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1 Cell Sorting 
 
One relatively simple CompuCell3D simulation models biological cell sorting. In this simulation 
you start with a mixture of different cell types with different adhesivities to each other.  
 
Embryonic cells of two different types, when dissociated, randomly mixed, and reaggregated can 
spontaneously sort to reestablish coherent homogenous tissues. Both complete and partial cell 
sorting (in which large clusters of one cell type are trapped inside a continuous structure of 
another type) have been observed experimentally in vitro in embryonic cells. Sorting is a key 
step in regeneration of a normal animal from aggregates of dissociated cells of adult hydra and 
involves neither cell division nor differentiation but only spatial rearrangement  of cell positions. 
Physically cell sorting is caused by differences in adhesivities.  In this simulation you will be 
able to verify how different hierarchies of adhesion coefficients will lead to different types of 
sorting. 
 
In this set of exercises we will explore the role of the area (or volume constraint) and the effects 
of differential surface adhesivity. As you recall from lectures, these are described by the 
following equations: 

2
a r g)( e ttc e l lv o l u m ev o l u m e VVE −= λ - volume constraint 
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We may add surface constraint but it is not required for cell sorting to work and for the sake of 
simplicity will be omitted. 
You will be given a template xml file (cellsort_2D.xml) with simulation description. For most of 
the exercises your task will be to slightly modify this file, run the simulation and describe the 
results. To add another twist to the exercises we do not include step-by-step instruction what 
needs to be modified. We leave it to you as an exercise itself. However, if you feel you are stuck 
ask for help. 
 
Important: One thing to remember here is that this is a 2D simulation. In CompuCell3D volume 
means number of pixels occupied by a cell. Surface means number of pixel sides that have 
contact with other cells (we exclude lattice boundaries from surface calculations).  
It is important to realize that if your cells are only one pixel thick, then the surface of such cells 
(and here I mean true surface) is numerically equal to perimeter. This means that area of the 
cell on plane z=0 and z=1 does not count towards the surface. In this way we simulate 2D 
behavior in CompuCell3D.Therefore if you look at a "flat" 2D cell from the top and calculate its 
surface area you will conclude that it is equal to what CompuCell3D volume. In addition to this 
is you calculate the perimeter of such "flat" 2D cell you will get a quantity which CompuCell3D 
calls surface.  
 
In 3D there are no surprises and volume and surface of cells have their regular meaning in reality 
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and in CompuCell3D 
 
Throughout the exercises we use the following convention: 
 
L – denotes”light” cells (NonCondensing in CompuCell3D terminology) 
D – denotes “dark” (Condensing in CompuCell3D terminology) 
M – denotes “medium”(Medium in CompuCell3D terminology) 
 
Example:JLD denotes adhesion coefficient between light (NonCondensing) and dark 
(Condensing) cells. 
 
N – denotes NonCondensing  cells  
C – denotes Condensing cells  
M – denotes Medium  
 
Example:JNC denotes adhesion coefficient between NonCondensing and Condensing cells. 
 
 
Before you begin, please copy cellsort_2D.xml to your private directory. Issue the following 
command: 
 
cp /Users/mswat/CompuCellFull5_install/cellsort_2D.xml <your private 
directory> 

 
Remember also to create a separate directory for every simulation that you run and of course 
copy cellsort_2D.xml to this new directory. 
 
To create directory use the following command: 
 
mkdir <directory> . Example:  
 
mkdir Exercise_1_a 

 
After you copy cellsort_2D.xml to this directory you may rename it to more a meaningful name: 
 
mv cellsort_2D.xml cellsort_exercise_1_a.xml 

 
Above we renamed file called cellsort_2D.xml to cellsort_exercise_1_a.xml. 
In Unix renaming a file is done using mv command 
 
Hint: In all of the exercises below it can happen that cells may stick to the wall. The simplest 
way to avoid this type of is to set boundary conditions in x and y direction (since we are in 2-D). 
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Figure 5. Cell sorting simulation. Snapshots were taken at T=30MCs, T=1500MCS and T=9990 
MCS. 
 
First let's look at the entire CC3DML description file for cell sorting before going into more 
detail: 
 
<CompuCell3D> 
 <Potts> 
   <Dimensions x="100" y="100" z="1"/> 
   <Anneal>10</Anneal> 
   <Steps>10000</Steps> 
   <Temperature>10</Temperature> 
   <Flip2DimRatio>1</Flip2DimRatio> 
   <NeighborOrder>2</ NeighborOrder > 
 </Potts> 
 
 <Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
   <LambdaVolume>2.0</LambdaVolume> 
 </Plugin> 
 
 <!--<Plugin Name="Surface"> 
   <TargetSurface>25</TargetSurface> 
   <LambdaSurface>2.0</LambdaSurface> 
 </Plugin> --> 
 
 <Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/> 
    <CellType TypeName="Condensing" TypeId="1"/> 
    <CellType TypeName="NonCondensing" TypeId="2"/> 
 </Plugin> 
 
 <Plugin Name="Contact"> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
   <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
   <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
   <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
   <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
   <NeighborOrder>2</NeighborOrder> 
 </Plugin> 
 
 <Plugin Name="CenterOfMass"/> 
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 <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit>    
   <Radius>40</Radius> 
   <!--Engulfment BottomType="Condensing" TopType="NonCondensing"  
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/--> 
 </Steppable> 
 
 

1.1 Volume and Surface Constraints 
 
<Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
   <LambdaVolume>2.0</LambdaVolume> 
</Plugin> 
 
<Plugin Name="Surface"> 
   <TargetSurface>20</TargetSurface> 
   <LambdaSurface>1.5</LambdaSurface> 
</Plugin> 
 
These two plugins inform CompuCell3D that the Hamiltonian will have two additional terms 
associated with volume and surface conservation. That is when spin flip is attempted one cell 
will increase its volume and another cell will decrease (unless one of the cells is Medium). Notice 
that Medium is a cell type with unconstrained volume. Volume constraint essentially ensures that 
cells maintain the volume which close (this depends on thermal fluctuations) to target volume. 
The role of surface plugin is analogous to the role played by volume plugin - to “preserve” 
surface. Note that surface plugin is commented out in the example above. 
 
Energy terms for volume and surface constraints have the form: 

2
a r g)( e ttc e l lv o l u m ev o l u m e VVE −= λ  

 
2

a r g)( e ttc e l ls u r f a c es u r f a c e SSE −= λ  
 
Note: performing single pixel copy may cause surface change in more that two cells – this is 
especially true in 3D. 
 

1.2 Calculating Surface and Volume Constraints 
 
Now that we have introduced volume and surface constraint we recommend that you go over few 
exercises that will teach you how to properly choose volume and surface constraint parameters 
so that cells do not freeze and do not disappear. One can of course use trial and error method but 
it is instructive to learn how these parameters cam be estimated rather than guessed.  If you are 
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new to CompuCell3D you may skip this section at this time, however we strongly encourage you 
do come back to these exercises , as they show how to systematically pick  parameters of most 
important energy terms. 
This set of exercises was written by Dr. Nikodem Poplawski.  
 

1.2.1 Exercise v1. 
 
a) Consider a 2D cell which consists of 1 (one) pixel. The energy of such a system is 

2
1 )1(8 −+= TVc m VJH λ , where cmJ  is the adhesion coefficient between the cell and the 

medium. Here, 8 is the number of the second nearest neighbors in 2D (of course, you can reduce 
or extend the neighbors). 
First, set 0=T . Your cell should disappear, if the energy of the system containing only the 

medium, 2
0 TVVH λ= , is lower, 10 HH < . This occurs if 0VV λλ < , where 12

8
0 −
=

T

c m
V V

J
λ  

(check it, you can set 10=cmJ  and 25=TV , for which 6 3.10 =Vλ ). Otherwise, the cell should 
survive. For values of Vλ  much higher than 0Vλ , your cell will grow until its volume reaches 

TV . 
 
b) Try 0>T . In this case, the processes increasing the energy of the system have a nonzero 
probability, but 0Vλ  should still be the approximate threshold for stability of a 1-pixel cell. 
Check it, repeating point a). 

1.2.2 Exercise v2. 
 
Now, consider a cell which is a square NN × . The energy of this cell is 

22 )()41 2( TVc mN VNJNH −+−= λ . Assuming that the cells can take the form of squares only 
(otherwise the calculations would be too lengthy), we can ask the question what the equilibrium 

value 0N is. This value is given by 0=
∂
∂

N
H N , and since )(41 2 2

TVc m
N VNNJ

N
H

−+=
∂
∂

λ , we 

arrive at 00
3
0 =+− αNVN T , where 0

3
≥=

V

c mJ
λ

α . The above equation is cubic in 0N , and has 

three real solutions (one stable corresponding to equilibrium) if m axαα < , where 
2/3

m a x 3
2 






= TV

α . Otherwise, there is only one real root which is negative, thus there is no 

equilibrium value of N . Therefore, if '
0VV λλ < , where  
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, our cell will shrink and disappear (note that 0

'
0 vv λλ < so we are in the region 

where a single pixel is unstable).  
 
For 5=N , 10=cmJ , and 25=TV , start from Vλ  much larger than '

0vλ  (here equal to 
62.0 ) and set 5=T . Your cell should approach the target volume TV . 

Decrease Vλ . The cell volume should tend to a value smaller than TV . 
Try Vλ  just a little larger than '

0vλ . The cell volume should approach the equilibrium value 

3
TV

. 

Try Vλ  smaller than '
0vλ . Your cell should shrink and disappear. There is no equilibrium 

volumes smaller than 
3
TV

. 

You may want to play with different values of TV .  

1.2.3 Exercise v3. 
 
In the Cellular Potts Model, there are two critical temperatures. Around the temperature of 

dissociation, ETc δ81 = , where 
2
c c

c m
J

JE −=δ , a single pixel has a long life-time, and a cell 

may dissociate (single spins disconnect from the rest of the cell). When the temperature is of the 
order of ENTc δ22 = , for which the energy and entropy of the system are comparable (the 
temperature of spinoidal decomposition), the identities of the cell pixels and the medium pixels 
merge. The cell should “evaporate”. 
Begin with a NN ×  square cell ( 5=N ) with 2 52 == NVT , 10=cmJ , 2=ccJ , and Vλ  
much (not too much) larger than '

0vλ  (here equal to 62.0 ). Start from 0=T  (nothing unusual 
should happen). Then, increase T  until it reaches 721 =cT . Check if the cell dissociates. 
Increase T  further until it reaches 2 2 52 =cT . See what happens. There should be a competition 
between T  and Vλ  in trying to save the cell from disappearance. 
 
Let us come back to the description of the cell sort simulation. 
 

1.3 Contact energy 
  
Now let's take a look at the most important plugin in the cell sort simulation –contact energy 
plugin. It is a somewhat more complicated that corresponding plugin for foam simulation but the 
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idea is the same: 
  
<Plugin Name="Contact"> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
   <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
   <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
   <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
   <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
   <NeighborOrder>2</NeighborOrder> 
</Plugin> 
 

1.4 Blob Initializer  
 
The last object that shows up in the configuration file is a steppable called BlobInitializer. 
Remember, we mentioned that steppables are called every MCS. That is true, except when sole 
task of a steppable is to initialize cell field. In this case steppable is called once at the beginning 
of the simulation. What this initializer does, it creates a blob of cells. Each cell is a cube 5x5x1 
(<Width>5</Width>) and they are tightly packed (<Gap>0</Gap>). The additional line 
<CellSortInit>yes</CellSortInit> is used exclusively for cellsort simulation and tells the 
initializer that cells types will be only 0,1,2 or Medium, Condensing, NonCondensing if you 
prefer. You can also specify radius of the blob although this is not a requirement. If you do not 
specify the radius it will be equal to 2/5*x_lattice_dimension. If you want to increase or decrease 
radius from its default value, use <Radius>40</Radius> option. Any space in the lattice unfilled 
with cells becomes Medium i.e. effectively all the cells are immersed in Medium (unless the radius 
is so big that cells fill entire lattice). 
This initializer is one of CompuCell3D stock initializers, so that you do not need to prepare your 
own PIF initialization file. 
 
<Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit>    
   <Radius>40</Radius> 
   <--<Engulfment BottomType="Condensing" TopType="NonCondensing"  
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/> --> 
 </Steppable> 
 
In your initial simulation you will omit Engulfment entry for BlobInitializer. That’s why it is 
commented out now.  
 
The presented syntax of the BlobInitializer is here for compatibility reasons with older versions 
of CompuCell3D. The recommended syntax of this steppable is shown in the example below: 
 
<Steppable Type="BlobInitializer"> 
   <Region> 
     <Gap>0</Gap> 
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     <Width>5</Width> 
     <Radius>40</Radius> 
     <Center x="100" y="100" z="0"/> 
     <Types>Condensing,NonCondensing</Types>    
   </Region> 
</Steppable Type="BlobInitializer"> 
 
We can define many blob-like regions in the simulation by using multiple Region definitions. 
For example, the following definition of BlobInitializer:  
 
<Steppable Type="BlobInitializer"> 
     <Region> 
       <Radius>30</Radius> 
       <Center x="40" y="40" z="0"/> 
       <Gap>0</Gap> 
       <Width>5</Width> 
       <Types>Condensing,NonCondensing</Types> 
    </Region> 
 
     <Region> 
       <Radius>20</Radius> 
       <Center x="80" y="80" z="0"/> 
       <Gap>0</Gap> 
       <Width>3</Width> 
       <Types>Condensing</Types> 
    </Region> 
</Steppable> 
 
will result in the initial configuration as show on Figure 6. 

 
Figure 6. Defining Multiple regions using BlobInitializer steppable.  
 
Note: When user specifies more than one cell type between <Types> tags (notice, the types have 
to be separated with ',' and there should be no spaces) then cells for this region will be initialized 
with types chosen randomly from the provided list (here the choices would be Condensing, 
NonCondensing). 
Remark: If one of the type names is repeated inside <Types> element this type will get greater 
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weighting means probability of assigning this type to a cell will be greater. So for example 
<Types> Condensing,NonCondensing,NonCondensing,NonCondensing </Types> 
Condensing will  assigned to a cell with probability 1/4 and NonCondensing with probability ¾ 
- see example and Figure 7 below: 
 
<Steppable Type="BlobInitializer"> 
     <Region> 
       <Radius>40</Radius> 
       <Center x="50" y="50" z="0"/> 
       <Gap>0</Gap> 
       <Width>5</Width> 
       <Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types> 
    </Region> 
 </Steppable> 

 

 
 
Figure 7. Initial condition where 75% cells are NonCondensing and 25% are Condensing 
 
 
Now let’s do some exercises. 

1.4.1 Exercise 1 
 
As we did for foams, explore the effects of changing the temperature on the pattern. We now 
have additional parameters (the strength of the volume constraint and the target volume as well 
as the surface energy), although, as before, only the ratio of energy to temperature matters. 
 
a) If the temperature T=0 what happens (should freeze) 
b) If t is intermediate what happens? 
c) If t is very large what happens? (edges should become rough) 
d) What is the range of T over which these three regimes occur (is there a large intermediate 
regime)? 
 

1.4.2 Exercise 2 
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Now look at what happens as the strength of the area constraint changes? 
a) If λv=0 what happens? (should disappear) 
b) If λv is intermediate, what happens? 
c) If λv is very large what happens? (Should freeze) 
d) What is the range of λv over which these three regimes occur (is there a large intermediate 
regime)? 
 

1.4.3 Exercise 3 
 
Now we will look at the effects of the contact energies. You have five energies to play with. 
 

1. Let 0<JNC<JCC<JNN<JNM=JCM. What happens? Make sure that you adjust lambda and T to 
be in the “middle” regime 

2. Let 0<JCC<JNC<JNN<JNM=JCM. What happens? Now slowly vary JNC from being just 
above JCC to being just below JNN. Does the final pattern change? Does the kinetics of the 
pattern evolution change? 

3. Let 0<JCC<JNN<JNC<JNM=JCM. What happens? Is the result the same or different from b)? 
If JNC is just above JNN is the result different from if JNC is much bigger than JNN? 

4. Let 0<JCC<JNC<JNN<JCM<JNM. What happens? Is the result different if the difference 
between JCM and JNM is small from what happens if it is very large? 

5. Let 0<JCC<JCM<JNN<JNM<JND. What happens? Why? 
6. Let 0<JNM=JCM<JCC<JNC<JNN. What happens? Why? 

 
Which contact energy hierarchy leads to simulations shown on Figure 7 and 8? 
 

       
 
Figure 7. Cell dissociation example. Snapshots were taken at T=0 MCS ,T= 100 MCS and 
T=300 MCS 
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Figure 8. Checkerboard patterning. Snapshots were taken at T= 0 MCS, T=10 MCS and T=300 
MCS. Notice how quickly final pattern is established 
 
Remark: 
For exercises4,5,6 please use file 
 /Users/mswat/CompuCellFull5_install/cellsort_engulfment_diffusion_2D.xml 
 
as a template (copy it into your private directory). Depending on the exercise you will need to 
modify it. However you will not need to type everything from scratch. 

1.4.4 Exercise 4 
 
Now repeat Exercise 3 starting with the case of engulfment (light cells on the bottom and dark 
cells on the top)? 
 
Hint: You can quickly initialize blob of cells with cells of one type at the bottom and of another 
at the top. Simply use, the following syntax in your BlobInitialzer Steppable: 
 
 
 <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit> 
   <Radius>40</Radius> 
   <Engulfment BottomType="Condensing" TopType="NonCondensing" 
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/> 
 </Steppable> 
 
 
As you can see it looks almost the same as in the previous exersices except there is new line 
which describes engulfment. As you can infer from this syntax, you may specify which cells are 
at the top, which are at the bottom, and by changing the value of EngulfmentCutoff you may 
fix how many cells of a given type there should be. Try to play with this value (remember it must 
be positive integer) and figure out by yourself how it works. Try to find also what 
EngulfmentCoordinate means . The allowed values are x, y, z. See also Figure 8 below. 
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Figure 9. Cell engulfment simulation. Snapshots were taken at T=0 MCS, T=3000 MCS and 
T=9990 MCS. 

1.4.5 Exercise 5 
 
Actually, when cells stick together, the energy between them should be negative.  
 

1. Repeat Exercise 3 for all energies negative (same hierarchy). What happens? 
 

2. Now include the surface area constraint as well. Repeat the exercises in Exercise 3. Are 
the results different? Vary the target surface area as a function of the target volume? 
What happens? For a fixed target surface area, vary the strength of the corresponding 
constraint. Can you identify the same three regimes as in exercises 1 and 2? What are 
these three regimes in this case? 

 
3. Finally, let JNN, JCC and JNC be negative and JNM and JCM be positive. How do your results 

compare to part 1) and 2)? 

1.4.6 Exercise 6 (requires Python scripting) 
 
The diffusion of cells is a critical property. Use only one cell type and a fixed value of the target 
volume and surface area and their constraints. Measure the diffusion constant of a single cell (the 
slope of a plot of mean displacement vs t2). 

1. How does the diffusion constant vary with T? 
 

2. How does the diffusion constant vary with J? 
 

3. How does the diffusion constant vary with lambda? 
 

4. We usually think that only energy differences matter, not absolute energy values. Do two 
diffusion experiments, one where J>0 and the other when J<0, but all J and other 
parameters are the same. Are the diffusion constants the same? Why? 

 
5.  

This exercise should be done with Python scripting.  
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1.4.7 Exersice 7 
 
a) Find as set of adhesion energies that give rise to a three-layer concentric structure:  

 
 
b) If you have made the adhesion energies between medium and the different cell types different, 
set these energies to be the same and repeat.  

1.4.8 Exercise 7 
Repeat Exercise 6 for four concentric cell layers.  
 
Hints:  
1) Look at the ratios of energies between J11 and J22 for the two layer case. Can this apply to the 
three and four layer cases?  
2) If the number of cells of each type is the same, the outer layers will become very thin. To 
create more of the outer layer cell types, use the feature in the blob initializer: list types of which 
you want more copies multiple times (number of cells of that type is proportional to the number 
of the times that type is listed). 
 

2 Chemotaxis in CompuCell3D 
 
Chemotaxis is one of most important phenomena in almost every aspect of cell biology. In 
layman terms, the chemotaxis is a directed movement of cell or an organism toward (or away 
from) a chemical source (or up/down the chemical concentration gradient). If the cell moves up 
the gradient, we say the chemical is a chemo-attractor, if the opposite takes place the substance is 
called chemo-repellent. The underlying mechanism of chemotaxis might be very complicated 
and in fact is a subject of major research effort. Fortunately, from GGH point of view chemotaxis 
is quite easy implement in the model. As you probably, know, all we need to is to introduce new 
term in the Hamiltonian, which would favor these spin flips that occur in the direction of 
increasing/decreasing concentration (depending if we model chemo-attractants or chemo-
repellents) 
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The simplest term which does this looks as follows: 
 
     ( ) ( )( )sourcendestinatio xcxcλ=ΔE −−   (1)   
 
where λ denotes chemotaxis strength coefficient and ( )ndestinatioxc  is concentration at position at 
which the spin flip takes place and ( )sourcexc is a concentration at flip-neighbor. 
An alternative form of chemotaxis term which is frequently used in the GGH simulations is the 
following one: 

 
( )
( )

( )
( )









−−

source

source

ndestinatio

ndestinatio

xc+a
xc

xc+a
xcλ=ΔE      (2) 

a denotes here saturation coefficient. 
 
 
In this set of exercises you will play with chemical fields inside CompuCell3D, diffusion, decay, 
constants, and chemotactic properties of cells. One of the exercises will be described only (no 
xml file will be provided) and you are expected to write PIF, and xml files for this particular 
simulation. You will not have to use any scripting language for PIF file generation. 

2.1.1 Exercise 1 
 
Before you begin, make sure to copy amoebae_2D.xml, amoebaConcentrationField_2D.txt and 
amoebae_2D.pif files from Demos/amoebae to your private directory. 
 
This simulation consists of two cells – amoeba and bacteria – surrounded by a chemical, which 
serves as chemo-attractant/chemo-repellent.  
 
Open up the simulation in the Player, look at the concentration field and try changing chemotaxis 
parameters. 
 
a) Start with very small λ Can you observe chemotaxis at all? 
b) Start increasing λ What happens? 
c) Reverse sign of λ for one type of cell (bacteria for example). Is chemo-attractant becoming 
chemo-repellent?  
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Figure 10. Demonstration of chemotaxis in CompuCell3D. Both cells are attracted to to upper 
left corner of the lattice. Snapshots were taken at T=10 MCS, T=70 MCS and T=200 MCS 
 

       
Figure 11. Chemoatractant concentration view. Snapshots were taken at T=10 MCS, T=70 MCS 
and T=200 MCS  
 
Python equivalent of Demos/amoebae/amoebae_2D.xml configuration file is stored in 
Demos/PythonOnlySimulationsExamples/amoebae-2D-new-syntax.py 
 

2.2 Solving diffusion equations using CompuCell3D 
As a next step we will see how we can use CompuCell3D as a simple PDE solver. We will 
qualitatively examine the solution of the diffusion equation (with pulse initial condition) and 
check numerical stability limits.  
Copy the following files: diffusion_2D.xml diffusion_2D.pulse.txt from CompuCell3D 
installation directory to your private directory. Open xml file in the editor and see what sections 
are needed in order to use CompuCell3D as a PDE solver. As you can see most of the plugins 
have been removed. You need to, however, include CellType plugin and list of all the cell types 
that you are going to use in PDE solver description. By default you are required to list Medium  
Observe that in the Potts section of the xml file, the value of Flip2DimRatio element has been 
changed to 0.0.  
 
<Flip2DimRatio>0.0</Flip2DimRatio> 
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This prevents CompuCell3D from doing any spin flips. Nevertheless steppables (PDE solvers are 
steppables) will still run. 
 
The way to impose initial condition for the diffusion equation is to use initial concentration file 
and specify its name in the DiffusionData section of the FlexibleDiffusionSolver: 
 
<Steppable Type="FlexibleDiffusionSolverFE"> 
     <DiffusionField> 
        <DiffusionData> 
            <FieldName>FGF</FieldName> 
            <DiffusionConstant>0.000</DiffusionConstant> 
            <DecayConstant>0.100</DecayConstant> 
 
       <ConcentrationFileName> 
            diffusion_2D.pulse.txt 
            </ConcentrationFileName> 
 
     <!--DoNotDecayIn>Medium</DoNotDecayIn-->   
        </DiffusionData> 
    </DiffusionField> 
 </Steppable> 

 
In our case file name is diffusion_2D.pulse.txt. The format of the file is really simple: 
 
x  y  z  concentration 

 
where x, y, z denote value of the coordinate of a given pixel, and concentration denotes 
numerical value of chemical concentration at that pixel. 
 
To create a pulse in the middle of the 55x55 lattice all we need is in fact one single line: 
 
27   27   0   2000.0 

 
As you can see it is quite straightforward to use CompuCell3D as a PDE solver.  
 
Now let’s do some exercises.  
 
Remark: you have to switch views in the Player  from Cell Field to chemical concentration (e.g. 
FGF) to see simulation results. 
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Figure 12. Solving diffusion equation using CompuCell3D. Snapshots of the FGF field were 
taken at T=0 MCS, T=200 MCS and T=990 MCS 
For completeness, and because of relatively small size, we show configuration file 
Demos/PythonOnlySimulationsExamples/diffusion-2D-new-syntax.py where we use Python 
syntax to setup simulation which solves diffusion equation.  
 
Remark: Depending on your preference you may use either CC3DML or Python to configure 
CompuCell3D simulations. We will keep using CC3DML to explain CompuCell3D concepts as 
CC3DML can be easily indented for readability while Python syntax, being indentation sensitive, 
cannot. Regardless whether you use Python or CC3DML you are passing the same information 
to CC3D. 
 
def configureSimulation(sim): 
   import CompuCellSetup 
   from XMLUtils import ElementCC3D 
 
   cc3d=ElementCC3D("CompuCell3D") 
   potts=cc3d.ElementCC3D("Potts") 
   potts.ElementCC3D("Dimensions",{"x":55,"y":55,"z":1}) 
   potts.ElementCC3D("Steps",{},1000) 
   potts.ElementCC3D("Temperature",{},0) 
   potts.ElementCC3D("Flip2DimRatio",{},0.0) 
 
   cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"}) 
   cellType.ElementCC3D("CellType",\ 
   {"TypeName":"Medium", "TypeId":"0"}) 
 
   flexDiffSolver=cc3d.ElementCC3D("Steppable",\ 
   {"Type":"FlexibleDiffusionSolverFE"}) 
   diffusionField=flexDiffSolver.ElementCC3D("DiffusionField") 
   diffusionData=diffusionField.ElementCC3D("DiffusionData") 
   diffusionData.ElementCC3D("FieldName",{},"FGF") 
   diffusionData.ElementCC3D("DiffusionConstant",{},0.10) 
   diffusionData.ElementCC3D("DecayConstant",{},0.0) 
   diffusionData.ElementCC3D("ConcentrationFileName",{},\ 
   "Demos/PythonOnlySimulationsExamples/diffusion_2D.pulse.txt") 
 
   CompuCellSetup.setSimulationXMLDescription(cc3d) 
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Remark: Notice above, that in Python “\” is a line continuation symbol and we had to use it few 
times to properly format the listing 

2.2.1 Exercise 2 
 
Run simulation with different values of diffusion constants: 
start with small diffusion constant ~ 0.01 
Increase diffusion constant until you reach numerical instability regime. How can you tell that 
solution is unstable? What is the critical value of the diffusion constant at which numerical 
method breaks? Do you know why solution becomes unstable? 
Add decay term to the diffusion equation. Does the presence of the decay term influence 
stability/instability? 
 
Now try changing boundary conditions on the lattice from no flux to periodic and see the 
concentration pattern: 
 
<Boundary_x>Periodic</Boundary_x> 
<Boundary_y>Periodic</Boundary_y> 

 

     
Figure 13. Numerical instabilities in the solution of the diffusion equation in 2 dimensions. 
Snapshots were taken at T=0 MCS, T=70 MCS and T=200 MCS 

2.2.2 Exercise 3 
 
Let’s come back to amoebae_2D.xml simulation. One way to track cells in the chemical field 
view is to let cells chemotax and let the chemical decay inside the cell only. This way the place 
that was occupied by the cell would be marked as a depleted concentration region. To enable 
“cell tracking” make decay constant non-zero and uncomment the line 
 
<!--DoNotDecayIn>Medium</DoNotDecayIn--> 

 
We hope you remember how to comment and uncomment xml elements. With this line present, 
the chemical will decay everywhere except Medium, which means it will decay only inside cells. 
Now you can switch to concentration view and see how cell tracking works. Are there any 
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pathological effects that you observe? What values of decay constants have you used? 

      
Figure 14. Demonstration of “chemical tracking” in CompuCell3D. Snapshots were taken at 
T=10 MCS, T=70 MCS and T=200 MCS. The smudge of depleted concentration is achieved by 
enabling concentration decay in the region occupied by cells. 

2.3 Bacterium Macrophage Simulation 
 
The xml file for this exercise will be written by you. The idea of the simulation is the following: 
you have two cells (bacterium and macrophage) placed in the maze. Bacterium secretes a 
chemical (call it ATTR – for attractant) which is free to diffuse everywhere except walls of the 
maze. Another cell, the macrophage is attracted to ATTR and chemotacts up the chemical 
gradient. Eventually macrophage will reach stationary bacterium. Your task here will be to write 
xml simulation file and find reasonable parameters for diffusion/decay of chemical and  
chemotaxis. 
 
Shortcut: if you are in a hurry you may use prewritten xml file that comes with CompuCell3D – 
Demos/bacterium_macrophage/bacterium_macrophage 2D.xml. However, please do make sure 
you understand what's in it. In particular see how we wrote pif file 
bacterium_macrophage_2D.pif. 
Python equivalent of Demos/bacterium_macrophage/bacterium_macrophage 2D.xml is stored in  
Demos/PythonOnlySimulationsExamples/bacterium_macrophage-player-new-syntax.py 
 

    
Figure 15. Snapshots of experiment where macrophage chases bacterium in the blood stream. In 
the last snaphot macrophage is about to capture the bacterium. 
This video is taken from a 16-mm movie made in the 1950s by the late David Rogers at 
Vanderbilt University. It was given to me via Dr. Victor Najjar, Professor Emeritus at Tufts 
University Medical School and a former colleague of Rogers. It depicts a human 
polymorphonuclear leukocyte (neutrophil) on a blood film, crawling among red blood cells, 
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notable for their dark color and principally spherical shape. The neutrophil is "chasing" 
Staphylococcus aureus microorganisms, added to the film. The chemoattractant derived from the 
microbe is unclear but may be complement fragment C5a, generated by the interaction of 
antibodies in the blood serum with the complement cascade, and/or bacterial N-formyl peptides. 
Blood platelets adherent to the underlying glass are also visible. Notable is the characteristic 
asymmetric shape of the crawling neutrophil with an organelle-excluding leading lamella and a 
narrowing at the opposite end culminating in a "tail" that the cell appears to drag along. 
Contraction waves are visible along the surface of the moving cell as it moves forward in a 
gliding fashion. As the neutrophil relentlessly pursues the microbe it ignores the red cells and 
platelets. However, its leading edge is sufficiently stiff (elastic) to deform and displace the red 
cells it bumps into. The internal contents of the neutrophil also move, and granule motion is 
particularly dynamic near the leading edge. These granules only approach the cell surface 
membrane when the cell changes direction and redistributes its peripheral "gel." After the 
neutrophil has engulfed the bacterium, note that the cell's movements become somewhat more 
jerky, and that it begins to extend more spherical surface projections. These bleb-like 
protruberances resemble the blebs that form constitutively in the M2 melanoma cells missing the 
actin filament crosslinking protein filamin-1 (ABP-280) and may be telling us something about 
the mechanism of membrane protrusion. Information credit: Thomas P. Stossel (Brigham and 
Women's Hospital and Harvard Medical School), June 22, 1999 

2.3.1 Exercise 4 
 
a) First, let’s construct the maze and place there the two cells. You do not need to get fancy here. 
A maze is simply few rectangular blocks of type Wall. Make sure that in the CellType plugin 
type Wall is declared as frozen i.e. it does not participate in spin flips. You can freeze any cell 
type by adding extra attribute Freeze=”” to the line where you declare this cell type, as shown 
below: 
 
<Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/> 
    <CellType TypeName="Bacterium" TypeId="1"/> 
    <CellType TypeName="Macrophage" TypeId="2"/> 
    <CellType TypeName="Wall" TypeId="3" Freeze=””/>     
 </Plugin> 

   
Now, you need write PIF file for the simulation. I have included sample PIF file below. If you do 
not remember PIF file syntax, see earlier exercises on foams form more explanations.  
 
0 Wall 10 20 10 30 0 0 
1 Wall 25 40 35 50 0 0 
. 
. 
. 
10 Bacterium 5 5 5 5 0 0 
11 Macrophage 70 70 70 70 0 0 
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Notice that z_low and z_high are 0 and 0 – which means we are in 2D. There is nothing that 
would prohibit us from being in 3D but in 2D the simulation will run faster. 
 
To see initial configuration you may turn off spin flips (how?) and run simulation. Make any 
corrections as necessary. Once your maze looks nice and cells are positioned properly you may 
start coding FlexibleDiffusionSolver 
 
b) The main difference is that there is no initial chemical concentration in the system i.e. the 
line  
 
<ConcentrationFileName>amoebaConcentrationField_2D.txt</ConcentrationFileNam>  

 
should be removed. 
 
Now you need to tell CompuCell3D that Bacterium should secrete chemical ATTR at a certain 
rate. The way to do it is to use SecretionData section inside FlexibleDiffusionSolver. With that 
, every MCS each pixel occupied by Bacterium will increase its concentration by given amount 
(here it will be 0.5) 
 
<Steppable Type="FlexibleDiffusionSolverFE"> 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>ATTR</FieldName> 
      <DiffusionConstant>0.100</DiffusionConstant> 
      <DecayConstant>0.000</DecayConstant>   
      <DoNotDiffuseTo>Wall</DoNotDiffuseTo>    
    </DiffusionData> 
 
    <SecretionData> 
      <Secretion Type=”Bacterium”>0.5</Secretion>  
    </SecretionData>  
 
  </DiffusionField> 
</Steppable> 

   
Notice that we have also added line which keeps chemical from diffusing into the wall.  
c) Add chemotaxis for Macrophage. 
d) Set reasonable surface and volume constraints for Bacterium and Macrophage. 
e) Is it necessary to add Contact plugin?  
f) Put together xml simulation description file and run the actual simulation. Which parameters 
need to be fine-tuned? 
 
g) So far we have been using the simplest chemotaxis energy formula. Now, lets try energy term 
with saturation coefficient. To accomplish that you need to specify extra attribute in the 
chemotaxis description: 
 
<ChemotaxisByType Type="Bacterium" Lambda="200" SaturationCoef=”10”/> 
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The appearance of additional attribute SaturationCoef tells CompuCell3D to use alternative 
formula for chemotaxis. Notice also that the meanings of λ coefficients in the two chemotaxis 
formulas are different and you will need to find new values of λ for the new form of chemotaxis 
energy term. 
 
h) How would you simulate process in which Macrophage eats Bacterium?  
i) What can be done to prevent cells from sticking to the borders of the lattice or to the cells of 
type Wall? 
 

   
 

    
 
Figure 16. Most basic bacterium-macrophage simulation. Red blood cells are static in this 
simulation. Bacterium is secreting chemical signal which attracts macrophage. Sizes of 
bacterium and macrophage are roughly the same. We show, both, cell field and chemoattractant 
(here called ATTR) views. Snapshots were taken at T=10 MCS T=660 MCS and T=720 MCS 

2.3.2 Exercise 5 
 
In this exercise we will make a series of modification to the bacterium_macrophage_2D.xml 
file and will come up with some interesting models.  
 
a) make decay constant non-zero (bacterium_macrophage_2D_v2.xml ) 
b) Increase size of macrophage and make bacterium smaller 
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(bacterium_macrophage_2D_v4.xml).  Make sure you understand how to use VolumeFlex and 
Surface Flex plugins. You may need to fine tune surface and volume parameters so that cells do 
not disappear or fragment.  
c) Add one more macrophage and three bacteria cells (bacterium_macrophage_2D_v6.xml) and 
see corresponding pif file. Try placing macrophages in different initial positions . 
d) Try changing decay constant (bacterium_macrophage_2D_v7.xml). What are the results? 
e) If you observer cells sticking to the walls try adjusting contact energies . How? (see 
bacterium_macrophage_2D_v8.xml) 
f) Now instead of static Walls cells in the middle of the lattice introduce Red Cells that can 
actually move. (bacterium_macrophage_2D_9.xml).  
g) Introduce Chemoreppelant secreted by macrophage. Pick secretion values, decay constants 
and chemotaxis constant. Note, that only bacterium is sensitive to chemorepelant.  How do you 
code it in xml? (bacterium_macrophage_2D_v10.xml).  
 

   

    
Figure 17. Realistic-looking bacterium macrophage simulation. Red blood cells are motile. We 
show, both, cell field and chemoattractant (here called ATTR) views. Snapshots were taken at 
T=400 MCS , T=1550 MCS and T=7840 MCS. 
 
This exercise demonstrates what it takes to build and test a model using CompuCell3D. Yes, it is 
an iterative process, where you start from simple model and start adding features, but as you can 
see it is not that painful. 
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