative languages. In such problem
domains, one does not need to explicitly specify the exact computation or the exact layout

of memory blocks, or other low level minutize.

1.3 Software Architecture

The LibRoadRunner library developed here is a self-contained, cross-platform library which

is designed to have a small memory footprint. There were three primary architectural goals:



interoperability, modularity and speed. The library is designed to be used in existing virtual
tissue simulators, hence all internal code is C++ but the library has extensive language
bindings to Python as well as the native C++ interface. All internal modules are written
as a set of loosely coupled components. This creates a modular framework which readily
allows the development of new components such as integrators, steady state solvers or
back ends. The most novel feature of the LibRoadRunner library is this is the first known
[SBMTI simulation engine which supports Just In Time Compile (IIT]) compilation. Briefly,
this is a technique where a model described in a source language (SBML in this case) is
directly compiled to native executable machine code in memory. The library developed here
appears to be the first simulation engine that achieves linear scaling The other
simulation engines that were benchmarked could at best achieve quadratic scaling, and at
worst achieve only exponential scaling. The library also provides a rich suite of analysis
capabilities (MCA, stoichiometric, etc.).

The need for interoperability extends beyond just a library which is a small, self-
contained component — it must also be usable from a variety of different languages. Even
though most cellular and virtual tissue simulators are written in C++4-, many of them have a
scripting language interface (typically in Python); some are also written in Java. C++ may
be an ideal choice for time-critical components, however it is not a good choice for interac-
tive use and rapid prototyping such as in an interactive MATLAB session. Therefore, the
library developed here supports a variety of language bindings via SWIG [8]. The library
currently supports a native C++ API as well as a high performance Python binding. A

JavaScript binding for use in Node.js is currently under development.

1.4 Reusable Mitochondrial Model

The transduction of free energy from sugars to phosphorylate ADP to ATP is one of the
most fundamental and important reaction pathways in biology. Without a constant supply
of high free energy ATP, life as we know it would not exist. A great deal is known about this
reaction network; however, no complete, interchangeable model of the glycolysis/oxidative

phosphorylation reaction network appears to exist.



Selivanov, et al., have published a series of mitochondrial Electron Transport Chain
(ETC) models [68,69]. These however were hard-coded into a single monolithic C++
program which provided no programmatic interface or [APIl Effectively, this program is not
exchangeable and cannot be practically used in any existing software due to its lack of an

APIL.

1.5 Outline

In the biological modeling process, one first starts with empirical observations and combines
these with the known laws of mathematics, physics and chemistry using human reason and
insight to create a declarative, quantitative description or model of the phenomenon being
investigated. Traditionally, one then typically writes down a set of differential equations
that describe or govern the system. Then a computer program is written which implements
these differential equations in an form that a machine can accept. An automated process
then compiles this code into an executable form, combines it with various mathematical
software libraries such as integrators, linear solvers, etc. The output of this program is
then fed to an analysis package such as Mathematica or MATLAB. The biological modeling
process is represented in fig.

The first steps in the process fundamentally require human reason and insight, and for
the foreseeable future, it is unlikely that any machine will be capable of accomplishing this
task. Standard software packages have always existed for the latter steps such as excellent
existing compilers, integrators, analysis packages, etc. This thesis focuses on developing
the tools that enable the automation of the middle steps and combines the later 2/3 of the
biological modeling process into a single, self-contained library that is designed to be used
in a wide variety of applications.

In this thesis, Chapter [2] focuses on the LibRoadRunner library developed herein. This
chapter gives an overview of declarative language specification of biological models, discusses
the process of declarative language Just In Time compilation and discusses the internal
architecture of the library in detail. This chapter also compares the library’s performance

benchmarks against a number of existing libraries’.
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Figure 1.2: Overview of the biological modeling process. The section in red fundamentally
requires human insight and will likely not be automatable in the near future. The section in
yellow is often a manual process; this thesis will develop the tools to automate this section. The
section in green has always been easily automated by computer applications.

Chapter [3] discuses the development of a reusable model of the first complex of the
mitochondrial electron transport chain. The library developed here was used to perform
the simulations. Chapter 4| will demonstrate the capabilities of the stochastic integrator
that is part of the this library. This chapter also compares stochastic to deterministic
models and will include a derivation of the master equation and the stochastic simulation
algorithms which are required to perform such stochastic simulations.

Finally, Chapter [5| concludes with a number of planned future additions to the library.
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Chapter 2

Dynamic Compilation of Declarative Languages for Systems Biology

2.1 Introduction

LibRoadRunner is an open-source, cross-platform library for the numerical analysis of cel-
lular models expressed in Systems Biology Markup Language (SBMLI) [45]. The library
supports a variety of analyses including time course simulation and steady state analysis.
As simulations of cellular systems become more complex, particularly in multicellular mod-
els, the need for reusable and high performance simulation engines is becoming clear |75].
The LibRoadRunner library has been designed to be extensible and offers superior perfor-
mance to standard desktop simulators which will be demonstrated in § This chapter
describes the architectural design of the LibRoadRunner library which has the following
key attributes: (1) extensible modular architecture which readily allows the development
of new components without altering any existing code (2) first known SBML [ITT] compiler,
(3) capable and well documented native bindings for Python, and C++, (4) extensive but
easy-to-use API which allows model time series and steady state simulations, model
introspection and editing and a host of analysis features, (5) a self-contained library for
which we provide source code and binary packages for a variety of platforms, including 64
and 32 bit Linux (Intel), 64 bit OSX and 32 bit Windows. The code is written in platform
independent C++ and a native Python binding is also provided.

LibRoadRunner (as of the time of this writing) is linked against libSBML 5.9, hence
we support the entire SBML Level 3, Version 1 (L3VI]) specification, with the exception of

delay equations, algebraic rules or fast reactions.
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2.2 Overview

2.2.1 Systems Biology Markup Language

Systems Biology Markup Language [SBMI] [45] is a declarative representation format pri-
marily oriented towards describing and communicating computational models of biological
processes occurring in Continuous Well-Stirred Compartments (CWSC]). A significant por-
tion of phenomena in biology and chemistry and chemical engineering are commonly de-
scribed as networks of reacting solutes in a set of such CWSCs. The CWSC approximation
holds when the mass diffusion rate is greater than approximately 5 times the maximum
chemical reaction rate, or the compartment is sufficiently small. More precisely, when
L? < Jr, where L is the characteristic length of the compartment, J is the mass diffusion
flux, and 7 is the characteristic time of system reactions rates (inverse reaction rate).

Such models are frequently used to describe a diverse range of biological processes such
as cellular and sub-cellular processes, metabolic and reaction networks, cellular signaling
pathways, regulatory networks and electrophysiology.

SBML was originally developed to model biochemical kinetics networks, but has since
been augmented with an extensive event based programming model, auxiliary processes
not defined by the reaction network and arbitrary mathematical functions. SBML is often
misunderstood as being only a system for specifying ordinary differential equations (ODEs)
as many of the earlier SBML publications focused on this area. These additional capabilities
allow SBML to describe significantly more than just biochemical reaction kinetics models.

Although SBML can be used to describe nearly any computable process, as any com-
putable process may be described in terms of continuous dynamical systems, this is not
always practical. SBML is however ideal for representing biochemical models and has be-
come the de facto standard in this problem domain.

Representing a model in SBML has numerous advantages over explicitly specifying a
model in a comparatively low level programming language such as Python, MATLAB or
C++. The SBML language is specifically oriented towards describing biochemical systems
in a declarative manner. In SBML, one simply has to list reactants and the relationships

among the reactants to define a model. In lower level procedural languages, one would have
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to explicitly specify the computation — explicitly specify constructs such as the stoichiometry
matrix, state vectors, ODE, etc. and assemble these together with an integrator package.

The principal advantage for model specification in SBML is the interchangeability of
models. In addition to LibRoadRunner, numerous SBML simulation engines exist, each
oriented towards a specific niche: desktop end user applications such as COPASI [44] or Java
simulation environments such as systems biology simulations core algorithm biology library.
SBML models may be shared and published in exchange repositories such as the BioModels
database [10]. Because SBML is a language neutral specification, a range of packages exist
to edit, view or simulate models in a variety of different languages and environments. SBML
is intended to ensure the availability of models well beyond the lifetime of the packages that
originally created them.

The SBML language provides a set elements for building biochemical models which will
be summarized here. All elements in SBML are named and are given a unique identifier (id)
or symbol name, which is just a unique character string. Physical quantities are specified
in SBML as chemical species, parameters, or compartments. Relationships and dynamics
of these quantities are represented as rules or reactions.

Although SBML models are frequently solved deterministically, the SBML specification
does not specify what method is used for time evolution. This allows implementations
freedom to choose appropriate time evolution methods such as deterministic or stochastic
integrators. SBML only defines the state of the system, it does not specify how that
system should evolve in time. The LibRoadRunner library provides a number of different
integrators which evolve the system over time. These are discussed in

An SBML model defines a set of state variables which may be either parameters, chemi-
cal species or possibly compartments. The time evolution of chemical species is determined
by the reaction network which is specified via a set of reactions. Any element in SBML may
be defined by a rule; this defines the element as a mathematical relationship of other SBML
elements. A model may have a set of events which define a discontinuous state change of
any SBML element. A number of other elements which do not effect the model state such
as unit definitions or constraints may also be specified. These will not be discussed here.

(For further details, see the SBML specification at [46].) The key SBML elements which
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define the model state and affect the model dynamics follow.

Parameters

SBML defines three kinds of symbols which may be evaluated to yield a numerical value:
parameters, compartments and species. Parameters are the most general kind in that they
are not assigned any specific physical meaning. Parameters may be interpreted as any

arbitrary numerical variable.

Species

Chemical species are divided into two categories, floating and boundary. Floating species
may be produced or consumed in a reaction network and their value over time is determined
by reaction kinetics. Boundary species are not produced or consumed in a reaction, and
their value is often fixed over time since they act as boundary conditions. The value of
a boundary species may however vary in time, as a boundary species may have an event
which changes its value or it may have a rate rule which alters its value. For example, a
boundary species may be considered an infinite source or sink for a chemical species. In
this case, even though they participate in a reaction network as products or reactants, the
value of the boundary species remains constant.

The state variables of an SBML model may consist of species, compartments or pa-
rameters. Species are intended to represent a chemical species, and these may be either
floating or boundary species. There are slightly different semantics between floating and
boundary species (for details, see [46]). The main difference is that the floating species value
over time is typically determined by the chemical reaction network, whereas the boundary
species values are not defined by the reaction network. Boundary species may appear as
reactants or products in a reaction, but the reaction network does not alter their values;
they are considered boundary conditions, hence their name. Note that either floating or
boundary species may be defined via rules. In this case, such floating species may not be
listed as reactants or products — the reaction network may not alter their values.

In SBML, chemical species have certain interesting behaviors, in that they may be con-

sidered either as an amount, e.g. having units of mass or particle count, or as a concentration
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having units of mass per volume or particle count per volume. This behavior is determined
by the substanceUnits SBML attribute.
As SBML is intended to describe a set of reactions occurring in a [CWSC| each species

must reside in a compartment.

Compartments

Compartments are variables which represent the volume of a[CWSC]in which a set of species
reside. Physically, compartments are intended to represent volume elements whereas pa-
rameters may represent any arbitrary physical value. Semantically, the only real difference
between compartments and parameters is that, when a species is stated as having concen-
tration units, the species amount is automatically divided by the compartment volume in
which it resides.

When a species symbol is used in an expression such as in a rate rule or function, the
substanceUnits attribute determines whether a species is treated as an amount or concen-
tration. If the species is treated as a concentration, then the amount value is implicitly
divided by its compartment volume when the species symbol is dereferenced. Similarly,
when a species value is stored such as in an event assignment, then if the species is treated
as a concentration, the value to be stored is implicitly multiplied by the compartment

volume.

Function definitions

Functions in SBML are a mapping whose domain is a set of symbols in the SBML model
and whose codomain is a scalar value.

As stated in the SBML reference [46], functions are intended to be used as macros.
Many SBML engines use the libSBML macro expansion facility to expand function inline.
Even though it is stated that functions should not reference any symbol not explicitly given
as arguments, many SBML documents do reference other symbols. Even though this may
not be correct according to the spec, it is a commonly seen behavior in SBML documents
as a consequence of the macro expansion.

Most SBML engines just expand functions inline. This results in an interesting side
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effect: functions in SBML are effectively dynamically scoped. Dynamic scoping is used in
PERL, original Lisp (before Common Lisp) and some older programming languages such as
APL and SNOBOL. With this scoping behavior, functions first look for a local definition of
a symbol in the given set of arguments. If it is found here, it is resolved. If not, the symbols
are searched for one level up, which could be another function from which the current one
was called. The search continues up the list of scoping blocks until it reaches the set of local
parameters if the function was invoked from a reaction, and finally up to the global set of
SBML symbols.

The compilation process for functions is discussed in detail in §

Rules and Initial Assignments

A rule is a way to transform the value of one variable to another. When a rule is defined
for a symbol, that symbol is treated instead as a mathematical expression which defines
the value of a symbol in terms of other symbols, or defines the rate of change of a variable.
Any evaluatable symbol in SBML may be defined by rules, including floating and boundary
species. The caveat here is that if a species is defined by a rule, it may no longer be produced
or consumed in the chemical reaction network.

SBML supports three kinds of rules: assignment, rate and algebraic. Algebraic rules
define a system of implicit equations and are not supported by many SBML simulators
including RoadRunner. Assignment rules operate similarly to a macro expansion in C++, or
almost identically to transformation rules in Mathematica. In Mathematica, a replacement
rule is defined with the arrow operator, — and applied with the replacement operator /.,
so the expression x + y/.x — 3 evaluates to 3 + y.

In SBML, one may define a set of SBML assignment rules (using Mathematica syntax)
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as

C—-1+X (2.1)
A— B+2 (2:2)
D—A+C (2.3)
P—C+A+D. (2.4)

If an expression requests the symbol P, it will see that the symbol is defined by a replacement
rule, which in turn gets evaluated. Here the C' gets replaced by 1+ X, the A gets replaced
by B+ 2 and D gets replaced by A+ C. The A and C are not terminals, they get replaced
by B + 2 and 14 X respectively. The only restriction is that rules cannot have a loop. So,

starting with P, we have:

P=C+A+D (2.5)
P=(1+X)+(B+2)+(4+0C) (2:6)
P=(1+X)+(B+2)+(B+2)+1+X)) (27)

(2.8)

Finally, we end up with an expression of constants and terminal symbols.

Algebraic rules in SBML also have scoping rules. The left hand side (LHS) of a rule will
evaluate to a different result if the rule is evaluated inside a reaction block where there are
local parameters that override the global symbol names, or at time < 0 where there may
be initial assignment rules in play.

Initial assignments are just algebraic rules which are only in effect at time < 0.

Reactions

SBML was first developed to describe a reaction kinetic model. The first release of SBML,
Level 1 [45] did not contain events or rate rules, thus it could only be used to describe
systems in terms of a reaction kinetics model. Even though the present version of SBML

can describe much more, the reaction kinetic model is still the predominant use of SBML.
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A reaction specifies the transformation of a number of chemical species (reactants) into
number of new species (products) at a specified rate.

In a reaction kinetics network, a network of m chemical species and n reactions can
be described by the m by n stoichiometry matrix N. N;; is the net number of species ¢

produced or consumed in reaction j. The dynamics of the network are described by

£8() = N(1) - v(S(1), p), (29)

where S is the vector of species concentrations, p is a vector of time independent parameters,
t is time, and v is the reaction rate function.
SBML allows one to define a list of reactions, and each reaction has a list of products,

reactants and an arbitrary mathematical expression which specifies the reaction rate. The
generation of eqn. is discussed in §
Events

Events are discontinuous state changes which are applied when a predefined condition is
met. Formally, events map the model state to a new state when a predicate evaluates to

true,

(S - §'|P(2)} (2.10)
See § 2.4.3]

SBML Computational Model

SBML does contain numerous other elements, such as constraint or layout information,
but these ancillary elements do not affect how the model is generated. The above set of
SBML constructs allows the definition of an initial value problem (IVP). Formally, this IVP

problem may be written as

ti+1
S(t) = Z/t S(pi, t)dt. (2.11)
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Here, the summation is over the set of events, and the integration proceeds from the time
at which the previous event was triggered (or time 0) up to the next event trigger time (or
a pre-specified halting time).

It is the role of the SBML compiler to extract and infer semantic meaning from this set
of constructs in order to generate executable machine code with which this IVP is evaluated.
The SBML provides sufficient information to generate a function which yields the rate of
change of the entire state vector as well as the predicates and assignment rules for the set
of events.

Then finally, it is the role of the SBML simulation engine to combine the generated rate
of change and the event function from the compiler with an integrator, yielding S(t¢), the
state vector at time t. Extensive details of the SBML compiler are provided in §

These SBML constructs do not explicitly define how the state vector rate and event
functions are to be generated as they do in a procedural programming language. Rather,
the compiler gathers information from all of the SBML elements to infer how to generate
these functions.

In this sense, SBML can be thought of as more of a declarative rather than a procedu-
ral language. In a declarative language, the programmer must explicitly define the exact
computation to be performed. The compiler of a declarative language must infer seman-
tic meaning from a set of potentially disjointed information. In a procedural language,
however, the onus is on the programmer to explicitly define the exact computation to be
performed. The task of compiling a procedural language is typically much simpler than
compiling a declarative language, as a procedural language places more of the burden for
explicitly defining the computation on the programmer rather than the compiler.

Many commonly used programming languages such as C++, Java, MATLAB, Python,
and so forth are considered imperative languages. In an imperative language, one writes
a sequence of operations that describe in exacting detail how to perform a calculation.
Although C++, Java and Python may also be considered object oriented (OO) languages,
this is more a description of how the code is structured than how the computation is
specified. In OO languages, data and logic are grouped together into “objects” whereas in

more procedural languages such as MATLAB or C the logic is organized into procedures
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that operate on data. Nonetheless, these are organizational differences that do not alter
the imperative nature of these languages, which is a sequence of operations that explicitly
specify the computational algorithm.

On the other hand, in declarative languages like Mathematica or Prolog one defines a
program by specifying the logic of a computation rather than specifying the control flow. In
this sense, SBML may considered a declarative language, as only elements and relationships
need to be specified.

Declarative languages pose challenges for compiler developers. In procedural languages,
explicit details are provided in the source language of how the perform a computation. The
compiler then has a comparatively easier job, in that it just has to determine what is the
optimal way of implementing this computation on the hardware at hand. In declarative
languages on the other hand, such explicit details are provided. The compiler needs to de-
termine how to assemble all of the provided information into a description of a computation
and then carry out the details of implementing this computation on the hardware.

Take for example the SBML assignment rules. These rules may be specified in any order
and the order in which they are defined should have no bearing on the outcome. One may
define an assignment rule in SBML as A — B 4 C, meaning that whenever the symbol A
is encountered, it is evaluates to the expression B + C. We may also have the rule B — 10,
meaning the symbol B always evaluates to the literal 10.

The fact that rules may be expressed in any order poses some challenges to software
that must interpret declarative statements. In this example, it should be clear that the
rule B — 10 should be evaluated before A — B 4+ C. Other SBML engines such as
SBW [9] introduce state variables for each intermediate rule evaluation, and a number
of synchronization functions which are regularly called to synchronize the state of all the
intermediate evaluations at run time. LibRoadRunner on the other hand resolves all rules
at compile time so there are never any synchronization issues and there are never any

redundant intermediate state variables.
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2.3 Architecture

2.3.1 Design Goals

LibRoadRunner is a library designed from the start to be used in existing simulation envi-
ronments. It is designed to provide a lightweight, self contained, easily embedded simulation
package which provided a modern, well documented API which is natively accessible in C++
or Python, and we can easily add native bindings to many other languages supported by
SWIG [§], including the upcoming support for JavaScript using either the Google V8 or Ap-
ple Web-Kit JavaScript runtimes. In addition we support a Systems Biology Workbench [9]
(SBW) compatibility C APIL

A number of other software packages exist which are capable of producing time series
simulations of SBML models. COPASI [44] is a mature and well established program
which in our testing provides better performance that the other SBML packages. It is
also very feature rich. Even though COPASI may be used as a library, it appears to be
more focused on being a desktop application rather than a library. The COPASI API
is, compared to RoadRunner more difficult to use in that it is significantly more verbose,
and is not well suited for interactive use. Interactive simulation and data analysis can be
extremely productive and is a key feature of environments such as MATLAB, Mathematica,
R or Python. In such an environment, users interactively enter commands or functions at
a command prompt and these are used to perform calculations. To function well in an
interactive environment, an API should not require a user to enter long code blocks, it
should provide a rich set commands or functions, coupled with a range of options which
can be entered rapidly in a single command line. A wide range of applications function well
in interactive environments in addition to the aforementioned MATLAB or Mathematica.
These include any of the UNIX command interpreters, TCL, or even the MS-DOS command
prompt.

The LibRoadRunner APT is designed to be used in interactive environment in addition
to being embedded in existing applications. The API is designed to have the same style as
the Python SciPy package. For example, to run a simple time course simulation requires

over a 100 lines of code using the COPASI Python API [21]. A time course simulation can
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be performed using the LibRoadRunner library in Python with only two lines of code:

RoadRunner (¢ ‘myfile.xml’”’)
r.simulate ()

n K
]

here s is numpy array in Python, or a matrix object in C++4-. In Python, this array may be
given directly to matplotlib to be plotted. This example runs a time series using the default
time span and automatically selects the default selections as the set of floating species. All
of the simulation parameters may be specified as optional arguments, for example, to run a
time course simulations with a time space from ¢t = 0 — 12, 100 data points, and outputting

time series for the parameter “P1” and the concentration of species “S1”, one would run:

RoadRunner (¢ ‘myfile.xml’’)
r.simulate (0, 10, 100, sel=[’time’, ’P’, ’[S1]°’], plot=True)

n K
]

This example also uses the optional “plot” argument which automatically invokes matplotlib
to plot the time series result.

The Systems Biology Simulation Core Algorithm [47], which we abbreviate as (TSBSCA)
is a Java SBML simulation package which is comparable to RoadRunner as does have a
cleanly designed and well structured API and has a modern and well architected internal
design. The code is easy to read, understand and extend. TSBSCA does however have a
confusing name, its unclear from the name of what it actually does (though that criticism can
be applied equally well to the LibRoadRunner library). More fundamentally, TSBSCA is
written in Java which may be ideal for other Java packages, but is not very practical to use in
C++ or Python programs, in which most scientific software is developed. 1ibSBMLSim [76]
is a library written in C with an unusual coding style, however it has a limited API, only
allowing loading of SBML models, and writing a result time series file. SOSLib is another
library in the style of ibSBMLSim, but it does not appear to be actively maintained, quoting
from their web site as of March 5, 2014, “please note that we currently do not have much

time to actively work on SOSLib” [72].
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2.3.2 Component Based Design

The libRoadRunner is built on a component based design. All major components interact
with each other via pure virtual interfaces. There is a strict separation between interfaces
and concrete implementations of these interfaces. This allows us to have multiple imple-
mentations of the same interface. Most objects are created via factory objects. Here, only
the factory object needs to be aware of the concrete object types. Omne of the primary
advantages of such a design is that it allows us to have pluggable components.

Logically, we have made a strict separation between the object representing the state of
the system, the ExecutableModel interact, and the object responsible for time evolution of
the state, the Integrator object. In other words, the time evolution of phase space vector

['(t) is the result of the classical propagator [77] acting on the initial state, I'(0) as

D(t) = “'T(0). (2.12)

Here, the phase space vector I' is the state of the system. This is defined entirely by the
source SBML document, and e¢“* is the classical propagator which advances the system in
time. There are many ways of defining how a state is implemented and how a propagator
acts on that state.

In libRoadRunner the state of the system is represented by the ExecutableModel in-
terface, and the propagator is represented by the Integrator interface.

The ExecutableModel interface currently has two implementations: (1) a JIT compiler
which directly JIT compiles source SBML documents in memory via Low-Level Virtual
Machine (LIVM]) (see below), and (2) a procedure (written originally by Frank Bergman
and later transliterated into C++ by Totte Karlsson) which takes an SBML document and
applies a series of textual transforms to generate a C language source code file. This file is
then written to disk and an external C compiler is called, which in turn generates a shared
library. This shared library is then loaded.

The Integrator interface is currently currently implemented by a number of integrators.
Stochastic integration is supported by an integrator which implements the Gillespie SSA

algorithm which is described in further detail in Chapter [l Deterministic integration is
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supported by either simple Runge-Kutta fourth order integrator, or an very capable CVODE
integrator which uses the CVODE integrator from the Sundials suite [42]. The CVODE
integrator performs the temporal evolution via a number of variable-order, variable time-
step methods. Non-stiff systems are evolved via the Adams-Moulton formula, using and
order between 1 and 12. Stiff systems are evolved using the backward differentiation formula.
We are currently developing a stochastic integrator based on the Gillespie algorithm, and are
also investigating an LSODA based deterministic integrator. A variety of other methods
may be investigated, such as splitting the Liouville operator £ to develop a multi-scale
propagator-based integrator. All of these approaches may be investigated with no changes to
any existing RoadRunner code as the entirety of the temporal evolution system is contained
completely behind the Integrator interface.

LibRoadRunner has a simple yet very capable object oriented public API, accessible
via C4++ or Python and consisting of two public interfaces and three or four configuration
parameter structures. All functionality, including model loading, simulation and model
variable access and analysis is available via this pair of interfaces. We expect most users to
use the Python API. LibRoadRunner is available as a single self-contained Python package
with extensive documentation available online at http://libroadrunner.org or interactively
via standard Python doc-strings.

The LibRoadRunner APT has two primary design goals, (1) to provide a rich interactive
user experience when used in an interactive environment such as Python, and (2) to allow
libRoadRunner to be readily used in existing applications and simulation environments.
The API was developed in close collaboration with application developers [75].

Both the C++ and Python APIs interact via standard data structures. The C++ API
uses only standard library data structures - i.e., std: :vector<std::string> - or standard
arrays of double precision numbers. The Python API exclusively uses standard Python lists,
strings and numpy arrays for numeric data. All numpy arrays returned by libRoadRunner
are thin wrappers around libRoadRunner owned memory; thus, there is no copying of any
large memory blocks. For example, the matrix returned by the simulate method may
be very large, and it would be wasteful to make copies of it. As the Python API uses

standard numpy arrays, one may use libRoadRunner directly with the huge number of
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existing Python numeric and scientific libraries.

2.4 SBML Language Compilation

The goal of the SBML language compiler is to generate a data structure which contains all
and only the required model state variables, and a series of machine executable functions
which can calculate the rate of change of the state vector, allow access to the model variables
and implement the set of SBML events.

To our knowledge, no other available SBML engine is capable of direct JIT compilation,
and JIT compilers for declarative language are rare. Most existing SBML engines either
have built-in interpreters as in the case of COPASI [44] or The systems biology simulation
core algorithm [47], or macro expansion systems which apply a set of textual replacements
to generate a source code file in a language for which a compiler exists such as C or Java as
in the case of the Systems Biology Workbench [9]. There was however a system developed
by Ackermann et. all. |[I] which was capable of generating CUDA code from SBML and
executing it on an nVidia GPU. This system appears to be very limited as it appears to
only handle systems which consist of only rate equations (no events or rules), and there is
no available source code or binary, and it appears to be only capable of accepting SBML
rate rules, and is limited to eight state variables.

A Just In Time (JIT) compiler is a routine which which takes the source code description
of a computational process and performs in-memory translation into machine executable
routines immediately before they are required for use. In contrast, an interpreter either
directly executes the source code program (though it frequently generates a more efficient
in-memory representation). In an interpreter, each time a statement is run, a considerable
amount of logic must take place to determine the exact form and intended operation of the
statement. Interpreters are typically 50-100 times slower [50] than native executable code.

Systems such as the SBW [9] convert a SBML file into a C# file through a series of
textual transforms and macro expansions. It then uses an external compiler to generate
a shared library which then finally contains a set of native machine executable functions.

Such macro systems are not considered a true compiler, rather it is more of “a cousin of a
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compiler”, the preprocessor, (see sec 1.4, [2]) which produces input to compilers. Prepro-
cessors may be capable of limited computation such as arithmetic or logic operations, but
their primary purpose is take a source document, perform some transforms or expansions
and prepare input for compiler. Some other examples of preprocessors are the C prepro-
cessor, the Qt MOC (meta object compiler) or the current crop of languages built on top
of JavaScript such as Coffee Script. Source code translation or pre-processor systems are
typically slower than a JIT compiler for a number of reasons such as they have to access
the file system which is an order of magnitude slower then in-memory operations and they
are calling a general purpose compiler which accepts language considerably more complex
than SBML and as such, can take considerable time to run.

At its simplest level, SBML is a language for describing a system of ordinary differential

equation (ODEs) in the form of

Ssty=|"" | = : (2.13)

where S is the total state vector of the system from eqn. The state vector is partitioned
into two vectors, Sy is the vector of independent floating species which participate in a
reaction network, and S,. is a vector of variables which are defined by rate rules. The vector
p consists of time independent parameters.

The chemical reaction network of m chemical species and n reactions can be described
by the m x n, potentially time-dependent stoichiometry matrix N(¢). Each stoichiometric
element, Nj; is the net number of species ¢ produced or consumed in reaction j, and
v(S(t), p) is the function yielding the length n vector of reaction velocities.

The second part of the state vector, S, is a set of variables which form a system of
conventional ODEs, i.e. each element in this vector is defined by an SBML rate rule. Any
SBML element including floating species may be defined by rate rules. When a floating
species is defined by a rate rule, we no longer consider it an independent floating species as
it is not defined by a set of reactions. In this sense, floating species defined by rate rules

behave semantically more similarly to boundary species rather than floating species.
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In order to generate the full time evolution of the state vector , integration needs
to be partitioned into a finite set of discrete time intervals which are determined by the set
of events. The state vector rate and event functions in turn are native machine executable
functions which are generated just in time (JIT) by the SBML compiler. The following sec-
tion is very high level overview of compiler design. Those already familiar or not interested

in compiler design may skip ahead to section §[2.4.3]

2.4.1 Overview

The process of loading, compiling and simulating an SBML model is partitioned between
the following classes shown in fig. The RoadRunner is the top level class which provides
a facade and manages the interaction of other child classes. The ModelGenerator is where
all the JIT compilation takes place. This class generates an ExecutableModel class which
contains all of the JITed code as well as a buffer which holds the state vector, initial
conditions and other model meta data. The Integrator class queries the ExecutableModel

for the state vector rate and performs the time evolution of the system.

] RoadRunner &9 ExecutableModel
@ load(string) @ getStateVectorRate(double,double*,double*)
@ simulate(SimulateOptions) 0.1 | @ getEventRoots(double,double*,double*)
@ integrate(double,double,SimulateOptions) @ getValue(string)
0..1
&9 Integrator
0.1
@ integrate(double,double)
@ restart()
0..1 @ setSimulateOptions(SimulateOptions)

[ ModelGenerator

@ createModel(string,uint)

Figure 2.1: A simplified UML diagram of the key objects involved in SBML JIT compilation
and simulation.

2.4.2 Compiler Design Overview and LLVM Details

A compiler is a computational procedure for translating a source document, typically in

human readable text into executable machine code. The phases most compilers execute
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are: (1) lexical (2) syntactic, (3) semantic (4) intermediate code generation, (5), code
optimizer, and (6) native code generator. Phases 1 through 4 are the analysis phase. Here,
the source code is separated into parts and then arranged into a meaningful structure (or
grammar of the language). Stages 5 through 6 are the synthesis phases. It is here that the
actual executable machine code is generated.

The initial and final stages of compilation are fairly well defined, generalizable and many
excellent libraries exist for performing these tasks, so they will not be covered in any detail
here. The medial stage, semantic analysis, is however very specialized to the programming
language which is being compiled. This stage will be covered in detail in the following
sections.

In the lexical and syntactic analysis phases, a sequence of characters in the source
program are categorized and grouped into sequences called lexemes. For each lexeme, an
abstract symbol called a token is produced. Lexical analysis is concerned with syntax and
other things. The result of the lexical analysis phase is typically a parse tree. The semantic
analysis is concerned with the meaning of the source program. This is where the meaning
of the source program is determined and a form suitable for machine???

There are many well defined packages for dealing with the lexical and syntactic analysis
phases. If the source file is in textual source format, it one may specify the BNF grammar
and use a program like Yacc, Bison [23] or ANTLR [60] to automate the generation of a
syntax analyzer. As SBML is XML, it can be thought of as a textual encoding of a parse tree.
Therefore, the syntactic rules are much smaller than a typical programming language. The
the libSBML [13] library is used to perform the entire lexical analysis phase. The libSBML
library provides a DOM (document object model) data structure which is in effect, a parse
tree and is comparable to the parse tree data structures provided by parser generators such
as ANTLR. The result of the syntactic analysis phase is typically an abstract syntazx tree or
AST.

The AST is a data structure which contains the essential semantic information which is
required by the later stages if a compiler (semantic analysis, code generation) from a source
program. An AST is abstract in the sense that it does not contain all of the information

in the source program, all of the semantically irrelevant information has been removes such
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as whitespace, comments, parenthesis, etc... Each node in the AST represents an essential
construct such as operators, symbols, literals, function application, etc... An example of

source language string and the corresponding AST are depicted in Table

Infix MathML AST

<math>

<apply>
<plus/> a
<ci>x</ci>
<cn>2<cn>
x+ 2+ (y * b) <apply> e a e
<times/>
<ci>y</ci>
<cn>5</cn>
</apply> @ @
</apply>
</math>

Table 2.1: A mathematical expression expressed as infix notation, MathML notation and as
an AST.

In the final stages of the compilation process the intermediate representation is optimized
and finally turned into executable machine code, the LLVM library is used to perform this
task. LLVM can produce executable code for a variety of architectures; of particular interest

is GPU format.

LLVM Intermediate Code Representation

The LLVM intermediate representation (IR) is an single static assignment or SSA language.
This states that each variable may be assigned exactly once, there can be no storing of any
value in an existing variable. Any new calculated value must be stored in a new variable.
In contrast, Java byte-code Microsoft IR used in the .net platform are both stack based

intermediate languages.

2.4.3 Implementation of SBML Language features

In a procedural language, each symbol almost invariably corresponds to a single particular
location in memory, be it a variable or a function. This mapping of language symbols to

memory locations is typically handled with data structure known as a symbol table. One
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may use multiple symbol tables, such as when function with local variables. Here, when
the compiler generates code for a function, a new symbol table is creates which holds the
set of local variables. The compiler first looks in this local set to resolve a symbol, then in
the global table. This approach can be extended further, such as in Pascal which supports
nested scoping. Here, function can be defined inside other functions, and symbol resolution
proceeds from local to a chain of parent functions then finally to the global scope.

The conventional symbol table approach becomes problematic when dealing with declar-
ative languages. In SBML, symbols are often defined by rules and symbol resolution is con-
text dependent. A symbol may resolve to different values if it is evaluated before or after
time = 0, and if it is used inside a reaction with local parameters. Completely different sets
of rules may be in play depending on the model time of evaluation.

One approach would have been to simply allocate storage space for all symbols. This
however would be wasteful in terms of memory usage and would result in significantly more
complex and error prone code at run time. The would require numerous other functions to
to evaluate rules and store their results before they are used.

The approach taken here is an extension of the symbol table which we refer to as a symbol
forest. This is a hash table which maps symbol names to ASTs. In effect, this contains
all the un-evaluated rules. These rules are resolved and evaluated when they are called.
Thus, this is a form of lazy evaluation. This approach allows us to only allocate storage
for terminal nodes and never requires any updating of intermediate variables. Everything
is evaluated in-line. One may be concerned that this approach might incur redundant
evaluations, but the LLVM optimization passes eliminate redundant operations.

Only terminal symbols (symbols not defined by assignment rules), reaction rates, stoi-
chiometric coefficient and initial conditions are allocated storage. All variables are stored
in a single contiguous memory block. This approach allows us to compute the offset of each
variable at JIT compile time and results in fewer memory accesses. If each type of variable
were stored in a separate dynamically allocated array, it would have incurred an additional
an additional memory access for each variable reference, and the resulting code would have
more difficult to optimize for the LLVM optimizer passes.

Terminal symbols are accessed via a pair of pure virtual interfaces, LoadSymbolResolver,
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and StoreSymbolResolver. These pair of interfaces are our equivalent to the traditional
symbol table, these map a symbol to either a load or store instruction. Each of these resolver
interfaces have a number of concrete implementations to accommodate the various SBML
scoping rules. Resolvers can also be chained, e.g. A FunctionResolver resolves symbols
to function arguments, and this is chained to a parent resolver which may be from a calling
function, or somewhere up the scoping stack, until finally all symbols must be resolved at
the terminal resolvers such as the ModelDatalLoadSymbolResolver which maps symbols to
locations in the state vector.

Storing the entire model (and consequently the entire state vector) as a single contiguous
memory block also allows significant performance optimizations when interacting with the
integrator. The integrator calls the getStateVectorRate function. This function calculates
the rate of change of the state vector as a function of the state vector. This function does
not need to copy any memory, it only needs to swap out a pair of pointers specifying the
base address of the state vector and state vector rate. The memory layout is exactly the

same as what the integrator expects: a single contiguous array of state vector variables.

Species, Compartments, and Parameters

In SBML, variables may be species, compartments or parameters. Compartments and
parameters which are terminal symbols are treated as conventional variables in a procedu-
ral language: they are allocated a region of memory and may be written or read from this
location. Species have a different semantic meaning. Species may be treated as either a con-
centration (amount/volume), or an an amount. Our implementation only stores amounts,
concentration are never stored in memory. Whenever a species symbol is evaluated, and it is
determined that this is a concentration type, the generated code automatically divides the
amount by the compartment volume in-line. Similarly, whenever a species is to be stored,
the generated code automatically converts any concentration store into an amount store
operation.

Such a lazy evaluation approach ensures that there are never any synchronization issues

with variable compartment volumes and concentrations.
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Rules and Initial Assignments

Assignment rules are expanded incline during code generation process walking of the AST.
When a symbol is dereferenced, it is first looked up in the symbol forest. If this symbol turns
out to be a terminal symbol (not defined by an assignment rule), then that symbol ends up
as being mapped to particular location in the state vector and load or store instruction is
emitted. If however this symbol has an assignment rule, then the symbol forest returns the
root of the assignment rule, and the code generation continues here.

If a symbol is defined by an assignment rule, then it is never allocated any space in the
state vector. It is an error to attempt to set the value of symbol specified by an assignment
rule.

Initial assignment are handled almost identically, the only difference being that the
terminal symbols map to different memory locations. All initial condition values are actually
stored in a different location that the state vector, as a call to reset sets the state vector

variables to the values specified by the initial conditions.

Functions

Functions in SBML have peculiar behavior. In the SBML specification, it is stated that
functions are intended to act as “macro expansions”. This has the implication that any
symbol referenced in the function body must be resolved to variable one level up the call
stack. Therefore, SBML functions are dynamically scoped. Note, even though the speci-
fication states that the only symbols available in a function are those that are explicitly
passed in, frequently one encounters SBML with symbol references which are not resolved
to function scope. Many other SBML engines gladly accept these functions, as they simply,

as the specification states, expand the function as a macro.

Reactions

Simulation of reaction kinetics networks is one of the primary uses of SBML. In order to
calculate the time course of the reaction network portion of the state vector, (2.13)), we must

first specify how the stoichiometry matrix is stored, generate a function which calculates
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the reaction rate vector, and perform the matrix vector product.

The SBML JIT compiler generates a getStateVectorRates function which is called
by the integrator. The is the most frequently called routine in all of libRoadRunner so
performance in critical. This function receives a pointer to the current state vector, the
address of all SBML symbols is known at compile time and is a fixed offset from the base
address of the state vector, and the resulting state vector rate values are written directly
into a memory block owned by the integrator. This, there is no copying of any memory
during this call.

The SBML JIT compiler also generates a getReactionRates function which implements
the v function in . The resulting vector is stored in a memory block.

As the stoichiometry matrix N is typically extremely sparse, it is stored in compressed
sparse row (CSR) form. Thus the matrix vector can be calculated in O(n, x n) time, where
n is the number of non-zero elements and n is the number of reactions instead of O(m x n),
where m is the number of chemical species.

During the course of the matrix-vector product, each stoichiometric coefficient must be
accesses n times, thus it is read typically much more often that it needs to be written, even
in the case of time dependent stoichiometries. When any SBML expression (rate rules or
events) change the value of time dependent stoichiometries, the symbol forest maps this
SBML symbol to the appropriate location in the CSR matrix. The CSR matrix vector
product is highly optimized as in the course of our testing, nearly 30 % of the time spent
calculating the state vector rate is spent here. The result of the CSR matrix vector product

is calculated directly into the output buffer which is owned by the integrator.

Events

An SBML model may contain a collection of events. An event in SBML is an object which
consists of the following: 1) a predicate whose variables may be any symbol in the model,
2) a set of instantaneous, discontinuous model state changes which are applied at some
time (may be zero) after the predicate evaluates to true, 3) a delay function which calcu-
lates the time span between event trigger time and event application time, 4) a priority

function which calculates the event priority, and 5) a pair of static boolean attributes:
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useValuesFromTrigger Time and persistent. All event functions are functions of the model
state. The useValuesFromTriggerTime attribute indicates that the assignment rules should
be evaluated at the moment the event is triggered. Thus, if this attribute is set in our imple-
mentation, the event object also contains a data block where the results of the assignment
rules are stored whilst the event is in the triggered state.

An event may be in one of three states: 1) Inactive, 2) Triggered, or 3) Assigning, as
depicted in Figure Events transition from the inactive to the triggered state at the
moment the predicate evaluates to true. This is referred to as triggering the event. Events
may also transition from triggered to inactive if their predicate evaluates to false and they
are not persistent. Events transition from triggered to assigning once their application time
(triggered time + delay time) elapses and their predicate is still true. Events in the assigning

state perform the model state changes and transition back to the inactive state.

time — expired

P(z) = true Triggered persistent = true

P(x) = true
P(x) — false

Dersistent = false

Assigning

Figure 2.2: A state diagram of the events system

When the SBML model is loaded, the predicates, assignment rules, priority and delay
functions for each event are JIT compiled and a function pointer to each one of these is
retained.

During the integration process, the integrator asks if any events have been triggered.
If any event predicates change state, the integrator performs a root finding process to
determine the exact moment an event was triggered. This is required as the integrator may
be taking large time steps and all that is known is that the event predicate was false at the
beginning of the time step and transitioned to true at the end of the time step. An event

is inserted into a priority queue at the moment it is triggered. The priority queue is sorted
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first on the time span between the present time and the time at which the event is to be
assigned, second on the event’s priority.

If any event predicates change state, any expired events are removed from the priority
queue, and any ripe events are applied and removed from the queue. Ripe events are those
which are ready to be assigned — whose application time has passed and are still active
(either their persistent attribute is set, or their predicate is true). The assigning of an event
by definition incurs a model state change. This state change may trigger new events, and
may cause existing events to expire. Therefore, the application of events must be performed
iteratively. On each iteration, expired events are first removed. As the priority queue is
sorted first on time until the event is to be assigned, only the top most events will have
the time to assignment as zero, therefore, only the top most events may be ripe. The set
of ripe events with equal priority and assignment time are then removed from the queue,
and applied in random order. The assignment of ripe events in random order is needed
to comply with the SBML specification. All events are then scanned and any events that
are triggered as a result of the previous event application are inserted into the queue. The
iteration continues until there are no more ripe events. Omnce all ripe events have been
assigned, the integrator can continue normally until the next event is triggered or the total

simulation time span is complete.

SBML Events Performance Aspects

The processing of SBML events is currently one of the most time consuming calculations
in RoadRunner. Most tests in the SBML test suite take on average approximately 0.01
seconds (on a 2.66 GHz Mac Pro), whereas the longest test, number 966 takes 1.9 seconds.
A performance breakdown is in Table

The CVODE root-finding system, which uses the Illinois algorithm, a modified secant
method [24}41] is currently used to find the event trigger zero crossings. This algorithm
is well suited for smooth functions, however it can converge very slowly for functions with
discontinuous zero crossings, as is the case with our event root function.

Whilst the more sophisticated root finding methods such as secant or false-position
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method % time | % self time
integrate 96 13
cvodeRootFind 70 53
rootFindCallback 17 17
applyEvents 10.5 10.5
getEventRoots 8 8
read and JIT compile SBML 2.3 2.3
integrateCallback 0.6 0.6

Table 2.2: Percent of total time and self time spent in various methods. The total time
includes all the time spent in child methods. Most of these are aggregate values in that the
CVODE integrate method call numerous other methods such as linear algebra routines. All of
these are are considered contributors to the self time.

typically perform better than the bisection method in general, their performance may be
worse in certain cases cases, e.g., when the slope of the function changes rapidly (or in the
extreme case, is discontinuous) around the root. Furthermore, these more sophisticated
methods are more complex to implement than the bisection method and considerable time
may be spent here, as evidenced in Table Therefore, in future versions, a root finding

system based on the bisection method which should yield significant performance increases.
Code Generation

Accessor Functions

As mentioned earlier, RoadRunner only stores independent state variables. However, all
SBML symbols are accessible trough the public API. All symbols are access through a set of

generated accessor functions, and all rules are evaluated when the functions are generated.

2.5 Results

2.5.1 Performance

To demonstrate the capabilities of libRoadRunner we compared it to three simulator li-
braries: libSBMLSim, COPASI and SBSCL using a variety of standard and contrived mod-
els.

In our testing, we have found performance to be highly compiler and machine specific.

The Linux binaries that we provide are purposely compiled on a very conservative platform,
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(RHEL5, GCC 4.4, with processor optimizations set to Intel Core2 level). This binary
however performs 30% when running the SBML test suite than a binary compiled with
GCC 4.8.1 on an 3.0 GHz Intel Core2 Quad Ubuntu 13.10 machine even when set to the
same optimization level when running the the same hardware platform. At this point, it is
unclear if this performance discrepancy is due to compiler differences, or library differences
(the binary compiled on the older machine will still reference older symbols even when
running on a newer hardware platform). Test suite performance is highly I1.0. bound: when
run from a clean boot, with no cached files, the test SBML test suite completes in ~ 30 — 40
seconds, whereas subsequent tests (after the operating system has cached the input files)
complete in ~ 11.5 seconds.

We purposely did not compare total run times of the SBML test suite for the different
simulator libraries as all of them operate on a different set of tests (COPASI and LibRoad-
Runner operate each on a different subset and LibSBMLSim and SBSCL operate on all
tests). Also note the tests performed here were done with binary distributions of LibS-
BMLSim and SBSCL, we are unaware of wh