
Scripting CompuCell3D
extension modules in Python

Tutorial

V3.4.2
Authors:

Maciej Swat, Christopher Mueller, James Glazier, Julio Belmonte, Alexander Dementsov, Benjamin
Zaitlen

Last modified:07/23/10

-1-

The focus of this manual is to teach you how to use Python scripting language to develop
CompuCell3D extension modules. First thing first, we will assume that you have a working knowledge
of Python. We do not expect you to be a Python guru, rather we assume that you know how to write
simple Python scripts that use functions, classes, dictionaries, lists (or sequences). If, however it will be
your first attempt to use Python I strongly recommend that you go over basic Python programming
literature. My favorite is a book by David Beazley (creator of SWIG) “Python Essential Reference”. In
his book he teaches you Python fundamentals in less the 20 pages which saves you plenty of time. And
the book is inexpensive either (on Amazon it is less than 30 US $).

Python extensions to CompuCell3D, Python modules and these tutorials have been developed by
Maciej Swat and Christopher Mueller and James Glazier.

OK, let's get started.

CompuCell3D scripting

Once Python scripting became available in CompuCell3D it turned CompuCell3D into fully fledged
simulation environment with level of flexibility known from Matlab or Mathematica. Of course, I am
not saying that CompuCell3D is as sophisticated as those two commercial products but rather, that it
gives you the ability to create simulations with much greater degree of flexibility than it was possible
with xml model description files.

If you decide to use Python scripting for CompuCell3D you will be running Python script in which you
will call C++ and Python modules. Very first question that comes right now to your mind is “What
about the performance, scripting languages are slow, aren't they”? The answer to this question could
be easily turned into Computer Science paper but to make long story short, we say that unless you use
Python “unwisely” you will not hit any performance barrier for CompuCell3D simulations. Yes, there
will be things that should be done in C++ because Python will be way to slow to handle certain tasks,
however, throughout our two years experience with CompuCell3D we found that 80 % of times Python
will make your life way easier and will not impose ANY noticeable degradation in the performance.
What matters here is that with Python scripting you will be able to dramatically increase your
productivity and it really does not matter if you know C++ or not. With Python you do not compile
anything, just write script and run. If a small change is necessary you edit source code and run again.
No time is wasted for dealing with compilation/installation of C/C++ modules. Most professional
programmers will tell you that scripting languages are crucial to increase your productivity and frankly
based, on our experience with Python all we can say is that it is really true. Without further ado. let's
begin CompuCell3D/Python tutorials.

CompuCell3D in Python

Python written simulations still need to be accompanied by xml file. Remember that Python is used to
extend CompuCell3D, so the way it works is you start the Player and open up an xml file that contains
your simulation description. Now, if you want to use Python extensions for your simulation you go to
Python menu and click “Run Python Script”. Then you go to “Python->Configure Python
Extensions...” and choose a Python script in which you have coded the simulation. In practice you do
need to code entire simulation. What you do is you use a template file and modify it in certain places to

-2-

get access to your Python-written extension modules. If it sounds too complicated now, do not worry,
we will go step-by-step through several examples and this will show you that is is not that difficult.

Before we go any further one more word of explanation: when you use “pure C++” CompuCell3D the
flow of the simulation is hard coded in C++, you do not have any access to it. all you can do is to write
plugins or steppables. In Python the flow of the simulation is coded in Python and this gives you the
ability to do whatever you want with it. So why it might be tempting to mess around with different
settings there, I would recommend that unless you fully understand what you are doing you are better
off using Python script with simulation description as a template and modify it inly in certain places as
it will be shown. Otherwise you might get cryptic error messages and your simulation will crash. Well,
just a word of caution.

To run CompuCell3D simulations written in Python you first need to prepare Python script, or I should
say copy and modify existing one.

Our first example will be a very simple one. We will run cell sorting and then we will add a module
that will print every 10 MCS a list of cell id cell type and cell volume. It is not very complicated
module and not a very useful in this particular context, but it will show you how to access from Python
level all the cells, how to iterate over the list of cells and extract certain information.

OK, let's take a look at the template used to describe in Python flow of CompuCell3D simulation.

File: cellsort_2D.py
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
CompuCellSetup.setSimulationXMLFileName("examples_PythonTutorial/cellsort_2D/cellsort_2D.xml")

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

-3-

This is a basic template that we will be modifying to customize our simulations. To get the examples
working we had to add module search path so that Python knows where to find the modules. Lines:

from os import getcwd
and

sys.path.append(environ["PYTHON_MODULE_PATH"])

are used to set additional search path to be the one of directory called “examples_PythonTutorial” (this
is where all the examples from this tutorial are stored) of the current directory.

For now try running cellsort_2D.py accompanied by cellsort_2D.xml file to make sure that everything
works fine. As you can see the only thing cellsort_2D.py does is to run your simulation described in
cellsort_2D.xml file. However it runs the simulation accessing all the CompuCell objects through
Python. and this is exactly what we want.

Example 1 – Loop on Cell's List

Now let's develop a simple Python steppable that will print every 10 MCS a list of cell id cell type and
cell volume.
Important: The steppables from this tutorial are stored in files cellsort_2D_steppables_extra_attrib.py
cellsort_2D_steppables_info_printer.py and cellsort_2D_steppables_neighbor_tracker.py.

To do this open up editor and type the following script:

File: cellsort_2D_steppables_info_printer.py
from PySteppables import *
import CompuCell
import sys

class InfoPrinterSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=10):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def start(self):
 print "This function is called once before simulation"

 def step(self,mcs):
 print "This function is called every 10 MCS"

-4-

 for cell in self.cellList:
 print "CELL ID=",cell.id, " CELL TYPE=",cell.type," volume=",cell.volume

First three lines are boiler plate for creating new steppable – they include necessary Python files. Next
you define a class InfoPrinterSteppable which inherits from SteppablePy class. What SteppablePy
inheritance does it assures that your steppable has three mandatory functions that steppables should
have:

start(self)
step(self,_mcs)
finish(self)

Those functions are called by a steppableRegistry (see cellsort_2D.py) with predefined frequency - i.e.
start and finish are called once at the beginning and at the end of the simulation and step is called every
user defined number of MCS.

If you do not define a one of the mandatory functions nothing will happen and the default
implementation of those function (empty function) defined in SteppablePy will be called.

The most important initializing function of the above class is the constructor. There we set references
(or pointers if you prefer) to simulator object from C++ code and we get also a reference to cell
inventory also from C++ code.
Now, the start(self) function has a trivial body - we print there a simple message.
Notice that we have not defined finish(self) function.

Now the most important function that does useful work is step(self, mcs). We will copy code of the
above function and put comments every other line so that you know what is going on.

File: cellsort_2D_steppables_info_printer.py
 def step(self,mcs):
 print "This function is called every 10 MCS"
 for cell in self.cellList:
 print "CELL ID=",cell.id, " CELL TYPE=",cell.type," volume=",cell.volume

We hope you agree that the implementation of this steppable was not too complicated. There were
some strange names on the way but you will get used to them and if you forget them there are many
examples included with CompuCell3D so you may always look it up. The implementation of the above
functionality in C++ would be not much more complicated, however, you would need to compile the
module, install it in the appropriate directory and would not be able to make changes as efficiently as
when you are using Python.

The self.inventory and self.cellList objects contain most up-to-date list of cells present in the simulation.

-5-

The difference between the two is that self.cellList wraps the content of self.inventory and offers easier
way of iterations over all the cells.

In case you wonder what other cell attributes you can print from Python, use dir(cell) statement to see
what attributes are available in each cell:

for cell in self.cellList:
 dir(cell)

Now, once you have written this steppable you need to place a reference to it in the main simulation
code. This is how you do it: start with cellsort_2D.py file that we have just studied and add the
following lines (put the lines right after these

File: cellsort_2D_info_printer.py
#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

from cellsort_2D_steppables_info_printer import InfoPrinterSteppable
infoPrinterSteppable=InfoPrinterSteppable(_simulator=sim,_frequency=10)
steppableRegistry.registerSteppable(infoPrinterSteppable)

Notice here that infoPrinterSteppable is a name of the variable whereas InfoPrinterSteppable is a name of
the class. The difference is small one starts with capital letter (name of the class) and one with lower
case letter (name of the variable). This distinction is important because Python is case-sensitive.

Full script, now called cellsort_2D_info_printer.py appears below (notice we have added few
comments):

File: cellsort_2D_info_printer.py
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

-6-

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

we import newly written steppable into main script
from cellsort_2D_steppables_info_printer import InfoPrinterSteppable

this line effectively invokes constructor of our new steppable. Notice that
we can set frequency for the steppable. Here we duplicate the default
settings but equally wel you may change it to 20, 30, or whatever you want
notice that here we have created object infoPrinterSteppable which is of
type InfoPrinterSteppable. It is important that you distinguish objects and
types
infoPrinterSteppable=InfoPrinterSteppable(_simulator=sim,_frequency=10)

now we register newly created object infoPrinterSteppable with steppable
registry. From now on this steppable will be called automatically with
the frequency that you requested
steppableRegistry.registerSteppable(infoPrinterSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

It really is not too difficult, is it?

Sometimes it is useful to write information not to the screen (as we did above) but to a file. Let's
rewrite above steppable so that the output would go to the file called “OutputFile.txt”:

File: cellsort_2D_steppables_info_printer.py
class InfoPrinterSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=10):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 # this creates an iterable list of cells
 self.cellList=CellList(self.inventory)
 file=open(“OutputFile.txt”,w)

 def start(self):
 print "This function is called once before simulation"

-7-

 def step(self,mcs):
 print "This function is called every 10 MCS"

for cell in self.cellList:
 file.write(“CELL ID=%d CELL TYPE=%d volume=%d\n” %(cell.id,cell.type,cell.volume))

Two steps are necessary to write to a file – opening a file and writing to it. We open a file using open
statement and write using the following syntax:

file.write(“formatting string” %(values for formating string))

The formatting string contains regular text and formatting characters such as '\n' denoting end of line,
%d denoting integer number, %f denoting floating point number and %s denoting strings. For more
information on this topic please see any Python manual or see online Python documentation.

The reason we have chosen the example with cell inventory simulation is that this is one of the most
frequent tasks with CPM modeling. You usually want to run simulation and then iterate over all the
cells and do various tasks. This example gives you a template that you may reuse for your simulations.

Important: In the above example we were printing cell attributes such as cell type, cell id etc.
Sometimes in the simulations you will have two cells and you may want to test if they are different.
The most straightforward Python construct would look as follows:

cell1=cellField.get(pt)
cell2=cellField.get(pt)

if cell1 != cell2 :
#do something

Because cell1 and cell2 point to cell at pt i.e. the same cell then cell1 != cell2 should return false. Alas,
written as above the condition is evaluated to true. The reason for this is that what is returned by
cellField is a Python object that wraps a C++ pointer to a cell. Nevertheless two Python objects cell1 and
cell2 are different objects because they are created by different calls to cellField.get() function. Thus,
although logically they point to the same cell, you cannot use != operator to check if they are different
or not.

The solution is to use the following function

CompuCell.areCellsDifferent(cell1,cell2)

or write your own Python function that would do the same:

def areCellsDifferent(self,_cell1,_cell2):

-8-

 if (_cell1 and _cell2 and _cell1.this!=_cell2.this) or (not _cell1 and _cell2) or (_cell1 and not _cell2):
 return 1
 else:
 return 0

Example 2 – Add Cell Attributes

In this example we will teach you how to attach extra attribute to the cell from the Python level. For
example you want every cell to have a countdown clock that will be recharged once its value reaches
zero.

To accomplish this task we will need a steppable that will manage the clock but we also need a way to
attach additional attribute that will serve as a clock. One way to do that would be to add line

int clock

to Cell.h file and recompile entire package. Cell.h is a C++ header file that defines basic properties of the
CompuCell3D cells. Well, I do not have to tell you by now that this is extremely inefficient way
because in this case you will need to recompile the whole package. And if you want to add another
attribute, yes, you will be recompiling again. Most important your simulation will not be portable
because it will be only runnable using a particular version of CompuCell3D that has been modified.

Way better approach is to do it from Python level. To be fair, in certain cases adding attribute at C++
level makes sense (that's why we have volume, target volume etc. defined in the C++ code for Cell),
however, if you need a “casual” attribute, you better do it from Python.

Let's see how it is done. In the cellsort_2D_extra_attrib.py file insert the following after “#Create extra
player fields here or add attributes” line:

pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim)

It is important that you keep pyAttributeAdder,listAdder on the left hand side of the equation as it prevents
those two objects created inside attachListToCells(sim) from being garbage collected.

At this point every time a new cell is created it is going to have a additional list attribute attached to it.
This list can be modified from Python level as we will show you in a second.
Here is the body of the new steppable that we have just developed. As you can see we declared only
step function which is OK as we pointed it out earlier.

File: cellsort_2D_steppables.py
class ExtraAttributeCellsort(SteppablePy):
 def __init__(self,_simulator,_frequency=10):
 SteppablePy.__init__(self,_frequency)

-9-

 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 list_attrib=CompuCell.getPyAttrib(cell)
 print "length=",len(list_attrib)
 list_attrib[0:2]=[cell.id*mcs,cell.id*(mcs-1)]
 print "CELL ID modified=",list_attrib[0]," ", list_attrib[1]

As you can see the body of the step function is very similar to the previous steppable that we have
developed. We simply iterate over inventory of cells, however this time instead of just printing cell
information we modify additional cell attribute. Moreover we have also done a nice trick. Namely,
when we registered listAdder we asked CompuCell3D to attach to very cell as additional attribute a list
and this list has one empty element (integer number initialized to zero). Now, what we do in line

list_attrib[0:2]=[cell.id*mcs,cell.id*(mcs-1)]

we replace first two entries of the list with cell.id*mcs , cell.id*(mcs-1).

One interesting thing here is the fact that initially we had just one element in the list but using
list_attrib[0:2] construct we tell Python to replace first two entries of the list with cell.id*mcs , cell.id*(mcs-
1) and if the list does not have enough entries they will be added automatically.

We can also write the following:

list_attrib[0:3]=[cell.id*mcs,cell.id*(mcs-1),”Another text attribute”]

In this case we added third entry to the list and in this case it is a simple text constant. This
demonstrates that lists in Python can group various objects and they do not need to be of the same type.
So this is quite powerful technique, you effectively extend one entry list into multiple entry list and this
happens in a very simple way at the Python level.

You need to be however careful when you have a simulation in which new cells are created because
once a cell has been created during the simulation the content of the additional attribute is initialized to
one element list (with zero being the only entry). In such a case you need to to account for that fact and
if you use additional attribute you first need to make sure that it has been properly initialized (i.e. it is
different than the default attribute with which a new cell was created).

One way to do it would be to check either a size of the list or the content of the first element and make
sure that they are not the defaults. This is how our steppable's step(self,mcs) function would look like
with this extra check:

-10-

File: cellsort_2D_steppables_extra_attrib.py
 def step(self,mcs):
 for cell in self.cellList:
 list_attrib=CompuCell.getPyAttrib(cell)
 print "length=",len(list_attrib)
 list_attrib[0:2]=[cell.id*mcs,cell.id*(mcs-1)]
 print "CELL ID modified=",list_attrib[0]," ", list_attrib[1]

This example demonstrated how you can add additional attributes to cells during run time and how you
access them from Python level. With the features that we have just described your simulations can be
taken to the next level in terms of what you can accomplish with CompuCell3D.

Note that in many cases you might be better of using PyDictAdder instead of PyListAdder.
PyDictAdder will attach a dictionary (hash table) as an additional attribute of the cell. Here is a
fragment of example code (for full source code see ExtraAtrib_player_dictionary.py in the main
installation directory):

pyAttributeAdder,dictAdder=CompuCellSetup.attachDictionaryToCells(sim)

Now the steppable that manipulates extra attribute looks as below (see also PySteppablesExamples.py
for full listing):

File: PySteppablesExamples.py
class ModifyDictAttribute(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):
 for cell in self.cellList:
 print " MODIFY ATTRIB CELL ID=",cell.id
 dictionary=CompuCell.getPyAttrib(cell)
 dictionary["newID"]=cell.id*2
 print "NewID=",dictionary["newID"]

 def step(self,mcs):
 for cell in self.cellList:
 if not mcs % 20:

-11-

 dictionary=CompuCell.getPyAttrib(cell)
 print "NewID=",dictionary["newID"]

As you can see from the script above the structure of it is essentially the same as the structure of the
previous example with PyListAdder. The difference now is that when you access cell attribute
(dictionary) you do it by specifying attribute name not a number of the list element
(dictionary["newID"]=cell.id*2). This usually makes your program easier to read and maintain.

Adding Python Objects as attributes
The above examples demonstrated how to attach simple attributes to a cell but what if you want to add
a more complex attribute , say a class (strictly speaking an object of a given class). In this case the
solution is simple. First define a class then create object of this class and attahc it to the cell. However
there is on IMPORTANT detail here - your class HAS TO inherit from object which meant it has to
be “new style” python class. Lets see an example:

class CustomClass(object): # notice that we inherit from object
 def __init__(self, _x,y):
 self.x=_x
 self.y=_y
 def calculate(self):
 print “this is a result of calculations: ”,x*y
 return x*y

class ModifyDictAttribute(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):
 for cell in self.cellList:
 print " MODIFY ATTRIB CELL ID=",cell.id
 dictionary=CompuCell.getPyAttrib(cell)
 dictionary["customClass"]=CustomClass(cell.id,cell.id+1)

 def step(self,mcs):
 for cell in self.cellList:
 if not mcs % 20:
 dictionary=CompuCell.getPyAttrib(cell)

-12-

 print "CustomClass calculations=",dictionary["customClass"].calculate()

If you do not inherit from object and try to use user defined class as an attribute you will get segfault
whenever cell is destroyed. The take home message here is that whenever using classes as cell
attributes always inherit from object to avoid run time errors

Important: Current implementation allows users to attach list or dictionary to a cell but not both in the
way presented above. However, from Python level you may insert a list into a dictionary or insert
dictionary to a list so in practice this easy work around allows you to actually have both list and
dictionary remembering that you need to one extra step to make things work.

Example 3

This example is a task for you to figure out what this steppable does.

File: cellsort_2D_steppables_extra_attrib.py
class TypeSwitcherSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 if cell.type==1:
 cell.type=2
 elif (cell.type==2):
 cell.type=1
 else:
 print "Unknown type. In cellsort simulation there should only be two types 1 and 2"

Try running this example and see what happens.

Example 4 – Cell's Neighbors

This example is a little bit more complicated. We will show you how to iterate over the list of cell
neighbors. So for each cell in the cell inventory we will print a list of cell neighbors. A neighbor is a
cell that has non-zero common surface area with a given cell. Since we will be using neighbor tracker
plugin we need to declare it in the xml file. Check cellsort_2D_neighbor_tracker.xml file for details.
The Python file to be used with the xml file is cellsort_2D_neighbor_tracker.py.

First let's look at how the steppable looks like:

-13-

File: cellsort_2D_steppables_neighbor_tracker.py
class NeighborTrackerPrinterSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.nTrackerPlugin=CompuCell.getNeighborTrackerPlugin()
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):pass

 def step(self,mcs):
 self.cellList=CellList(self.inventory)
 for cell in self.cellList:
 cellNeighborList=CellNeighborListAuto(self.nTrackerPlugin,cell)
 print "*********NEIGHBORS OF CELL WITH ID ",cell.id," *****************"
 for neighborSurfaceData in cellNeighborList:
 if neighborSurfaceData.neighborAddress:
 print "neighbor.id",neighborSurfaceData.neighborAddress.id,"
commonSurfaceArea=",neighborSurfaceData.commonSurfaceArea
 else:
 print "Medium commonSurfaceArea=",neighborSurfaceData.commonSurfaceArea

As you recognize this is another example of steppable where we iterate over cell inventory. However
this time we iterate over the list of neighbors as well. Since it is a new thing let's go over steps
necessary to get cell neighbors being accessible from Python. First notice that in the constructor (
__init__) we initialize a reference to the NeighborTracker plugin:

self.nTrackerPlugin=CompuCell.getNeighborTrackerPlugin()

This is necessary because this plugins gives us access to data structures that store cell neighbors. The
bottom line here is that we need to include this line in the constructor. Now, in step function things get
a little bit more complicated (but we assure you, in C++ it would be even more scary). Let us give you
some hints how things should be set up.

For each cell we visit we construct a temporary list of cell's neighbors:

cellNeighborList=CellNeighborListAuto(self.nTrackerPlugin,cell)

In the very next line we walk over all neighbor:

for neighborSurfaceData in cellNeighborList:

-14-

We then check if the neighbor is a Medium (NULL pointer):

if neighborSurfaceData.neighborAddress:

and if the neighbor cell (neighborSurfaceData.neighborAddress) is different than Medium we print its id
(neighborSurfaceData.neighborAddress.id) and common surface area
(neighborSurfaceData.commonSurfaceArea) between cell (the one from for cell in self.cellList) and
neighbor cell (neighborSurfaceData.neighborAddress).

Example 5 – Concentration Field

In this example we will show you how you may extract values of the concentration field from the
simulation. We will use diffusion_2D.xml which is a simple simulation where you only solve diffusion
equation. There are no cells there, to make things simple. We will also use diffusion_2D.py file which
contains actual code for simulation in Python. in the xml file we declare a concentration field FGF.

Let us show how to develop how to access FGF from Python level. We will develop a steppable that
will write values of the concentration field to the file.

File: diffusion2D_steppables.py
class ConcentrationFieldDumperSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.dim=self.simulator.getPotts().getCellFieldG().getDim()

 def setFieldName(self,_fieldName):
 self.fieldName=_fieldName

 def step(self,mcs):
 fileName=self.fieldName+"_"+str(mcs)+".dat"
 self.outputField(self.fieldName,fileName)

 def outputField(self,_fieldName,_fileName):
 field=CompuCell.getConcentrationField(self.simulator,_fieldName)
 pt=CompuCell.Point3D()
 if field:
 try:
 fileHandle=open(_fileName,"w")
 except IOError:
 print "Could not open file ", _fileName," for writing. Check if you have necessary permissions"

-15-

 print "dim.x=",self.dim.x
 for i in xrange(self.dim.x):
 for j in xrange(self.dim.y):
 for k in xrange(self.dim.z):
 pt.x=i
 pt.y=j
 pt.z=k
 fileHandle.write("%d\t%d\t%d\t%f\n"%(pt.x,pt.y,pt.z,field.get(pt)))

This steppable is not as complicated as the one in Example 4 but, still, we will walk through the code to
explain everything.

In the constructor (__init__) we set references to simulator object and get dimension of the lattice:

self.dim=self.simulator.getPotts().getCellFieldG().getDim()

self.dim has three components x, y and z (self.dim.x, self.dim.y, self.dim.z) each denoting lattice
dimension in the three directions.

Next we have a function that allows us to set field name that we wish to dump to the file. This function
is invoked in the following way from the diffusion_2D.py file:

from diffusion_2D_steppables import ConcentrationFieldDumperSteppable
concentrationFieldDumperSteppable=ConcentrationFieldDumperSteppable\
(_simulator=sim, _frequency=100)
concentrationFieldDumperSteppable.setFieldName("FGF")
steppableRegistry.registerSteppable(concentrationFieldDumperSteppable)

So as you can see once you have instantiated concentrationFieldDumperSteppable object you set the
concentration field name. Pretty straightforward. Now, the step function actually outsources all the
work to the outputField function. In the first two lines of this function we get a reference to the
concentration field. This field exists in “C++ space” but is accessible from Python using syntax as
shown below. The next line creates a local object Point3D which is a C++ class that stores coordinates
of the lattice. Again it is accessible from Python.

field=CompuCell.getConcentrationField(self.simulator,_fieldName)
pt=CompuCell.Point3D()

The next few lines

if field:

-16-

 try:
 fileHandle=open(_fileName,"w")
 except IOError:
 print "Could not open file ", \
 _fileName," for writing. Check if you have necessary permissions"

are to check if the reference to the field is non-null (which it would be if you typed something like
“dgster44345” as a field name) and then we open a file and a reference to file handle is stored in
fileHandle variable. Notice that we use exceptions to signal any error during file open operation.
The actual write to the file is a triple for loop. It is pretty straightforward to follow. Notice that we
extract value of the concentration field using field.get(pt) construct. That's why we were creating
Point3D object earlier in this function.

This example demonstrates how using Python you may extract information from the running
CompuCell3D simulation. Needles to say, following this example you may perform complicated
analyses of simulation result and write them to the file while simulation is running.

Note again how how our formatting string looks like in the write to file statement:

fileHandle.write("%d\t%d\t%d\t%f\n"%(pt.x,pt.y,pt.z,field.get(pt)))

%d denotes integer %t denotes tabulator character and %f denotes floating point number. This will get
familiar once you develop your own script that writes to a file.

Example 6 – Extra Player Field

In this example we will show you how to add concentration field to the Player from the Python level.
This feature is just a kind of proof of concept thing and the details of implementation may change in
the future however it is useful to go over this example to show you that from Python you may also
influence what Player is doing and do your own visualizations. We will use
diffusion_2D_extra_player_field.py file together with diffusion_2D.xml (unmodified from the previous
examples) file.

To insert additional field to the Player we modify diffusion_2D_extra_player_field.py file by inserting
the following line (note that we show more lines to show you the exact place where you need to insert
the line which adds new concentration field to the Player):

File: diffusion_2D_extra_player_field.py
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

import CompuCell #notice importing CompuCell to main script has to be done after call to getCoreSimulationObjects()

#Create extra player fields here or add attributes

-17-

CompuCellSetup.initializeSimulationObjects(sim,simthread)

dim=sim.getPotts().getCellFieldG().getDim()
extraPlayerField=simthread.createFloatFieldPy(dim,"ExtraField") # initializing pressure Field - this location in the code is
important this must be called before preStartInit or otherwise field list will not be initialized properly

Now, you have to be aware that the field we inserted exists only in the Player. This means that C++
part CompuCell3D does not know about its existence. nevertheless this field is controllable from
Python level.

Now, let's see how we defined our steppable that will be updating values of the “ExtraField” during the
simulation run.

File: diffusion_2D_steppables_player.py
class ExtraFieldVisualizationSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=10):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.cellFieldG=self.simulator.getPotts().getCellFieldG()
 self.dim=self.cellFieldG.getDim()

 def setScalarField(self,_field):
 self.scalarField=_field

 def start(self):pass

 def step(self,mcs):
 for x in xrange(self.dim.x):
 for y in xrange(self.dim.y):
 for z in xrange(self.dim.z):
 pt=CompuCell.Point3D(x,y,z)
 if (not mcs%20):
 value=x*y
 fillScalarValue(self.scalarField,x,y,z,value)
 else:
 value=sin(x*y)
 fillScalarValue(self.scalarField,x,y,z,value)

As you may see this steppable is quite easy to understand. In the constructor (__init__) we get references
to simulator object and we also extract the dimension of the lattice. setScalarField function is used to

-18-

pass to the steppable a reference to the field that we have just allocated (we will show later). step
function is actually very simple iteration over all pixels of the self.scalarField. As you may see if the
number of MCS is divisible by 20 we set value of the self.scalarField to a product of x and z coordinates
and if it is not divisible by 20 we set it to sin(x*y). Notice that we need to use fillScalarValue function to
set a value of the Player field. In particular, a construct

self.scalarField.set(pt,value)

would not work because it is valid for fields in the C++ part of the CompuCell3D and fields available
in Player have different interface so the conclusion is that you need to use fillScalarValue function.
Notice also that in order to get access to fillScalarValue and sin we need to import PlayerPython and math
Python modules.

Now let's look at the way in which we invoke this steppable from main Python program:

from diffusion_2D_steppables_player import ExtraFieldVisualizationSteppable
extraFieldVisualizationSteppable=ExtraFieldVisualizationSteppable\ (_simulator=sim,_frequency=10)
extraFieldVisualizationSteppable.setScalarField(extraPlayerField)
steppableRegistry.registerSteppable(extraFieldVisualizationSteppable)

You can see that the steppable is called every 10 MCS and that in order to properly initialize it we need
to pass reference to just allocated Player field

extraFieldVisualizationSteppable.setScalarField(extraPlayerField)

This example demonstrates that you have basic tools to extend Player visualization capabilities from
Python level. We however anticipate that this feature may look somewhat different in the future and
should be more user friendly. This is just to let you know that next version of the Player will have
much greater possibilities as far as controlling your visualization from Python level.

At this point you should be able to develop steppables in Python so now let's see what else we can
accomplish from the Python level. We will now show you how to develop Python plugins it is the
objects that will be called either every spin flip or every spin flip attempt (those will be primarily
energy functions). Here however you need to be careful as you might end up producing performance
bottle neck. Yes, there are some things for which Python is not the best solution and plugins might be a
good example for that. However, as we will show, it is still worth learning how to implement plugins in
Python. Also, the slight slowdown might be not a high price to pay for much faster set up of the
complex simulation using Python.

Example 7- Mitosis
In developmental simulations we often need to simulate cells which grow and divide. In earlier
versions of CompuCell3D we had to write quite complicated plugin to do that which was quite
cumbersome and unintuitive (see example 9). The only advantage of the plugin was that exactly after

-19-

the pixel copy which had triggered mitosis condition CompuCell3D called cell division function
immediately. This guaranteed that any cell which was supposed divide at any instance in the
simulation, actually did. However, because state of the simulation is normally observed after
completion of full a Monte Carlo Step, and not in the middle of MCS it makes actually more sense to
implement Mitosis as a steppable. Let us examine the simplest simulation which involves mitosis. We
start with a single cell and grow it. When cell reaches critical (doubling) volume it undergoes Mitosis.
We check if the cell has reached doubling volume at the end of each MCS. The folder containing this
simulation is examples_PythonTutorial/steppableBasedMitosis. The mitosis algorithm is implemented
in examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py

File: examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py
from PySteppables import *
from PySteppablesExamples import MitosisSteppableBase
import CompuCell
import sys

class VolumeParamSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):
 for cell in self.cellList:
 cell.targetVolume=25
 cell.lambdaVolume=2.0

 def step(self,mcs):
 for cell in self.cellList:
 cell.targetVolume+=1
class MitosisSteppable(MitosisSteppableBase):
 def __init__(self,_simulator,_frequency=1):
 MitosisSteppableBase.__init__(self,_simulator, _frequency)

 def step(self,mcs):
 cells_to_divide=[]
 for cell in self.cellList:

 if cell.volume>50: # mitosis condition
 cells_to_divide.append(cell)

 for cell in cells_to_divide:
 self.divideCellRandomOrientation(cell)
 def updateAttributes(self):

 parentCell=self.mitosisSteppable.parentCell
 childCell=self.mitosisSteppable.childCell
 childCell.targetVolume=parentCell.targetVolume
 childCell.lambdaVolume=parentCell.lambdaVolume
 if parentCell.type==1:
 childCell.type=2
 else:
 childCell.type=1

-20-

Two steppables: VolumeParamSteppable and MitosisSteppable are he essence of the above simulation.
The first steppable initializes volume constraint for all the cells present at T=0 MCS (only one cell) and
then every 10 MCS (see the frequency with which VolumeParamSteppable in initialized to run -
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosis.py) it increases target volume
of cells, effectively causing cells to grow.
The second steppable checks every 10 MCS (we can, of course, run it every MCS) if cell has reached
doubling volume of 50. If so such cell is added to the list cells_to_divide which subsequently is
iterated and all the cells in it divide.
Remark: It is important to divide cells outside the loop where we iterate over entire cell inventory. If
we keep dividing cells in the this loop we are adding elements to the list over which we iterate over and
this might have unwanted side effects. The solution is to use use list of cells to divide as we did in the
example.
Notice that we call self.divideCellRandomOrientation(cell) function to divide cells. Other modes of
division are available as well and they are shown in
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py as commented
line with appropriate explanation.
Notice MitosisSteppable inherits MitosisSteppableBase class (defined in PySteppablesExamples.py).It
is is the base class which ensures that after we call any of the cell dividing function (e.g.
divideCellRandomOrientation) CompuCell3D will automatically call updatAttributes function as well.
updateAttributes function is very important and we must call it in order to ensure integrity and sanity of
the simulation. During mitosis new cell is created (accessed in Python as childCell – defined in
MitosisSteppableBase - self.mitosisSteppable.childCell) and as such this cell is uninitialized. It does
have default attributes of a cell such as volume , surface (if we decide to use surface constraint or
SurfaceTracker plugin) but all other parameters of such cell are set to default values. In our simulation
we have been setting targetVolum and lambdaVolume individually for each cell. After mitosis
childCell will need those parameters to be set as well. To make things more interesting, in our
simulation we decided to change type of cell to be different than type of parent cell. In more complex
simulations where cells have more attributes which are used in the simulation, we have to make sure
that in the updateAttributes function childCell and its attributes get properly initialized. It is also very
common practice to change attributes of parentCell after mitosis as well to account for the fact that
parentCell is not the original parentCell from before the mitosis.
Important: the name of the function where we update attributes after mitosis has to be exactly
updateAtttributes. If it is called differently CC3D will not call it automatically. We can of course call
such function by hand, immediately we do the mitosis but this is not very elegant solution.

Example 8 – Energy Functions

First let's take a look how to develop an energy function that calculates a change in volume energy.
With the knowledge you already have it should be easy to follow this example.

First, lets modify cellsort_2D.xml and save changes as cellsort_2D_py_plugin.xml. The most notable
change is that we are not using VolumePlugin but VolumeTracker. The latter plugin tracks changes in
volume but does not calculate energy change. In other words it keeps cell volume up to date.
This is the line you need to replace VolumeEnergy entry with:

<Plugin Name="VolumeTracker"/>

-21-

Now let us show the implementation of the the volume plugin in Python. We will store it in
cellsort_2D_plugins_with_py_plugin.py file. The Python simulation file will be
cellsort_2D_with_py_plugin.py.

The implementation of the plugin looks as follows:

File: cellsort_2D_plugins_with_py_plugin.py
from PyPlugins import *

class VolumeEnergyFunctionPlugin(EnergyFunctionPy):

 def __init__(self,_energyWrapper):
 EnergyFunctionPy.__init__(self)
 self.energyWrapper=_energyWrapper
 self.vt=0.0
 self.lambda_v=0.0

 def setParams(self,_lambda,_targetVolume):
 self.lambda_v=_lambda;
 self.vt=_targetVolume

 def changeEnergy(self):
 energy=0.0
 if(self.energyWrapper.newCell):
 energy+=self.lambda_v*(1+2*(self.energyWrapper.newCell.volume-self.vt))
 if(self.energyWrapper.oldCell):
 energy+=self.lambda_v*(1-2*(self.energyWrapper.oldCell.volume-self.vt))
 return energy

The most important here is changeEnergy function. This is where the calculation takes place. Of course
when we create the plugin object in the Python main script we will need to make a call to setParams
function because, that is how we set parameters for this plugin. The changeEnergy function calculates
the difference in the volume energy for oldCell and newCell. The volume energy is given by the
formula:

Evolume =λ V−V target 
2

Consequently the change in the volume energy for newCell (the one whose volume will increase due to
spin flip) is:

ΔE newCell =λ V newCell1−V target 
2− λ V newCell−V target 

2 =λ 12V newCell−V target 

-22-

for the old cell (the one whose volume will decrease after spin flip) the corresponding formula is:

ΔE oldCell =λ V oldCell−1−V target 
2−λ V oldCell−V target 

2=λ 1−2V oldCell−V target 

And overall change of energy is:

ΔE=ΔE newCcell +ΔEoldCell

So as you can see this changeEnergy function just implements the formulas that we have just described.
notice that sometimes oldCell or newCell might be a medium cells so that's why we are doing checks
for cell being non-null to avoid segmentation faults.:

if(self.energyWrapper.newCell):

Notice also that references to newCell and oldCell are accessible through energyWrapper object. This
is a C++ object that stores pointers to oldCell and newCell every spin flip attempt. It also stores
Point3D object that contains coordinates of the lattice location at which a given spin flip attempt takes
place.

Now if you look into cellsort_2D_with_py_plugin.py you will see how we use Python plugins in the
simulation:

File: cellsort_2D_with_py_plugin.py
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

import CompuCell #notice importing CompuCell to main script has to be done after call to getCoreSimulationObjects()

#Create extra player fields here or add attributes or plugins
energyFunctionRegistry=CompuCellSetup.getEnergyFunctionRegistry(sim)

from cellsort_2D_plugins_with_py_plugin import VolumeEnergyFunctionPlugin
volumeEnergy=VolumeEnergyFunctionPlugin(energyFunctionRegistry)
volumeEnergy.setParams(2.0,25.0)

energyFunctionRegistry.registerPyEnergyFunction(volumeEnergy)

After a call to getCoreSimulationObjects() we create special object called energyFunctionRegistry that is
responsible for calling Python plugins that calculate energy every spin flip attempt. Then we create
volume energy plugin that we have just developed and initialize its parameters. Subsequently we
register the plugin with EenergyFunctionRegistr:

energyFunctionRegistry.registerPyEnergyFunction(volumeEnergy)

-23-

Let's run our simulation now. As you may have noticed the use of this simple plugin slowed down
CompuCell3D more than 10 times. So clearly energy functions is not what you should be implementing
in Python too often, although there are situations (e.g. testing the simulation) when speed of
implementing the actual plugin matters more than actual speed of run and that's when Python comes
handy.

Example 9 – Plugins

In this example we will show you how to build a plugin that will be called every spin flip, as opposed
to every spin flip attempt. This plugin will invoke a changeField3D function (implemented in C++)
from Mitosis plugin. After this call we will set a new cell types for the two cells that we got after
mitosis but we will do it from Python level. This technique is quite useful because you are still calling
C++ function to do real work (in this case C++ function will run mitosis algorithm) and at the Python
level we do only finishing tasks, such as type reassignment, and setting targetVolume which usually
does not take too much time. So performance-wise we should be OK, although some speed penalty is
unavoidable. OK, let's see how this is implemented. We will be using growingcells_fast.py,
growingcells_fast.xml and growingcells.pif simulation files.

In growingcells_fast.xml we are using VolumeLocalFlex plugin. This plugin calculates change of
energy based on targetVolume and lambdaVolume which are attributes of the cell (i.e. it might be
different for different cells). For this reason first, we need to initialize volumeTarget and
lambdaVolume for every cell before we start the actual simulation and second, after the mitosis
happens we need to set targetVolume for the childCell and we will set it to match targetVolume of the
parentCell. Every 10 MCS we will be increasing by 1 targetVolume of every cell. This task as well as
setting up initial targetVolume will be managed by VolumeParamSteppable:

File: growingcells_fast_steppables.py
class VolumeParamSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):
 for cell in self.cellList:
 cell.targetVolume=25
 cell.lambdaVolume=2.0
 def step(self,mcs):
 for cell in self.cellList:
 cell.targetVolume+=1

We hope you are able to decipher this steppable without any problems. Now, let's go to the
implementation of the mitosis plugin in Python. This task will be very easy. All we are required to do is

-24-

to implement updateAttributes member functions where we assign parent and daughter cell properties
after mitosis took place:

File: growingcells_fast_plugins.py
from PyPluginsExamples import MitosisPyPluginBase
class MitosisPyPlugin(MitosisPyPluginBase):
 def __init__(self , _simulator , _changeWatcherRegistry , _stepperRegistry):
 MitosisPyPluginBase.__init__(self,_simulator,_changeWatcherRegistry, _stepperRegistry)
 def updateAttributes(self):
 self.childCell.targetVolume=self.parentCell.targetVolume
 self.childCell.lambdaVolume=self.parentCell.lambdaVolume

 if self.parentCell.type==1:
 self.childCell.type=2
 else:
 self.childCell.type=1

This function is run after mitosis happened in the step function. As you can see, first we set
targetVolume of the childCell to targetVolume of the parentCell. Next we do type switching so that
child cell has different cell than parent cell. Of course, we are using only two cell types here (1 and 2).

The actual MitosisPyPlugin class is derived from MitosisPyPluginBase class which resides in
PyPluginsExamples module and that's why we use import statement:

from PyPluginsExamples import MitosisPyPluginBase

Finally let's look at how you set up this plugin in the main Python simulation file (see comments in the
code snippet below):

File: growingcells_fast.py
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
CompuCellSetup.setSimulationXMLFileName("examples_PythonTutorial/growingcells_fast/growingcells_fast.xml")

sim,simthread = CompuCellSetup.getCoreSimulationObjects()
CompuCellSetup.initializeSimulationObjects(sim,simthread)

-25-

import CompuCell #notice importing CompuCell to main script has to be done after call to getCoreSimulationObjects()

from growingcells_fast_plugins import MitosisPyPlugin

changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim)

stepperRegistry=CompuCellSetup.getStepperRegistry(sim)

mitPy=MitosisPyPlugin(sim,changeWatcherRegistry,stepperRegistry)
mitPy.setDoublingVolume(50)

#Add Python steppables here
from PySteppablesExamples import SteppableRegistry
steppableRegistry=SteppableRegistry()

from growingcells_fast_steppables import VolumeParamSteppable
volumeParamSteppable=VolumeParamSteppable(sim,10)
steppableRegistry.registerSteppable(volumeParamSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

If you try running thins simulation you will notice that the slowdown in the speed of run is not as
dramatic as in the case of simulation with VolumePlugin implemented in Python. This is due to the fact
that there are much less actual spin flip than spin flip attempts, and also that in mitosis plugin most of
the work is done by a C++ function. Python written Mitosis plugin serves as a wrapper for a C++
counterpart. This suggests that plugins that “react” to the spin flip are a decent candidates for being
implemented in Python. However one needs to be careful about the details of implementation. In this
case all the most of the work has been done indirectly in C++ anyway.

Important: Objects like changeWatcherRegistry, stepperRegistry, energyFunctionRegistry that we
have encountered before serve two purposes:

1) They store references to change watchers, steppers, energy functions and run them at
appropriate times

2) They provide change watchers, steppers, energy functions all the information from C++ code
that is necessary for those objects to function properly

After studying all of the above examples you should be able to gain enough information to develop
your own modules that will make your simulations be more complex. At the same time you will avoid
the hassle of coding in C++ so you will be able to set up your simulations much faster.

Changing cluster id of a cell.

Quite often when working with mitosis you may want to reassign cell's cluster id i.e. to make a given

-26-

cell belong to a different cluster than it currently does. You might think that statement like this

cell.clusterId=550

is a good way of accomplishing it. This could have worked with CC3D versions prior to 3.4.2 However, this is not
the case anymore and in fact this is an easy recipe for hard to find bugs that will crash your simulation with very
enigmatic messages. So what is wrong here? First of all you need to realize that all the cells (strictly speaking
pointers to cell objects) in the CompuCell3D are stored in a sorted container called inventory. The ordering of the
cells in the inventory is based on cluster id and cell id. Thus when a cell is created it is inserted to inventory and
positioned according to cluyster id and cell id. When you iterate inventory cells with lowest cluster id will be listed
first . Within cells of the same cluster id cells with lowest cell id will be listed first. In any case if the cell is in the
inventory and you do brute force cluster id reassignment the position of the cell in the inventory will not be
changed. Why should it be? However when this cell is deleted CompuCell3D will first try to remove the cell from
inventory based on cell id and cluster id and it will not find the cell because you have altered cluster id so it will
ignore the request however it will delete underlying cell object so the net outcome is that you will end up with an
entry in the inventory which has pointer to a cell that has been deleted. Next time you iterate through inventory
and try go perform any operation on the cell the CC3D will crash because it will try to perform something with a
cell that has been deleted. To avoid such situations always use the following construct to change clusterId of the
cell:

inventory=self.simulator.getPotts().getCellInventory()
reassignIdFlag=inventory.reassignClusterId(cell,550)

We will introduce Better error checking in the next releases of CC3D to make sure that errors like this one is
clearly communicated to the user when it occurs.

-27-

Exercises

In this section you will find few exercises that might improve your CompuCell3D Python scripting
skills.

Exercise 1
Set up cell sorting simulation using xml (simply use cellsort_2D.xml example included with
CompuCell3D package). In the BlobInitializer steppable remove CellSortInit tag so that you begin with
a blob of cells each of the same type.

Tasks for you:

1) Write Python steppable that initializes cell types so that they are random (with type id either 1
or

2) Write Python steppable that initializes cell types so that bottom half is of type 1 and upper half
is of type 2. Make the steppable flexible so that users can define coordinate range for cells of
type 1 and type 2.

3) Write Python steppable that initializes cell types so that different quarters of the blob have
alternating cell type ids (1 or 2)

Exercise 2
Open up foam simulation (Foam_try.xml). In one of the exercises that dealt with foams you were asked
to
find average area of n-sided bubble and produce a a histogram of <An> as a function of n. You did this
exercise by taking advantage of a CompuCell3D module that did this analysis for you. All you had to
do was to use steppable FoamDataOutput (see Foam_try.xml). Now, your task would be to:

1) Write a Python steppable that writes a file where each line (one line per each cell) consists of

cell id its surface number of neighbors

2) Modify the stappable so that in addition to writing the file it outputs values of the histogram to a
text file. The file format would be as follows:

n <An>

for example

3 23.1
4 34.2
5 50.1

-28-

...

Exercise 3
In this, slightly longer exercise, you will build a flowing foam simulation from, almost, scratch.

Open up an editor and start typing “regular” xml file for CompuCell3D simulation (call it e.g.
foamair.xml). Make your lattice longer in x-direction so that foam bubbles will flow from left to right.
For now let's assume that your lattice will be 100x50x1. After you get your simulation working we will
increase the lattice size. Prepare “regular” Python script for CompuCell3D simulation (simply copy
existing Python script, modify it and call it foamair.py). Here are the tasks for you:

1) Go to PySteppablesExamples.py and find BubbleNucleator steppable (class). Try to understand
what it does. Now, use this steppable in the main Python script (foamair.py). Make sure you set
up all its options like initial cell type, initial volume, initial lambda volume etc... In
foamair.xml include <Plugin Name="VolumeLocalFlex"/> tag so that volume energy will be
calculated based on local cell parameters. This is why you need to make sure that initial target
volume and initial lambda volume are set in the bubble nucleator. You will also need Contact
plugin. Copy the syntax from one of existing example xml files.

Try running the simulation.

2) As you will notice cells are created on the left side of the lattice and as more and more cells gets
created cells foam starts flowing from left to right. Simply cells on the left exert pressure on
rightmost cells. Now, at some point you will notice that there is more and more cells and cells
become squashed. We need to create sink for the rightmost cells. Get familiar with
BubbleCellRemover and make sure you know how to use it. Pyt BubbleCellRemover into
foamair.py, properly initialize it and run the simulation. Did you manage prevent cells from
touching right wall of the lattice (occasional touching is OK).

3) Now you are ready to start injecting air to some of the bubbles. Read AirInjector class and see
what is going on there. Add object of type AirInjector to foamair.py.

4) Increase the lattice size and watch the “full size” simulation.

-29-

Using Python to Replace XML Configuration File

In the material presented above we required that in order to run the CompuCell3D simulation one needs
to supply XML configuration file which will list C++ plugins, steppables and properties of the overall
simulation such as lattice dimension, temperature etc...

Most recent version of CompuCell3D allows users to script entire simulation using Python only. This
way your main simulation script requires only one file instead of two. Of course you still may need
other file if you defined Python steppables in separate file but the “main” simulation Python script will
now allow users to store all the information that previously were stored in the XML configuration file.

The syntax of the Python replacement was based on actual XML syntax and many Python function
names for parameter input have the same names as XML tags making it very easy for users to switch.

In general, to pass information from Python to CompuCell3D you need to instantiate (create) ParseData
type objects in Python, fill out their values and register them with CompuCell3D kernel. Once
registered, those objects are analyzed by CompuCell3D and appropriate CompuCell3D modules
(plugins, steppables or kernel) are being initialized (also created if necessary) and simulation is then
ready to run.

Perhaps the best way to show benefits of using CompuCell3D with just one Python configuration file is
to show the example:

File: cellsort-2D-player-new-syntax.py
def configureSimulation(sim):
 import CompuCellSetup
 from XMLUtils import ElementCC3D

 cc3d=ElementCC3D("CompuCell3D")
 potts=cc3d.ElementCC3D("Potts")
 potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})
 potts.ElementCC3D("Steps",{},10000)
 potts.ElementCC3D("Temperature",{},5)
 potts.ElementCC3D("NeighborOrder",{},2)
 potts.ElementCC3D("Boundary_x",{},"Periodic")

 cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"})
 cellType.ElementCC3D("CellType", {"TypeName":"Medium", "TypeId":"0"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body1", "TypeId":"1"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body2", "TypeId":"2"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body3", "TypeId":"3"})

-30-

 volume=cc3d.ElementCC3D("Plugin",{"Name":"Volume"})
 volume.ElementCC3D("TargetVolume",{},25)
 volume.ElementCC3D("LambdaVolume",{},4.0)

 contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})
 contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body1"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy",{"Type1":"Body2", "Type2":"Body2"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body2", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy", {"Type1":"Body3", "Type2":"Body3"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body3", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body2"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body3"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body2", "Type2":"Body3"},16)
 contact.ElementCC3D("neighborOrder" , {} , 2)

 centerOfMass=cc3d.ElementCC3D("Plugin",{"Name":"CenterOfMass"})

 plasticityTracker=cc3d.ElementCC3D("Plugin",{"Name":"PlasticityTracker"})
 plasticityTracker.ElementCC3D("IncludeType",{},"Body1")
 plasticityTracker.ElementCC3D("IncludeType",{},"Body2")
 plasticityTracker.ElementCC3D("IncludeType",{},"Body3")

 plasticityEnergy=cc3d.ElementCC3D("Plugin",{"Name":"PlasticityEnergy"})
 plasticityEnergy.ElementCC3D("LambdaPlasticity",{},200.0)
 plasticityEnergy.ElementCC3D("TargetLengthPlasticity",{},6)

 externalPotential=cc3d.ElementCC3D("Plugin",{"Name":"ExternalPotential"})
 externalPotential.ElementCC3D("Lambda",{"x":-10,"y":0, "z":0})

 pifInitializer=cc3d.ElementCC3D("Steppable",{"Type":"PIFInitializer"})
 pifInitializer.ElementCC3D("PIFName",{}, "Demos/PythonOnlySimulationsExamples/plasticitytest.pif")

 CompuCellSetup.setSimulationXMLDescription(cc3d)

import sys
from os import environ
import string
sys.path.append(environ["PYTHON_MODULE_PATH"])

-31-

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

configureSimulation(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

from PySteppables import SteppableRegistry
steppableRegistry=SteppableRegistry()

from plasticitytestSteppables import PlasticityLocalSteppable
plasticitySteppable=PlasticityLocalSteppable(_simulator=sim,_frequency=50)
steppableRegistry.registerSteppable(plasticitySteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Notice that configureSimulation function is the one which replaces XML configuration file. Notice also
how closely names of the function calls for the ParseData type objects resemble names of tags used in
the XML file. The pattern here, as you may have already noticed it is that every plugin, steppable and
Potts section has its own ParseData object responsible for passing parameters from Python to the
CompuCell3D kernel. Once you have initialized ParseData objects all you need to do is to register
them with CompuCell3D kernel using CompuCellSetup.setSimulationXMLDescription (cc3d).

Once is complete you use Python script introduced earlier and put a call to configureSimulation

right after line that initializes sim and simthread objects - sim,simthread =
CompuCellSetup.getCoreSimulationObjects(). One thing to be aware of is that if you are using new style
of Python scripting does not prohibit you from using XML. As a matter of fact you can even mix where
you initialize plugins – some of them may be handled directly through Python as above and some of
them might be handled through XML. However, if you decide you want to mix the two styles, be
prepared that strange errors may occur with cryptic messages. Therefore we strongly recommend that
you pick Python scripting style and avoid strange mixes.

The reminder of this section is devoted to presenting specific examples of how to replace XML for
various plugins and steppables available in the CompuCell3D

CellType Plugin:
 cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"})
 cellType.ElementCC3D("CellType", {"TypeName":"Medium", "TypeId":"0"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body1", "TypeId":"1"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body2", "TypeId":"2"})
 cellType.ElementCC3D("CellType", {"TypeName":"Body3", "TypeId":"3"})

-32-

the format is as CellType is as follows CellType(type name, type id, Freeze or not (default False))

Contact Plugin:
 contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})
 contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body1"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy",{"Type1":"Body2", "Type2":"Body2"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body2", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy", {"Type1":"Body3", "Type2":"Body3"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body3", "Type2":"Medium"},4)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body2"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body1", "Type2":"Body3"},16)
 contact.ElementCC3D("Energy", {"Type1":"Body2", "Type2":"Body3"},16)
 contact.ElementCC3D("neighborOrder" , {} , 2)

You may also specify how many neighbors to include in the calculations by using NeighborOrder
function.

Volume Plugin:
 volume=cc3d.ElementCC3D("Plugin",{"Name":"Volume"})
 volume.ElementCC3D("TargetVolume",{},25)
 volume.ElementCC3D("LambdaVolume",{},4.0)

VolumeTracker Plugin:
 volumeTracker=cc3d.ElementCC3D("Plugin",{"Name":"VolumeTracker"})

The syntax of the ParseData object for this plugin mirrors XML syntax.

Surface Plugin:
 surface=cc3d.ElementCC3D("Plugin",{"Name":"Surface"})
 surface.ElementCC3D("TargetVolume",{},25.0)
 surface.ElementCC3D("LambdaVolume",{},1.0)

The syntax of the ParseData object for this plugin mirrors XML syntax.

CenterOfMass Plugin:
 centerOfMass=cc3d.ElementCC3D("Plugin",{"Name":"CenterOfMass"})

This is all that is required if you want to use this plugin.

PlasticityTracker Plugin:
 plasticityTracker=cc3d.ElementCC3D("Plugin",{"Name":"PlasticityTracker"})
 plasticityTracker.ElementCC3D("IncludeType",{},"Body1")

-33-

 plasticityTracker.ElementCC3D("IncludeType",{},"Body2")
 plasticityTracker.ElementCC3D("IncludeType",{},"Body3")

Similarly as in XML you use IncludeType function in place of the actual XML tag.

Plasticity Plugin:
 plasticityEnergy=cc3d.ElementCC3D("Plugin",{"Name":"PlasticityEnergy"})
 plasticityEnergy.ElementCC3D("LambdaPlasticity",{},200.0)
 plasticityEnergy.ElementCC3D("TargetLengthPlasticity",{},6)

The syntax of this plugin closely follows XML format.

ExternalPotential Plugin:
 externalPotential=cc3d.ElementCC3D("Plugin",{"Name":"ExternalPotential"})
 externalPotential.ElementCC3D("Lambda",{"x":-10,"y":0, "z":0})

The syntax of this plugin closely follows XML format.

LengthConstraintLocalFlex Plugin:
 lengthConstraint=cc3d.ElementCC3D("Plugin",{"Name":"LengthConstraintLocalFlex"})

Connectivity Plugin:
 connectivity=cc3d.ElementCC3D("Plugin",{"Name":"LengthConstraintLocalFlex"})
 connectivity.ElementCC3D("Penalty",{}, 10000000)

LengthConstraint Plugin:
 lengthConstraint=cc3d.ElementCC3D("Plugin",{"Name":"LengthConstraint"})
 lengthConstraint.ElementCC3D("LengthEnergyParameters",{"CellType":"Body1", "TargetLength":30, "LambdaLength":5})

ConnectivityLocalFlex Plugin:
 connectLocal=cc3d.ElementCC3D("Plugin",{"Name":"ConnectivityLocalFlex"})

SimpleClock Plugin:
 simpleClock=cc3d.ElementCC3D("Plugin",{"Name":"SimpleClock"})

SimpleArray Plugin:
 simpleArray=cc3d.ElementCC3D("Plugin",{"Name":"SimpleArray"})
 simpleArray.ElementCC3D("Values", {}, 10)

ChemotaxisDicty Plugin:
 chemDicty=cc3d.ElementCC3D("Plugin",{"Name":"ChemotaxisDicty"})
 chemDicty.ElementCC3D("Lambda", {}, 200)
 chemDicty.ElementCC3D("ChemicalField", {"Source":"ReactionDiffusionSolverFE_SavHog"}, cAMP)

-34-

The Source refers to name of the PDE solver (ReactionDiffusionSolverFE_SavHog) and value for the
ChemicalField is the actual field causing chemotaxis (cAMP).

Chemotaxis Plugin:
 chemotaxis=cc3d.ElementCC3D("Plugin",{"Name":"Chemotaxis"})
 chemField=chemotaxis.ElementCC3D("ChemicalField", {"Source":"FlexibleDiffusionSolverFE", "Name":"ATTR"})
 chemField.ElementCC3D("ChemotaxisByType", {"Type":"Macrophage", "Lambda":200})

Notice that to create the object chemField corresponding to the XML tag ChemicalField which is the
child node to the Plugin tag all you need to do is just to call the method
chemotaxis.ElementCC3D("ChemicalField", {"Source":"FlexibleDiffusionSolverFE", "Name":"ATTR"}).

PDESolverCaller Plugin:
 pdesolver=cc3d.ElementCC3D("Plugin",{"Name":"PDESolverCaller"})
 pdesolver.ElementCC3D("CallPDE", {"PDESolverName":"FlexibleDiffusionSolverFE", "ExtraTimesPerMC":"8"})

KernelDiffusionSolver Plugin:
 kds=cc3d.ElementCC3D("Steppable",{"Type":"KernelDiffusionSolver"})
 kernel=kds.ElementCC3D("Kernel",{},4)
 diffusionField=kds.ElementCC3D("DiffusionField")
 diffusionData=diffusionField.ElementCC3D("DiffusionData")
 diffusionData.ElementCC3D("FieldName",{},"FGF")
 diffusionData.ElementCC3D("DiffusionConstant",{},1.0)
 diffusionData.ElementCC3D("DecayConstant",{},0.0)
 diffusionData.ElementCC3D("ConcentrationFileName"{},"Demos/diffusion/diffusion_2D.pulse.txt")

The syntax of this plugin closely follows XML format.

Compartment Plugin:
 compartment=cc3d.ElementCC3D("Plugin",{"Name":"Compartment"})
 compartment.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 compartment.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)
 compartment.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)
 compartment.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Condensing"},11)
 compartment.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)
 compartment.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)
 compartment.ElementCC3D("InternalEnergy", {"Type1":"Medium", "Type2":"Medium"},0)
 compartment.ElementCC3D("InternalEnergy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},23)
 compartment.ElementCC3D("InternalEnergy", {"Type1":"Condensing", "Type2":"Condensing"},20)
 compartment.ElementCC3D("InternalEnergy", {"Type1":"NonCondensing", "Type2":"Condensing"},22)
 compartment.ElementCC3D("InternalEnergy", {"Type1":"NonCondensing", "Type2":"Medium"},33)

-35-

 compartment.ElementCC3D("InternalEnergy", {"Type1":"Condensing", "Type2":"Medium"},50)
 compartment.ElementCC3D("neighborOrder" , {} , 2)

You may also specify how many neighbors to include in the calculations by using NeighborOrder name.
The InternalEnergy is used to enter internal energies following XML syntax. The order of argument is
the same as in the case of Energy function.

OrientedContact Plugin:
 orientContact=cc3d.ElementCC3D("Plugin",{"Name":"OrientedContact"})
 orientContact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 orientContact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)
 orientContact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)
 orientContact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Condensing"},11)
 orientContact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)
 orientContact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)
 orientContact.ElementCC3D("neighborOrder" , {} , 2)

Rearrangement Plugin:
 rearrange=cc3d.ElementCC3D("Plugin",{"Name":"Rearrangement"})
 rearrange.ElementCC3D("FRearrangement", {},10)
 rearrange.ElementCC3D("LambdaRearrangement", {},20)
 rearrange.ElementCC3D("PercentageLossThreshold", {},0.50)
 rearrange.ElementCC3D("DefaultPenalty", {},100000000000)

The syntax of this plugin closely follows XML format.

Mitosis Plugin:
 mitosis=cc3d.ElementCC3D("Plugin",{"Name":"Mitosis"})
 mitosis.ElementCC3D("DoublingVolume", {},50)

The syntax of this plugin closely follows XML format.

NeighborTracker Plugin:
 neighborTrack=cc3d.ElementCC3D("Plugin",{"Name":"NeighborTracker"})

PolarizationVector Plugin:
 polarVector=cc3d.ElementCC3D("Plugin",{"Name":"PolarizationVector"})

ContactMultiCad Plugin:
 multiCad=cc3d.ElementCC3D("Plugin",{"Name":"ContactMultiCad"})
 multiCad.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 multiCad.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"CadExpLevel1"},0)
 multiCad.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"CadExpLevel2"},0)

-36-

 multiCad.ElementCC3D("Energy", {"Type1":"CadExpLevel1", "Type2":"CadExpLevel1"},0)
 multiCad.ElementCC3D("Energy", {"Type1":"CadExpLevel1", "Type2":"CadExpLevel2"},0)
 multiCad.ElementCC3D("Energy", {"Type1":"CadExpLevel2", "Type2":"CadExpLevel2"},0)
 specCad=multiCad.ElementCC3D("SpecificityCadherin")
 specCad.ElementCC3D("Specificity", {"Cadherin1":"NCad", "Cadherin2":"NCad"},-1)
 specCad.ElementCC3D("Specificity", {"Cadherin1":"NCam", "Cadherin2":"NCam"},-1)
 specCad.ElementCC3D("Specificity", {"Cadherin1":"NCad", "Cadherin2":"NCam"},-1)
 multiCad.ElementCC3D("EnergyOffset", {},0.0)
 multiCad.ElementCC3D("Depth", {},1.75)

The syntax of this plugin closely follows XML format.

ContactLocalProduct Plugin:
 localProduct=cc3d.ElementCC3D("Plugin",{"Name":"ContactLocalProduct"})
 localProduct.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 localProduct.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"CadExpLevel1"},-16)
 localProduct.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"CadExpLevel2"},-16)
 localProduct.ElementCC3D("Energy", {"Type1":"CadExpLevel1", "Type2":"CadExpLevel1"},-2)
 localProduct.ElementCC3D("Energy", {"Type1":"CadExpLevel1", "Type2":"CadExpLevel2"},-2.75)
 localProduct.ElementCC3D("Energy", {"Type1":"CadExpLevel2", "Type2":"CadExpLevel2"},-1)
 multiCad.ElementCC3D("EnergyOffset", {},0.0)
 multiCad.ElementCC3D("Depth", {},1.75)

The syntax of this plugin closely follows XML format.

Notice that for the last two plugins you need to use Python scripting to initialize appropriate cells'
expression levels.

ContactLocalFlex Plugin:
 localFlex=cc3d.ElementCC3D("Plugin",{"Name":"ContactLocalFlex"})
 localFlex.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)
 localFlex.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)
 localFlex.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)
 localFlex.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Condensing"},11)
 localFlex.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)
 localFlex.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)
 localFlex.ElementCC3D("neighborOrder" , {} , 2)
 localFlex.ElementCC3D("Depth" , {} , 1.75)

The syntax of this plugin closely follows XML format.

BlobInitializer Steppable:
 blobInit=cc3d.ElementCC3D("Plugin",{"Name":"BlobInitializer"})

-37-

 blobInit.ElementCC3D("Gap", {},0)
 blobInit.ElementCC3D("Width", {},5)
 blobInit.ElementCC3D("CellSortInit", {},"yes")
 blobInit.ElementCC3D("Radius", {},40)

UniformInitializer Steppable:
 uniformInit=cc3d.ElementCC3D("Plugin",{"Name":"uniformInitializer"})
 region=uniformInit.ElementCC3D("Region")
 region.ElementCC3D("BoxMin", {"x":20,"y":20,"z":0})
 region.ElementCC3D("BoxMax", {"x":80,"y":80,"z":0})
 region.ElementCC3D("Types", {}, "Condensing")
 region.ElementCC3D("Types", {}, "NonCondensing")
 region.ElementCC3D("Width", {}, 5)

Similarly as in the XML you can include many regions. Each time you call uipd.Region() a reference to
the new region is returned. Using this reference (region) you describe the region in the very similar way
you would describe it in the XML.

PIFInitializer Steppable:
 pifInit=cc3d.ElementCC3D("Plugin",{"Name":"PIFInitializer"})
 pifInit.ElementCC3D("PIFName", {}, "plasticitytest.pif")

PIFDumper Steppable:
 pifDump=cc3d.ElementCC3D("Plugin",{"Name":"PIFDumper"})
 pifDump.ElementCC3D("PIFName", {}, "output")

The syntax of this steppable closely follows XML format.

BoxWatcher Steppable:
 boxWatch=cc3d.ElementCC3D("Plugin",{"Name":"BoxWatcher"})
 boxWatch.ElementCC3D("XMargin", {}, 1)
 boxWatch.ElementCC3D("YMargin", {}, 1)
 boxWatch.ElementCC3D("ZMargin", {}, 1)

The syntax of this steppable closely follows XML format.

DictyFieldInitializer Steppable:
 dictyInit=cc3d.ElementCC3D("Plugin",{"Name":"DictyFieldInitializer"})
 dictyInit.ElementCC3D("ZonePoint", {"x":14, "y":14, "z":3}, 10)
 dictyInit.ElementCC3D("PresporeRatio", {}, 0.8)
 dictyInit.ElementCC3D("Gap", {}, 1)
 dictyInit.ElementCC3D("Width", {}, 4)

-38-

The syntax of this steppable closely follows XML format.

DictyChemotaxis Steppable:
 dictyChem=cc3d.ElementCC3D("Plugin",{"Name":"DictyChemotaxis"})
 dictyChem.ElementCC3D("ClockReloadValue", {}, 850)
 dictyChem.ElementCC3D("ChemotactUntil", {}, 750)
 dictyChem.ElementCC3D("IgnoreFirstSteps", {}, 500)
 dictyChem.ElementCC3D("ChetmotaxisActivationThreshold", {}, 0.2)
 dictyChem.ElementCC3D("ChemicalField", {"Source":"ReactionDiffusionSolverFE_SavHog"}, "cAMP")

The syntax of this steppable closely follows XML format.

ReactionDiffusionSolverFE_SavHog Steppable:
 reactionDiff=cc3d.ElementCC3D("Plugin",{"Name":"ReactionDiffusionSolverFE_SavHog"})
 reactionDiff.ElementCC3D("NumberOfFields", {}, 3)
 reactionDiff.ElementCC3D("FieldName", {}, "cAMP")
 reactionDiff.ElementCC3D("FieldName", {}, "Refractoriness")
 reactionDiff.ElementCC3D("DeltaX", {}, 0.37)
 reactionDiff.ElementCC3D("DeltaT", {}, 0.01)
 reactionDiff.ElementCC3D("DiffusionConstant", {}, 1.0)
 reactionDiff.ElementCC3D("DecayConstant", {}, 0.0)
 reactionDiff.ElementCC3D("MaxDiffusionZ", {}, 8)
 reactionDiff.ElementCC3D("IntervalParameters", {"c1":0.0065,"c2":0.841})
 reactionDiff.ElementCC3D("fFunctionParameters", {"C1":20,"C2":3, "C3":15, "a":0.15})
 reactionDiff.ElementCC3D("epsFunctionParameters", {"eps1":0.5,"eps2":0.0589, "eps3":0.5})
 reactionDiff.ElementCC3D("RefractorinessParameters", {"k":3.5,"b":0.35})
 reactionDiff.ElementCC3D("MinDiffusionBoxCorner", {"x":0,"y":0, "z":0})
 reactionDiff.ElementCC3D("MaxDiffusionBoxCorner", {"x":40,"y":40, "z":40})

The syntax of this steppable follows XML format.

FastDiffusionSolver2DFE Steppable:
 fastDiff=cc3d.ElementCC3D("Plugin",{"Name":"FastDiffusionSolver2DFE"})
 diffField=fastDiff.ElementCC3D("DiffusionField")
 diffData=diffField.ElementCC3D("DiffusionData")
 secrData=diffField.ElementCC3D("SecretionData")
 diffData.ElementCC3D("UseBoxWatcher", {}, "True")
 diffData.ElementCC3D("DiffusionConstant", {}, 0.1)
 diffData.ElementCC3D("FieldName", {}, "FGF")
 diffData.ElementCC3D("ConcentrationFileName", {}, "diffusion_2D_fast_box.pulse.txt")

Again, the syntax follows that of the XML file. Notice that the following calls:

-39-

 diffField=fastDiff.ElementCC3D("DiffusionField")
 diffData=diffField.ElementCC3D("DiffusionData")
 secrData=diffField.ElementCC3D("SecretionData")

return equivalents of DiffusionField, DiffusionData and SecretionData sections of the XML. Once you
have these you feel the rest of the steppable parameters following XML pattern. The function names
are analogous to the XML tags.

FlexibleDiffusionSolver3DFE Steppable:
 flexDiffSolver=cc3d.ElementCC3D("Steppable",{"Type":"FlexibleDiffusionSolver3DFE"})
 diffField=flexDiffSolver.ElementCC3D("DiffusionField")
 diffData=diffField.ElementCC3D("DiffusionData")
 secrData=diffField.ElementCC3D("SecretionData")
 diffData.ElementCC3D("FieldName",{},"ATTR")
 diffData.ElementCC3D("DiffusionConstant",{},0.10)
 diffData.ElementCC3D("DecayConstant",{},0.0)
 diffData.ElementCC3D("DoNotDiffuseTo",{},"Wall")
 secrData.ElementCC3D("Secretion", {"Type":"Bacterium"},200)

The syntax is very similar to that of FastDiffusionSolver2DFE. Notice how Secretion function is
implemented:

 secrData.ElementCC3D("Secretion", {"Type":"Bacterium"},200)

The argument order is the following Secreting type name (Bacterium), secretion constant

-40-

	CompuCell3D scripting
	CompuCell3D in Python
	Example 1 – Loop on Cell's List
	Example 2 – Add Cell Attributes
	Example 3
	Example 4 – Cell's Neighbors
	Example 5 – Concentration Field
	Example 6 – Extra Player Field
	Example 7- Mitosis
	Example 8 – Energy Functions
	Example 9 – Plugins

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	Using Python to Replace XML Configuration File

