CompuCell3D Manual and Tutorial
Version 3.6.0

Maciej H. Swat, Susan D. Hester, Randy W. Heiland, Benjamin L. Zaitlen,
James A. Glazier, Abbas Shirinifard

Contents

(1 _Introduction|

2 GGH Applications|

B CCH Smulation O ol

[3.1 Effective Energyl.

[3.2 Dynamics|

[3.3 Algorithmic Implementation of Effective-Energy Calculations|.

4 CompuCell3D|

(> Building CC3DML-Based Simulations Using CompuCell3D)|

[5.3 Cell-5Sorting Simulation.

[>.4 Bacterium-and-Macrophage Simulation|

6 Python Scripting|

[6.1 A Short Introduction to Python|

[6.2 Building Python-Based CompuCell3D Simulations|.

6.3 Cell-Type-Oscillator Simulation|

[r__Conclusion|

8 Acknowledgements|

11

12

14

15
16
17
22

24

33
33
34
36
42

23

65

66

9 XML Syntax of CompuCell3D modules| 66

9.1 Potts Sectionl 66
[9.1.1 Lattice Typel 71
[9.2 Plugins Section| 73
[9.2.1 CellType Plugin|. 73
[9.2.2 Simple Volume and Surface Constraints|. 74
[9.2.3 Volume'lracker and Surtacelracker pluginsf 75
[9.2.4 VolumeFlex Plugin| 76
[9.2.5 SurfaceFlex Plugin| 76
[9.2.6 VolumelLocalkFlex Plugin| 7
[9.2.7 SurfaceLocalFlex Pluginf 7
[9.2.8 NeighborTracker Pluginl 7
029 Chemotaxid 78
[9.2.10 ExternalPotential plugin| 82
[9.2.11 CellOrientation pluginl 83
[9.2.12 PolarizationVector plugin| 84
[9.2.13 CenterOfMass plugin| 84
[9.2.14 Contact Energy plugin| 85
[9.2.15 ContactLocalProduct plugin| 85
[9.2.16 Adhesionklex plugin| 0L 87
[9.2.17 ContactMultiCad pluginl 89
[9.2.18 MolecularContactl oL 90
[9.2.19 ContactCompartment|. 91
[9.2.20 LengthConstraint plugin| 91
[9.2.21 Connectivity pluginl00 93

[9.2.22 Mitosis plugin| 94
[9.2.23 Secretion plugin|. oo 95
[9.2.24 PDESolverCaller pluginl 97
[9.2.25 Elasticity and ElasticityTracker plugins/ 98
[9.2.26 FocalPointPlasticity plugin|. 99
[9.2.27 Curvature Plugin| 107
[9.2.28 PlayerSettings Plugin|. 107
[9.2.29 BoundaryPixel'Tracker Plugin| 107
[9.2.30 GlobalBoundaryPixelTracker|. 107
[9.2.31 Pixellracker Plugin|. 107
[9.2.32 MomentOflnertia pluginf 107
[9.2.33 SimpleClock pluginl 0000 107
[9.2.34 ConvergentbExtension pluginl 107
[9.3 Steppable Section|o 107
[9.3.1 Uniformlnitializer steppable, 107
[9.3.2 Bloblnitializer steppable]o 108
[9.3.3 PlFInitializer steppablel. 108
[9.3.4 PIFDumper steppable] 0. 108
[9.3.5 Mitosis steppable|o 108

The goal of this manual is to teach biomodelers how to effectively use multi-scale, multi-cell
simulation environment CompuCell3D to build, test, run and post-process simulations of
biological phenomena occurring at single cell, tissue or even up to single organism levels.
We first introduce basics of the Glazier-Graner-Hogeweg (GGH) model aka Cellular Potts
Model (CPM) and then follow with essential information about how to use CompuCell3D
and show simple examples of biological models implemented using CompuCell3D. Subse-
quently we will introduce more advanced simulation building techniques such as Python
scripting and writing extension modules using C++. In everyday practice, however, the
knowledge of C++ is not essential and C++ modules are usually developed by core Com-
puCell3D developers. However, to build sophisticated and biologically relevant models you
will probably want to use Python scripting. Thus we strongly encourage readers to acquire
at lease basic knowledge of Python. We dont want to endorse any particular book but to
guide users we might suggests names of the authors of the most popular books on Python
programming: David Beazley, Mark Lutz, Mark Summerfield, Michael Dawson, Magnus
Lie Hetland.

1 Introduction

The last decade has seen fairly realistic simulations of single cells that can confirm or
predict experimental findings. Because they are computationally expensive, they can
simulate at most several cells at once. Even more detailed subcellular simulations can
replicate some of the processes taking place inside individual cells. E.g., Virtual Cell
(http://www.nrcam.uchc.edu) supports microscopic simulations of intracellular dynamics
to produce detailed replicas of individual cells, but can only simulate single cells or small
cell clusters.

Simulations of tissues, organs and organisms present a somewhat different challenge: how
to simplify and adapt single cell simulations to apply them efficiently to study, in silico,
ensembles of several million cells. To be useful, these simplified simulations should capture
key cell-level behaviors, providing a phenomenological description of cell interactions with-
out requiring prohibitively detailed molecular-level simulations of the internal state of each
cell. While an understanding of cell biology, biochemistry, genetics, etc. is essential for
building useful, predictive simulations, the hardest part of simulation building is identify-
ing and quantitatively describing appropriate subsets of this knowledge. In the excitement
of discovery, scientists often forget that modeling and simulation, by definition, require
simplification of reality.

One choice is to ignore cells completely, e.g., Physiome (1) models tissues as continua with
bulk mechanical properties and detailed molecular reaction networks, which is computa-
tionally efficient for describing dense tissues and non-cellular materials like bone, extra-
cellular matrix (ECM), fluids, and diffusing chemicals (2, 3), but not for situations where
cells reorganize or migrate.

: d_.{ll“* Detail of cell-lattic%

N |IN YN AN DN
EURN ICSUT I NG I G Y G NG NG NS
S SN [N NG G I N I NG NS
NN (NN~
SV IEN EN I O O NG I NG NS
S ENT SN NG I NG NG [O N

Figure 1: Detail of a typical two-dimensional GGH cell-lattice configuration. Each colored domain
represents a single spatially-extended cell. The detail shows that each generalized cell is a set of cell-lattice
sites (or pizel), i, with a unique index, o(i), here 4 or 7. The color denotes the cell type, 7(o(i)).

http://www.nrcam.uchc.edu

Multi-cell simulations are useful to interpolate between single-cell and continuum-tissue ex-
tremes because cells provide a natural level of abstraction for simulation of tissues, organs
and organisms (4). Treating cells phenomenologically reduces the millions of interactions of
gene products to several behaviors: most cells can move, divide, die, differentiate, change
shape, exert forces, secrete and absorb chemicals and electrical charges, and change their
distribution of surface properties. The Glazier-Graner-Hogeweg (GGH) approach facil-
itates multiscale simulations by defining spatially extended generalized cells, which can
represent clusters of cells, single cells, subcompartments of single cells or small subdo-
mains of non-cellular materials. This flexible definition allows tuning of the level of detail
in a simulation from intracellular to continuum without switching simulation framework to
examine the effect of changing the level of detail on a macroscopic outcome, e.g., by switch-
ing from a coupled ordinary differential- equation (ODE) Reaction-Kinetics (RK) model
of gene regulation to a Boolean description or from a simulation that includes subcellular
structures to one that neglects them.

2 GGH Applications

Because it uses a regular cell lattice and regular field lattices, GGH simulations are often
faster than equivalent Finite Element (FE) simulations operating at the same spatial gran-
ularity and level of modeling detail, permitting simulation of tens to hundreds of thousands
of cells on lattices of up to 10243 pixels on a single processor. This speed, combined with the
ability to add biological mechanisms via terms in the effective energy, permit GGH mod-
eling of a wide variety of situations, including: tumor growth (5-9), gastrulation (10-12),
skin pigmentation (13-16), neurospheres (17), angiogenesis (18-23), the immune system
(24, 25), yeast colony growth (26, 27), myzobacteria (28-31), stem cell differentiation (32,
33), Dictyostelium discoideum (34-37), simulated evolution (38-43), general developmental
patterning (14, 44), convergent extension (45, 46), epidermal formation (47), hydra re-
generation (48, 49), plant growth, retinal patterning (50, 51), wound healing (47, 52, 53),
biofilms (54-57), and limb-bud development (58, 59).

3 GGH Simulation Overview

All GGH simulations include a list of objects, a description of their interactions and dy-
namics and appropriate initial conditions.

Objects in a GGH simulation are either generalized cells or fields in two dimensions (2D)
or three dimensions (3D). Generalized cells are spatially-extended objects (Fig. , which
reside on a single cell lattice and may correspond to biological cells, subcompartments of
biological cells, or to portions of non-cellular materials, e.g., ECM, fluids, solids, etc. (8,

48, 60-72). We denote a lattice site or pizel by a vector of integers, i, the cell index of
the generalized cell occupying pixel i by o(i) and the type of the generalized cell o(i) by
7(c(i)). Each generalized cell has a unique cell index and contains many pixels. Many
generalized cells may share the same cell type. Generalized cells permit coarsening or
refinement of simulations, by increasing or decreasing the number of lattice sites per cell,
grouping multiple cells into clusters or subdividing cells into variable numbers of subcells
(subcellular compartments). Compartmental simulation permits detailed representation of
phenomena like cell shape and polarity, force transduction, intracellular membranes and
organelles and cell-shape changes. For details on the use of subcells, which we do not
discuss in this chapter see (27, 31, 73, 74). Each generalized cell has an associated list
of attributes, e.g., cell type, surface area and volume, as well as more complex attributes
describing a cells state, biochemical interaction networks, etc. Fields are continuously-
variable concentrations, each of which resides on its own lattice. Fields can represent
chemical diffusants, non-diffusing ECM, etc. Multiple fields can be combined to represent
materials with textures, e.q., fibers.

Interaction descriptions and dynamics define how GGH objects behave both biologically
and physically. Generalized-cell behaviors and interactions are embodied primarily in the
effective energy, which determines a generalized cells shape, motility, adhesion and response
to extracellular signals. The effective energy mixes true energies, such as cell-cell adhesion
with terms that mimic energies, e.g., the response of a cell to a chemotactic gradient of a
field (75). Adding constraints to the effective energy allows description of many other cell
properties, including osmotic pressure, membrane area, etc. (76-83).

The cell lattice evolves through attempts by generalised cells to move their boundaries in
a caricature of cytoskeletally-driven cell motility. These movements, called indez-copy at-
tempts, change the effective energy, and we accept or reject each attempt with a probability
that depends on the resulting change of the effective energy, AH, according to an accep-
tance function. Nonequilibrium statistical physics then shows that the cell lattice evolves
to locally minimize the total effective energy. The classical GGH implements a modified
version of a classical stochastic Monte-Carlo pattern-evolution dynamics, called Metropolis
dynamics with Boltzmann acceptance (84, 85). A Monte Carlo Step (MCS) consists of one
index-copy attempt for each pixel in the cell lattice.

Auailiary equations describe cells absorption and secretion of chemical diffusants and ex-
tracellular materials (i.e., their interactions with fields), state changes within cells, mitosis,
and cell death. These auxiliary equations can be complex, e.g., detailed RK descriptions
of complex regulatory pathways. Usually, state changes affect generalised-cell behaviors by
changing parameters in the terms in the effective energy (e.g., cell target volume or type
or the surface density of particular cell-adhesion molecules).

Fields also evolve due to secretion, absorption, diffusion, reaction and decay according to
partial differential equations (PDEs). While complex coupled-PDE models are possible,
most simulations require only secretion, absorption, diffusion and decay, with all reactions

described by ODEs running inside individual generalised cells. The movement of cells
and variations in local diffusion constants (or diffusion tensors in anisotropic ECM) means
that diffusion occurs in an environment with moving boundary conditions and often with
advection. These constraints rule out most sophisticated PDE solvers and have led to a
general use of simple forward-Euler methods, which can tolerate them.

The initial condition specifies the initial configurations of the cell lattice, fields, a list of
cells and their internal states related to auxiliary equations and any other information
required to completely describe the simulation.

3.1 Effective Energy

The core of GGH simulations is the effective energy, which describes cell behaviours and
interactions.

One of the most important effective-energy terms describes cell adhesion. If cells did
not stick to each other and to extracellular materials, complex life would not exist (86).
Adhesion provides a mechanism for building complex structures, as well as for holding
them together once they have formed. The many families of adhesion molecules (CAMs,
cadherins, etc.) allow embryos to control the relative adhesivities of their various cell types
to each other and to the noncellular ECM surrounding them, and thus to define complex
architectures in terms of the cell configurations which minimise the adhesion energy.

To represent variations in energy due to adhesion between cells of different types, we
define a boundary energy that depends on J[T(J(i)), T(U(j))}, the boundary energy per unit
area between two cells (o(i),0(j)) of given types (7(c(i)),7(c(j))) at a link (the interface
between two neighboring pixels):

7_lbounda,ry = Z J|:7—<0—(i))77_(0<j))1| [1 o 5(U(i)? O—(j))} ’ (1)
(i,j) neighbors

where the sum is over all neighboring pairs of lattice sites i and j (note that the neighbor
range may be greater than one), and the boundary-energy coefficients are symmetric,

T[r(e(®),7(e())] = J[r(o()), 7(c(i))] . (2)

In addition to boundary energy, most simulations include multiple constraints on cell be-
havior. The use of constraints to describe behaviors comes from the physics of classical
mechanics. In the GGH context we write constraint energies in a general elastic form:

Heonstraint = M(value — target_value)? (3)

The constraint energy is zero if value = target_value (the constraint is satisfied) and grows
as value diverges from target_value. The constraint is elastic because the exponent of 2

effectively creates an ideal spring pushing on the cells and driving them to satisfy the con-
straint. A is the spring constant (a positive real number), which determines the constraint
strength. Smaller values of A allow the pattern to deviate more from the equilibrium condi-
tion (i.e., the condition satisfying the constraint). Because the constraint energy decreases
smoothly to a minimum when the constraint is satisfied, the energy minimising dynamics
used in the GGH automatically drives any configuration towards one that satisfies the
constraint. However, because of the stochastic simulation method, the cell lattice need
not satisfy the constraint exactly at any given time, resulting in random fluctuations. In
addition, multiple constraints may conflict, leading to configurations which only partially
satisfy some constraints.

Because biological cells have a given volume at any time, most GGH simulations employ a
volume constraint, which restricts volume variations of generalised cells from their target
volumes:

Huotume = Y Mvotume(7(0)) [0(7(0)) = Vi(r(0))]* (4)

where for cell o, Avolume (o) denotes the inverse compressibility of the cell, v(o) is the number
of pixels in the cell (its volume), and V(o) is the cells target volume. This constraint defines
P = —2X\(v(0) — Vi(0)) as the pressure inside the cell. A cell with v < V; has a positive
internal pressure, while a cell with v > V; has a negative internal pressure.

Since many cells have nearly fixed amounts of cell membrane, we often use a surface area
constraint of form:

2

Hsurface = Z >\surface(7-<0-)) [3(7—(0)) - St(T(O-))} (5)
where s(o) is the surface area of cell o, S;(0) is its target surface area, and Agyrface 1 its
imverse membrane compressibility.ﬂ

Adding the boundary energy and volume constraint terms together (Equations and
(4])), we obtain the basic GGH effective energy:

Hoen =), J[r(o(i). 7(0()][1 - d(o(i),0()))]

(i,j) neighbors

+ 3" Motume (7(0)) [v(7(0)) = Vil ()]’

+ Z /\surface(T(U)) [S<T(U)) - St(T(o-))} ? + Echemotaxis . (6)

1Because of lattice discretisation and the option of defining long range neighborhoods, the surface area
of a cell scales in a non-Euclidian, lattice-dependent manner with cell volume, i.e., s(v) # (47)1/3(3v)2/3,
see (61) on bubble growth.

10

3.2 Dynamics

A GGH simulation consists of many attempts to copy cell indices between neighboring
pixels. In CompuCell3D the default dynamical algorithm is modified Metropolis dynamics.
During each index-copy attempt, we select a target pixel, i, randomly from the cell lattice,
and then randomly select one of its neighboring pixels, i, as a source pixel. If they belong
to the same generalised cell (i.e., if o(i) = o(j)) we do not need copy index. Otherwise,
the cell containing the source pixel attempts to occupy the target pixel. Consequently, a
successful index copy increases the volume of the source cell and decreases the volume of
the target cell by one pixel.

Index-copy succeeds
AE <O
or

_AE/
P=e Tm: AE >0

—
~

© o |o oo |a |oa o
© o |o |Jo|lo|lolo |o
N |vwlolra|r]o o
N (v |Ns [|r oo
S BTN BN (PN VNG NG o o'
N (v |Nr s]o o

M| JO O
SN

Changed
pixel]

©
~
~

SN ENT BN NG O NG oW G

coco@m/cncnmm
cococoo/cncnmm
~
I\

Index-copy fails

_AE/
P=1-e¢ Tm: AE >0

© [0 o Jo|la|o o |n
© [|o |l |lo|lo o |o
N [([wJo s s oo
SN ENTN ENTN NN FNG NG POl o)
N [([~w (N s o |o
N (v N s o |o

Figure 2: GGH representation of an index-copy attempt for two cells on a 2D square lattice — The
“white” pixel (source) attempts to replace the “grey” pixel (target). The probability of accepting the
index copy is given by equation ([7])

In the modified Metropolis algorithm we evaluate the change in the total effective energy
due to the attempted index copy and accept the index-copy attempt with probability:

Plot) -+ o) = { {PCH) AT 20 7)

where T, is a parameter representing the effective cell motility (we can think of T, as
the amplitude of cell-membrane fluctuations). Equation is the Boltzmann acceptance

11

function. Users can define other acceptance functions in CompuCell3D. The conversion
between MCS and experimental time depends on the average values of AH/T,,. MCS and
experimental time are proportional in biologically-meaningful situations (87-90).

3.3 Algorithmic Implementation of Effective-Energy Calculations

Consider an effective energy consisting of boundary-energy and volume-constraint terms
as in equation (6)). After choosing the source (i) and destination (j) pixels (the cell index
of the source will overwrite the target pixel if the index copy is accepted), we calculate the
change in the effective energy that would result from the copy. We evaluate the change
in the boundary energy and volume constraint as follows. First we visit the target pixels
neighbors (j). If the neighbor pixel belongs to a different generalised cell from the target
pixel, i.e., when o(j) # o(i) (see equation (I])), we decrease AH by J[r(c(i)), (o (j))].
If the neighbor belongs to a cell different from the source pixel (j), we increase AH by

J[r(e (i), 7(a(3))].
The change in volume-constraint energy is evaluated according to:

new old
AH volume — - H

volume volume

= Notume | (v(0(0)) + 1= V(o)) + (00 (i) — 1 = Vilo(D))’
“Avotume | (0(0(§)) = Vi(o(§))* + (v(o (i) = Vi(o(0)?] ®)
= Nvotume {1+ 2(0(0(3) = Vilo ()} + {1 = 2((0(1)) — Vil (i)}

where v(o(j)) and v(o(i)) denote the volumes of the generalised cells containing the target
and source pixels, respectively.

In this example, we could calculate the change in the effective energy locally, i.e., by visiting
the neighbors of the target of the index copy. Most effective energies are quasilocal, allowing
calculations of AH similar to those presented above. The locality of the effective energy is
crucial to the utility of the GGH approach. If we had to calculate the effective energy for
the entire cell lattice for each index-copy attempt, the algorithm would be prohibitively
slow.

12

8J (white, grey) 6J (white, grey)

v(a(j)) v(o(j)) +1
¢ Pixels contributing to
the boundary energy
¢|O PS @ Target pixel
¢ 0o : AL IR 4
¢ ¢ O Source pixel
v(o(i)) v(o(i)) - 1
8J (white, grey) 6J (white, grey)

Figure 3: Calculating changes in the boundary energy and the volume-constraint energy on a nearest-
neighbor square lattice.

For longer-range interactions we use the appropriate list of neighbors, as shown in Figure
and Table[l] Longer-range interactions are less anisotropic but result in slower simulations.

Figure 4: Locations of n''-nearest neighbors on a 2D square lattice and a 2D hexagonal lattice.

13

2D Square Lattice

2D Square Lattice

neighbor or- | Number of | Euclidian dis- | Number of | Euclidian dis-
der neighbors tance neighbors tance

1 4 1 6 2/V/3

2 4 V2 6 6/v3

3 4 2 6 \/8/7\/5

4 8 V5 12 \/14/V/3

Table 1: Multiplicity and Euclidian distances of n*"-nearest neighbors for 2D square and hexagonal
lattices. The number of n*® neighbors and their distances from the central pixel differ in a 3D lattice.
CompuCell3D calculates distance between neighbors by setting the volume of a single pixel (whether in
2D or 3D) to 1.

4 CompuCell3D

One advantage of the GGH model over alternative techniques is its mathematical simplicity.
We can implement fairly easily a computer program that initialises the cell lattice and fields,
performs index copies and displays the results. In the 15 years since the GGH model was
developed, researchers have written numerous programs to run GGH simulations. Because
all GGH implementations share the same logical structure and perform similar tasks, much
of this coding effort has gone into rewriting code already developed by someone else. This
redundancy leads to significant research overhead and unnecessary duplication of effort
and makes model reproduction, sharing and validation needlessly cumbersome.

To overcome these problems, we developed CompuCell3D as a framework for GGH simula-
tions (91, 92). Unlike specialised research code, CompuCell3D is a simulation environment
that allows researchers to rapidly build and run shareable GGH-based simulations. It
greatly reduces the need to develop custom code and its adherence to open-source stan-
dards ensures that any such code is shareable.

CompuCell3D supports non-programmers by providing visualisation tools, an eXtensible
Markup Language (XML) interface for defining simulations, and the ability to extend the
framework through specialised modules. The C++ computational kernel of CompuCell3D
is also accessible using the open-source scripting language Python, allowing users to create
complex simulations without programming in lower-level languages such as C or C++.
Unlike typical research code, changing a simulation does not require recompiling Compu-
Cell3D.

Users define simulations using CompuCell3D XML (CC3DML) configuration files and/or

14

Python scripts. CompuCell3D reads and parses the CC3DML configuration file and uses
it to define the basic simulation structure, then initialises appropriate Python services (if
they are specified) and finally executes the underlying simulation algorithm.

CompuCell3D is modular: each module carries out a defined task. CompuCell3D termi-
nology calls modules associated with index copies or index-copy attempts plugins. Some
plugins calculate changes in effective energy, while others (lattice monitors) react to ac-
cepted index copies, e.g., by updating generalised cells’ surface areas, volumes or lists of
neighbors. Plugins may depend on other plugins. For example, the Volume plugin (which
calculates the volume-energy constraint in equation (4])) depends on VolumeTracker (a
lattice monitor), which, as its name suggests, tracks changes in generalised cells volumes.
When implicit plugin dependencies exist, CompuCell3D automatically loads and initialises
dependent plugins. In addition to plugins, CompuCell3D defines modules called steppables
which run either repeatedly after a defined intervals of Monte Carlo Steps or once at the
beginning or end of the simulation. Steppables typically define initial conditions, alter cell
states, update fields or output intermediate results.

Figure [5| shows the relations among index-copy attempts, Monte Carlo Steps, steppables
and plugins.

CompuCell3D includes a Graphical User Interface (GUI) and visualisation tool, CompuCell
Player (also referred to as Player). From Player the user opens a CC3DML configuration
file and/or Python file and hits the “Play” button to run the simulation. Player allows
users to define multiple 2D or 3D visualisations of generalised cells, fields or various vector
plots while the simulation is running and save them automatically for post-processing.

5 Building CC3DML-Based Simulations Using Com-
puCell3D

To show how to build simulations in CompuCell3D, the reminder of this chapter provides a
series of examples of gradually increasing complexity. For each example we provide a brief
explanation of the physical and/or biological background of the simulation and listings
of the CC3DML configuration file and Python scripts, followed by a detailed explanation
of their syntax and algorithms. We can specify many simulations using only a simple
CC3DML configuration file. We begin with three examples using only CC3DML to define
simulations.

15

Start
Initialize
modules

Run
initialization
steppables One Monte Carlo Step

Pick source Calculate effective

> and target > energy change using
pixels plugins and compute

index-copy probability

Copy indices Index copy
and run lattice accepted?
monitors '

No
- Run steppables
ﬂﬁﬁ_’,‘:ﬂ?&s and visualize Done?
pixels? results
Yes
Run
end-of-simulation
steppables
k
End

Figure 5: Flow chart of the GGH algorithm as implemented in CompuCell3D.

5.1 A Short Introduction to XML

XML is a text-based data-description language, which allows standardised representations
of data. XML syntax consists of lists of elements, each either contained between opening
(<Tag>) and closing (</Tag>) tag{}

<Tag Attributel="textl”>ElementText</Tag>

2In the text, we denote XML, CC3DML and Python code using the Courier font. In listings presenting
syntax, user-supplied variables are given in italics. Broken-out listings are boxed. Punctuation at the end
of boxes is implicit.

16

or of form:

<Tag Attributel="attribute_textl” Attribute2="attribute_text2” />

We will denote the <Tag> --- </Tag> syntax as a <Tag> tag pair. The opening tag
of an XML element may contain additional attributes characterising the element. The
content of the XML element (ElementText in the above example) and the values of its
attributes (textl, attribute textl, attribute_text2) are strings of characters. Com-
puter programs that read XML may interpret these strings as other data types such as
integers, Booleans or floating point numbers. XML elements may be nested. The simple
example below defines an element Cell with subelements (represented as nested XML el-
ements) Nucleus and Membrane assigning the element Nucleus an attribute Size set to
“10” and the element Membrane an attribute Area set to “20.5”, and setting the value of
the Membrane element to Expanding:

<Cell>

<Nucleus Size="10"/>

<Membrane Area="20.5">Expanding</Membrane>
</ Cell>

Although XML parsers ignore indentation, all the listings presented in this chapter are
block-indented for better readability.

5.2 Grain-Growth Simulation

One of the simplest CompuCell3D simulations mimics crystalline grain growth or annealing.
Most simple metals are composed of microcrystals, or grains, each of which has a particular
crystalline-lattice orientation. The atoms at the surfaces of these grains have a higher
energy than those in the bulk because of their missing neighbors. We can characterise this
excess energy as a boundary energy. Atoms in convex regions of a grain’s surface have a
higher energy than those in concave regions, in particular than those in the concave face
of an adjoining grain, because they have more missing neighbors. For this reason, an atom
at a convex curved boundary can reduce its energy by hopping across the grain boundary
to the concave side (62). The movement of atoms moves the grain boundaries, lowering
the net configuration energy through annealing or coarsening, with the net size of grains
growing because of grain disappearance. Boundary motion may require thermal activation
because atoms in the space between grains may have higher energy than atoms in grains.
The effective energy driving grain growth is simply the boundary energy in equation (|1)).

In CompuCell3D, we can represent grains as generalized cells. CC3DML Listing |1| defines
our grain-growth simulation.

17

Listing 1: CC3DML configuration file for 2D grain-growth simulation.

<CompuCell3D>

<Potts>
<Dimensions x="100" y="100" z="1"/>
<Steps>10000</Steps>

<Temperature>5</Temperature>

<Boundary_y>Periodic</Boundary_y>

<Boundary_x>Periodic</Boundary_x>

<NeighborOrder>3</NeighborOrder>
</Potts>

<Plugin Name="CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Grain” Typeld="1"/>
</Plugin>

<Plugin Name="Contact”>
<Energy Typel="Medium” Type2="Grain”>0</Energy>
<Energy Typel="Grain” Type2="Grain”>5</Energy>
<Energy Typel="Medium” Type2="Medium”>0</Energy>
<NeighborOrder>3</NeighborOrder>

</Plugin>

<Steppable Type=" UniformlInitializer”>
<Region>
<BoxMin x="0" y="0" z="0" />
<BoxMax x="100" y="100" z="1"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Grain</Types>
</Region>
</Steppable>

</CompuCell3D>

Each CC3DML configuration file begins with the <CompuCel13D> tag and ends with the
</CompuCell3D> tag. A CC3DML configuration file contains three sections in the following
sequence: the lattice section (contained within the <Potts> tag pair), the plugins section,
and the steppables section. The lattice section defines global parameters for the simulation:
cell-lattice and field-lattice dimensions (specified using the syntax <Dimensions x="x_dim"
y="y_dim" z="z dim"/>), the number of Monte Carlo Steps to run (defined within the
<Steps> tag pair) the effective cell motility (defined within the <Temperature> tag pair)
and boundary conditions. The default boundary conditions are no-flux. However, in this
simulation, we have changed them to be periodic along the x and y axes by assigning

18

the value Periodic to the <Boundary x> and <Boundary_y> tag pairs. The value set by
the <NeighborOrder> tag pair defines the range over which source pixels are selected for
index-copy attempts (see Figure 4] and Table .

The plugins section lists the plugins the simulation will use. The syntax for all plugins
which require parameter specification is:

<Plugin Name="PluginName”>
<ParameterSpecification />
</Plugin>

The CellType plugin uses the parameter syntax

<CellType TypeName="Name” Typeld="IntegerNumber” />

to map verbose generalised-cell-type names to numeric cell TypeIds for all generalised-cell
types. It does not participate directly in index copies, but is used by other plugins for
cell-type-to-cell-index mapping. Even though the grain-growth simulation fills the entire
cell lattice with cells of type Grain, the current implementation of CompuCell3D requires
that all simulations define the Medium cell type with TypeId 0. Medium is a special cell type
with unconstrained volume and surface area that fills all cell-lattice pixels unoccupied by
cells of other typesﬁ

The Contact plugin calculates changes in the boundary energy defined in equation for
each index-copy attempt. The parameter syntax for the Contact plugin is:

<Energy Typel="TypeNamel” Type2="TypeNamel”>EnergyValue</Energy>

where TypeNamel and TypeName2 are the names of the cell types and EnergyValue is the
boundary-energy coefficient, J(TypeNamel, TypeName2), between cells of TypeNamel and
TypeName2 (see equation (|l))). The <NeighborOrder> tag pair specifies the interaction
range of the boundary energy. The default value of this parameter is 1.

The steppables section includes only the UniformInitializer steppable. All steppables
have the following syntax:

<Steppable Type="SteppableName” Frequency="FrequencyMCS”>
<ParameterSpecification />
</Steppable>

The Frequency attribute is optional and by default is 1 MCS.

CompuCell3D simulations require specification of initial condition. The simplest way to
define the initial cell lattice is to use the built-in initializer steppables, which construct

3We highlight in yellow sections or text describing CompuCell3D behaviours which may be confusing
or lead to hard-to-track errors.

19

simple regions filled with generalised cells.

The UniformInitializer steppable in the grain-growth simulation defines one or more
rectangular (parallelepiped in 3D) regions filled with generalised cells of user selectable
types and sizes. We enclose each region definition within a <Region> tag pair. We use the
<BoxMin> and <BoxMax> tags to describe the boundaries of the region, The <Width> tag
pair defines the size of the square (cubical in 3D) generalised cells and the <Gap> tag pair
creates space between neighboring cells. The <Types> tag pair lists the types of generalised
cells. The grain-growth simulation uses only one cell type, Grain, but we can also initialise
cells using types randomly chosen from the list, as in Listing [2|

Listing 2: CC3DML code excerpt using the UniformInitializer steppable to initialize
a rectangular region filled with 5 x 5 pixel generalised cells with randomly-assigned cell
types (either Condensing or NonCondensing).

<Steppable Type="Uniformlnitializer”>
<Region>
<BoxMin x="0" y="0" 2z="0" />
<BoxMax x="100" y:” 100”7 z="1" />
<Gap>0</Gap>
<Width>5</Width>
<Types>Grain</Types>
</Region>
</Steppable>

The coordinate values in BoxMax element must be one more than the coordinates of the
corresponding corner of the region to be filled. So to fill a square of side 10 beginning with
pixel location (5,5) we use the following region-boundary specification:

<BoxMin x="5" y:77555 7="0" />
<BoxMax x="16" y="16" z="1" />

Listing the same type multiple times results in a proportionally higher fraction of gener-
alised cells of that type. For example,

<Types>Condensing , Condensing , NonCondensing</Types>

will allocate approximately 2/3 of the generalised cells to type Condensing and 1/3 to
type NonCondensing. UniformInitializer allows specification of multiple regions. Each
region is independent and can have its own cell sizes, types and cell spacing. If the regions
overlap, later-specified regions overwrite earlier-specified ones. If region specification does
not cover the entire lattice, uninitialised pixels have type Medium.

Figure [6] shows sample output generated by the grain-growth simulation.

20

Figure 6: Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 x 100 pixel
3'd_neighbor square lattice, as specified in Listing [l Boundary conditions are periodic in both directions.

One advantage of GGH simulations compared to FE simulations is that going from 2D to
3D is easy. To run a 3D grain-growth simulation on a 100 x 100 x 100 lattice we only need
to make the following replacements in Listing [T}

For 2D

<Dimensions x="100" y="100" z="1" />

for 3D

<Dimensions x="100" y="100" z="100" />

and for 2D

<BoxMax x="100" y="100" z="1"/>

for 3D

<BoxMax x="100" y="100" z="100" />

Grain growth simulations are particularly sensitive to lattice anisotropy, so running them
on lower-anisotropy lattices is desirable. Longer-range lattices are less anisotropic but
cause simulations to run slower. Fortunately a hexagonal lattice of a given range is less
anisotropic than a square lattice of the same range. To run the grain-growth simulation
on a hexagonal lattice, we add <LatticeType>Hexagonal</LatticeType> to the lattice
section in Listing [1| and change the two occurrences of:

<NeighborOrder>3</NeighborOrder>

to

<NeighborOrder>1</NeighborOrder>

Figure [7| shows snapshots for this simulation.

21

Figure 7: Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 x 100 pixel
15t-neighbor hexagonal lattice as specified in Listing With substitutions described in the text. The z and
y length units in an hexagonal lattice differ, resulting in differing x and y dimensions for a cell lattice with
an equal number of pixels in the x and y directions.

One inconvenience of the current implementation of CompuCell3D is that it does not auto-
matically rescale parameter values when interaction range, lattice dimensionality or lattice
type change. When changing these attributes, users must recalculate parameters to keep
the underlying physics of the simulation the same.

CompuCell3D dramatically reduces the amount of code necessary to build and run a simu-
lation. The grain-growth simulation took about 25 lines of CC3DML instead of 1000 lines
of C, C++ or Fortran.

5.3 Cell-Sorting Simulation

Cell sorting is an experimentally-observed phenomenon in which cells with different adhe-
sivities are randomly mixed and re-aggregated. They can spontaneously sort to reestablish
coherent homogenous domains (93, 94). Sorting is a key mechanism in embryonic devel-
opment.

The grain-growth simulation used only one type of generalised cell. Simulating sorting of
two types of biological cell in an aggregate floating in solution is slightly more complex.
Listing 3 shows a simple cell-sorting simulation. It is similar to Listing [l with a few
additional modules (shown in bold). The effective energy is that in equation @

Listing 3: CC3DML configuration file simulating cell sorting between Condensing and
NonCondensing cell types. Highlighted text indicates modules absent in Listing [I}
Notice how little modification of the grain-growth CC3DML configuration file this
simulation requires.

<CompuCell3D>

22

<Potts>

</Potts>

</Plugin>

</Plugin>

<Energy
<Energy
<Energy
<Energy
<Energy
<Energy

</Plugin>

<Steppable

<Region>
<Gap>0</Gap>
<Width>5b</Width>
<Radius>40</Radius>
<Center x="50" y="50" z="0"/>
<Types>Condensing , NonCondensing</Types>
</Region>
</Steppable>

<Dimensions x="100" y="100" z="1" />
<Steps>10000</Steps>
<Temperature>10</Temperature>
<NeighborOrder>2</NeighborOrder>

<Plugin Name="Volume”>
<TargetVolume>25</TargetVolume>
<LambdaVolume>2.0</LambdaVolume>

<Plugin Name=" CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Condensing” Typeld="1" />
<CellType TypeName="NonCondensing” Typeld="2" />

<Plugin Name="Contact”>

Typel="Medium” Type2="Medium”>0</Energy>
Typel="NonCondensing” Type2="NonCondensing”>16</Energy>
Typel="Condensing” Type2=" Condensing”’>2</Energy>
Typel="NonCondensing” Type2="Condensing”’>11</Energy>
Typel="NonCondensing” Type2="Medium”>16</Energy>
Typel="Condensing” Type2="Medium”>16</Energy>

<NeighborOrder>2</NeighborOrder>

Type="Bloblnitializer”>

</CompuCell3D>

The main change from Listing [I| to the lattice section is that we omit the boundary con-

dition specification and use default no-flux boundary conditions.

In the CellType plugin we introduce the two cell types, Condensing and NonCondensing,
in place of Grain. In addition we do not the fill lattice completely with Condensing and
NonCondensing cells so the interactions with Medium become important. The boundary-
energy matrix in the Contact plugin thus requires entries for the additional cell-type pairs.

23

The hierarchy of boundary energies listed results in cell sorting.

We also add the Volume plugin, which calculates the volume-constraint energy as given
in equation . In this plugin the <TargetVolume> tag pair sets target volume V; = 25
for both Condensing cells and NonCondensing and the <LambdaVolume> tag pair sets the
constraint strength A, = 2.0 for both cell types. We will see later how to define volume-
constraint parameters for each cell type or each cell individually.

In the cell-sorting simulation we initialise the cell lattice using the BlobInitializer
steppable which specifies circular (or spherical in 3D) regions filled with square (or cu-
bical in 3D) cells of user-defined size and types. The syntax is very similar to that for
UniformInitializer.

Looking in detail at the syntax of Bloblnitializer in Listing 3| the <Radius> tag pair
defines the radius of a circular (or spherical) domain of cells in pixels. The <Center>
tag, with syntax <Center x="x_position" y="y_position" z="z_position"/>, defines
the coordinates of the centre of the domain. The remaining tags are the same as for
UniformInitializer. As with UniformInitializer, we can define multiple regions. We
can use both UniformInitializer and BlobInitializer in the same simulation. In the
case of overlap, later-specified regions overwrite earlier ones.

We show snapshots of the cell-sorting simulation in Figure[§] The less cohesive NonCondensing
cells engulf the more cohesive Condensing cells, which cluster and form a single central
domain. By changing the boundary energies we can produce other cell-sorting patterns
(95, 96).

Figure 8: Snapshots of the cell-lattice configurations for the cell-sorting simulation in Listing [3} The
boundary-energy hierarchy drives NonCondensing (light grey) cells to surround Condensing (dark grey)
cells. The white background denotes surrounding Medium.

5.4 Bacterium-and-Macrophage Simulation

In the two simulations we have presented so far, the cellular pattern develops without fields.
Often, however, biological patterning mechanisms require us to introduce and evolve chemi-

24

cal fields and to have cells behaviours depend on the fields. To illustrate the use of fields, we
model the in vitro behaviour of bacteria and macrophages in blood. In the famous experi-
mental movie taken in the 1950s by David Rogers at Vanderbilt University, the macrophage
appears to chase the bacterium, which seems to run away from the macrophage. We can
model both behaviours using cell secretion of diffusible chemical signals and movement
of the cells in response to the chemical (chemotazis): the bacterium secretes a signal (a
chemoattractant) that attracts the macrophage and the macrophage secretes a signal (a
chemo-repellant) which repels the bacterium (97).

Listing [4] shows the CC3DML configuration file for the bacterium-and-macrophage simu-
lation.

Listing 4: CC3DML configuration file for the bacterium-and-macrophage simulation.

<CompuCell3D>

<Potts>
<Dimensions x="100" y="100" z="1"/>
<Steps>100000</Steps>
<Temperature>20</Temperature>
<LatticeType>Hexagonal</LatticeType>
</Potts>

<Plugin Name="CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Bacterium” Typeld="1" />
<CellType TypeName="Macrophage” Typeld="2" />
<CellType TypeName="Red” Typeld="3" />
<CellType TypeName="Wall” Typeld="4" Freeze=""/>
</Plugin>

<Plugin Name="VolumeFlex”>
<VolumeEnergyParameters CellType="Macrophage” TargetVolume="150"
LambdaVolume="15" />
<VolumeEnergyParameters CellType="Bacterium” TargetVolume="10"
LambdaVolume="60" />
<VolumeEnergyParameters CellType="Red” TargetVolume="100"
LambdaVolume="30" />
</Plugin>

<Plugin Name=" SurfaceFlex”>
<SurfaceEnergyParameters CellType="Macrophage” TargetSurface="50"
LambdaSurface="30" />
<SurfaceEnergyParameters CellType="Bacterium” TargetSurface="10"
LambdaSurface="4" />
<SurfaceEnergyParameters CellType="Red” TargetSurface="40"
LambdaSurface="0" />

25

</Plugin>

<Plugin Name="Contact”>
<Energy Typel="Medium” Type2="Medium”>0</Energy>
<Energy Typel="Macrophage” Type2="Macrophage”’>150</Energy>
<Energy Typel="Macrophage” Type2="Medium”>8</Energy>
<Energy Typel="Bacterium” Type2="Bacterium”>150</Energy>
<Energy Typel="Bacterium” Type2="Macrophage”>15</Energy>
<Energy Typel="Bacterium” Type2="Medium”>8</Energy>
<Energy Typel="Wall” Type2="Wall”>0</Energy>
<Energy Typel="Wall” Type2="Medium”>0</Energy>
<Energy Typel="Wall” Type2="Bacterium”>150</Energy>
<Energy Typel="Wall” Type2="Macrophage”’>150</Energy>
<Energy Typel="Wall” Type2="Red”>150</Energy>
<Energy Typel="Red” Type2="Red”>150</Energy>
<Energy Typel="Red” Type2="Medium”>30</Energy>
<Energy Typel="Red” Type2="Bacterium”>150</Energy>
<Energy Typel="Red” Type2="Macrophage”’>150</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

<Plugin Name="Chemotaxis”>
<ChemicalField Source="FlexibleDiffusionSolverFE” Name="ATTR”>
<ChemotaxisByType Type="Macrophage” Lambda="1"/>
</ChemicalField>

<ChemicalField Source="FlexibleDiffusionSolverFE” Name="REP”>
<ChemotaxisByType Type="Bacterium” Lambda="—0.1"/>
</ChemicalField>
</Plugin>

<Steppable Type="FlexibleDiffusionSolverFE”">
<DiffusionField>

<DiffusionData>
<FieldName>ATTR</FieldName>
<DiffusionConstant>0.10</DiffusionConstant>
<DecayConstant>0.00005</DecayConstant>
<DoNotDiffuseTo>Wall</DoNotDiffuseTo>
<DoNotDiffuseTo>Red</DoNotDiffuseTo>

</DiffusionData>

<SecretionData>
<Secretion Type="Bacterium”>200</Secretion>
</SecretionData>
</DiffusionField>

<DiffusionField>
<DiffusionData>
<FieldName>REP</FieldName>

26

<DiffusionConstant>0.10</DiffusionConstant>

<DecayConstant>0.001</DecayConstant>

<DoNotDiffuseTo>Wall</DoNotDiffuseTo>

<DoNotDiffuseTo>Red</DoNotDiffuseTo>
</DiffusionData>

<SecretionData>
<Secretion Type="Macrophage”’>200</Secretion>
</SecretionData>
</DiffusionField>
</Steppable>

<Steppable Type=" PIFInitializer”>
<PIFName>bacterium_macrophage_2D _wall_v3. pif</PIFName>
</Steppable>

</CompuCell3D>

The simulation has five generalised-cell types: Medium, Bacterium, Macrophage, Red
blood cells and a surrounding Wall. It also has two diffusible fields, representing a chemoat-
tractant, ATTR, and a chemorepellent, REP. Because the default boundary energy between
any generalised-cell type and the edge of the cell lattice is zero, we define a surrounding
wall to prevent cells from sticking to the cell-lattice boundary. As in our previous simu-
lations, we assign cell types using the CellType plugin. Note the new syntax in the line
specifying the cell type making up the walls:

<CellType TypeName="Wall” Typeld="4" Freeze=""/>

The Freeze="" attribute excludes generalised cells of type Wall from participating in index
copies, which makes the walls immobile.

We replace the Volume plugin with VolumeFlex and add the plugin SurfaceFlex. These
plugins allow independent assignment of target values and constraint strengths in the
volume-constraint and surface-constraint energies (equations and (B))). These plugins
require a line for each generalised-cell type, specifying the type name and the target volume
(or target surface area), and Ay (or Agyy) for that generalised-cell type, e.g.:

<VolumeEnergyParameters CellType="Name” TargetVolume="Value”
LambdaVolume="Value” />

We implement the actual bacterium-macrophage “chasing” mechanism using the Chemotaxis
plugin, which specifies how a generalised cell of a given type responds to a field. The
Chemotaxis plugin biases a cells motion up or down a field gradient by changing the cal-
culated effective-energy change used in the acceptance function, equation . For a field

27

c(i):
A]{Chem - —/\(C<l) - C(J))) (9)

where ¢(i) is the chemical field at the index-copy target pixel, ¢(j) the field at the index-
copy source pixel, Acem the strength and direction of chemotaxis. If Aper, > 0 and ¢(i) >
c(j), then AH e is negative, increasing the probability of accepting the index copy in
equation . The net effect is that the cell moves up the field gradient with a velocity
~ Aehem V. If X < 0 is negative, the opposite occurs, and the cell will move down the field
gradient. Plugins with more sophisticated AHem calculations (e.g., including response
saturation) are available within CompuCell3D (see the CompuCell3D User Guide).

%

AH gy == (6(1)- (1)) D S L

A, >0

chem

Figure 9: Connecting a field to GGH dynamics using a chemotaxis-energy term. The difference in the
value of the field ¢ at the source, j, and target, i, pixels changes the AH of the index-copy attempt. Here
c(i) > ¢(j) and A > 0, s0 AHchem < 0, increasing the probability of accepting the index-copy attempt in

equation .

In the Chemotaxis plugin we must identify the names of the fields, where the field infor-
mation is stored, the list of the generalised-cell types that will respond to the fields, and
the strength and direction of the response (Lambda = Achem). The information for each
field is specified using the syntax:

<ChemicalField Source=" where_field_is_stored” Name="field_name”>
<ChemotaxisByType Type="cell_typel” Lambda="lambdal” />
<ChemotaxisByType Type="cell_type2” Lambda="lambdal” />
</ChemicalField>

In our current example, the first field, named ATTR, is stored in FlexibleDiffusionSolverFE.
Macrophage cells are attracted to ATTR with Achem = 1. None of the other cell types re-
sponds to ATTR. Similarly, Bacterium cells are repelled by REP with Ao, = —0.1.

Keep in mind that fields are not created within the Chemotaxis plugin, which only speci-
fies how different cell types respond to the fields. We define and store the fields elsewhere.
Here, we use the FlexibeDiffusionSolverFE steppable as the source of our fields. The

28

FlexibleDiffusionSolverFE steppable is the main CompuCell3D tool for defining diffus-
ing fields, which evolve according to the diffusion equation:

9

% = D(i)V2%c(i) — k(i)c() + s(i) (10)
where ¢(i) is the field concentration and D(i), k(i), and s(i) denote the diffusion constant
(in m?/s), decay constant (in s™') and secretion rates (in concentration/s) of the field,
respectively. D(i), k(i), and s(i) may vary with position and cell-lattice configuration.

Asin the Chemotaxis plugin, we may define the behaviours of multiple fields, enclosing each
one within <DiffusionField> tag pairs. For each field defined within a <DiffusionData>
tag pair, users provide values for the name of the field (using the <FieldName> tag pair),
the diffusion constant (using the <DiffusionConstant> tag pair) , and the decay constant
(using the <DiffusionConstant> tag pair). Forward-Euler methods are numerically unsta-
ble for large diffusion constants, limiting the maximum nominal diffusion constant allowed
in CompuCell3D simulations. However, by increasing the PDE-solver calling frequency,
which reduces the effective time step, CompuCell3D can simulate arbitrarily large diffu-
sion constants. For more information, see the CompuCell3D User Guide.

Each optional <DoNotDiffuseTo> tag pair, with syntax:

<DoNotDiffuseTo>cell _type</DoNotDiffuseTo>

prevents the field from diffusing into field-lattice pixels where the corresponding cell-lattice
pixel, i, is occupied by a cell, o(i), of the specified type. In our case, chemical fields do not
diffuse into the pixels occupied by Wall or Red cells. The optional <SecretionData> tag
pair defines a subsection which identifies cells types that secrete or absorb the field and
the rates of secretion:

<SecretionData>
<Secretion Type="cell_typel”’>real_ratel</Secretion>
<Secretion Type="cell_type2”’>real_rate2</Secretion>
<SecretionData>

A negative rate simulates absorption. In the bacterium and macrophage simulation,
Bacterium cells secrete ATTR and Macrophage cells secrete REP.

We load the initial configuration for the bacterium-and-macrophage simulation using the
PIFInitializer steppable. Many simulations require initial generalised-cell configurations
that we cannot easily construct from primitive regions filled with cells using BlobInitializer
and UniformInitializer. To allow maximum flexibility, CompuCell3D can read the ini-
tial cell-lattice configuration from Pizel Initialization Files (PIFs). A PIF is a text file that
allows users to assign multiple rectangular (parallelepiped in 3D) pixel regions or single
pixels to particular cells.

Each line in a PIF has the syntax:

29

Cell_id Cell_type x_low x_high y_low y_high z_low z_high

where Cell_id is a unique cell index. A PIF may have multiple, possibly non-adjacent,
lines starting with the same Cell_id; all lines with the same Cell_id define pixels of
the same generalised cell. The values x_low, x high, y_low, y_-high, z low and z_high
define rectangles (parallelepipeds in 3D) of pixels belonging to the cell. In the case of
overlapping pixels, a later line overwrites pixels defined by earlier lines. The following line
describes a 6 x 6-pixel square cell with cell index 0 and type Amoeba:

0 Amoeba 10 15 10 15 0 0

If we save this line to the file ’amoebae.pif’, we can load it into a simulation using the
following syntax:

<Steppable Type=" PIFInitializer”>
<PIFName>amoebae . pif</PIFName>
</Steppable>

Listing [5| illustrates how to construct arbitrary shapes using a PIF. Here we define two
cells with indices 0 and 1, and cell types Amoeba and Bacterium, respectively. The main
body of each cell is a 6 x 6 square to which we attach additional pixels.

Listing 5: Simple PIF initialising two cells.

0 Amoeba 10 15 10 15 0 0
1 Bacterium 25 30 25 30 0 O
0 Amoeba 16 16 15 15 0 0
1 Bacterium 25 27 31 35 0 0

All lines with the same cell index (first column) define a single cell.
Figure [10] shows the initial cell-lattice configuration specified in Listing [5}

In practice, because constructing complex PIFs by hand is cumbersome, we generally use
custom-written scripts to generate the file directly, or convert images stored in graphical
formats (e.g., gif, jpeg, png) from experiments or other programs.

Listing [6] shows the PIF for the bacterium-and-macrophage simulation.

30

Figure 10: Initial configuration of the cell lattice based on the PIF in Listing

Listing 6: PIF defining the initial cell-lattice configuration for the bacterium-and-
macrophage simulation. The file is stored as "bacterium_macrophage 2D _wall v3.pif’.

0O Uik W~ O

= e e e e e e e e e e ©
© 00 I UL WN—=OOOO

20
21
22
23
24

Red 10 20 10 20 0 O
Red 10 20 40 50 0 O
Red 10 20 70 80 0 O
Red 40 50 0 10 0 O
Red 40 50 30 40
Red 40 50 60 70
Red 40 50 90 95
Red 70 80 10 20
Red 70 80 40 50
Red 70 80 70 80
Wall 099 01 0 0

Wall 98 99 0 99 0 0

Wall 0 99 98 99 0 0

Wall 01 0 99 0 0
Bacterium 5 5 5 5 0 0
Macrophage 35 35 35 35 0 0
Bacterium 65 65 65 65 0 0
Bacterium 65 65 5 5 0 0
Bacterium 5 5 65 65 0 0
Macrophage 75 75 95 95 0 0
Red 24 28 10 20 0

Red 24 28 40 50
Red 24 28 70 80
Red 40 50 14 20
Red 40 50 44 50
Red 40 50 74 80
Red 54 59 90 95
Red 70 80 24 28

jes il en i en e Bl e en]
OO OO oo

DO DD DO O OO
OO OO O oo

31

25 Red 70 80 54 59 0 0
26 Red 70 80 84 90 0 0
27 Macrophage 10 10 95 95 0 0O

In Listing 4 we read the cell lattice configuration from the file "bacterium_macrophage_2D _wall_v3.pif’

using the lines:

<Steppable Type="PIFInitializer”>
<PIFName>bacterium_macrophage_2D _wall_v3. pif</PIFName>
</Steppable>

Figure shows snapshots of the bacterium-and-macrophage simulation. By adjusting
the properties and number of bacteria, macrophages and red blood cells and the diffusion
properties of the chemical fields, we can build a surprisingly good reproduction of the
experiment.

Figure 11: Snapshots of the bacterium-and-macrophage simulation from Listing 4 and the PIF in Listing 6
saved in the file 'bacterium_macrophage_2D_wall_v3.pif’. The upper row shows the cell-lattice configuration
with the Macrophages in grey, Bacteria in white, red blood cells in dark grey and Medium in blue. Middle
row shows the concentration of the chemoattractant ATTR secreted by the Bacteria. The bottom row
shows the concentration of the chemorepellant REPL secreted by the Macrophages. The bars at the bottom
of the field images show the concentration scales (blue, low concentration, red, high concentration).

32

6 Python Scripting

CC3DML is convenient for building simple simulations such as those we presented above.
To describe more complex simulations, CompuCell3D allows users to write specialized,
shareable modules in C/C++ (through the CompuCell3D Application Programming In-
terface, or CC3D API) or Python (through a Python-scripting interface). C and C+-+
modules have the advantage that they run at native speed. However, developing them
requires knowledge of both C/C++ and the CC3D API, and their integration with Com-
puCell3D requires recompilation of the source code. Python module development is less
complicated, since Python has simpler syntax than C/C++ and users can modify and ex-
tend a library of Python-module templates included with CompuCell3D. Moreover, Python
modules do not require recompilation.

Tasks performed by CompuCell3D modules either relate to index-copy attempts (plugins)
or run either once, at the beginning or end of a simulation, or once every several MCS
(steppables). Tasks run every index-copy attempt, like effective-energy-term calculations,
are the most frequently-called tasks in a GGH simulation and writing them in Python may
slow simulations. However, steppables and lattice monitors are good candidates for Python
implementation and cause negligible performance degradation. Python implementations
are suitable for most cell-parameter adjustments that depend on the state of the simulation,
e.g., simulating cell growth in response to a chemical, cell-type differentiation and changes
in cell-cell adhesion.

6.1 A Short Introduction to Python

Python is an object-oriented scripting language with all the syntactic constructs present
in any modern programming language. Python supports popular flow-control statements
such as if-elif-else conditional instructions and for and while loops. Unlike C/C++,
Python does not use ’’ to end lines or '{" and '}’ to define code blocks. Instead, Python
relies on indentation to define blocks of code. if statements, for or while loops and their

9.9

subsections are created by a .’ and increasing the level of indentation. The end of a block

is indicated by a decrease in the level of indentation. Python uses the =" operator for
assignments and '==" for checking equality between objects. For example, in the following
code:
b=2
b==2:
a=10
¢ range (0,a):
b=a+c
b

33

we indent the body of the if statement and the body of the inner for loop. The for loop
is executed inside the if statement. a=0 assigns the variable a a value of 10, while b==2
is true if b has a value of 2. The for loop assigns the variable ¢ values 0 through a-1 and
executes instructions inside the loop body.

As an object-oriented language, Python supports classes, inheritance and polymorphism.
Accessing members of objects uses the ’.” operator. For example, to access the real part of
a complex number, we use the following code:

a=complex (2,3)
a=1.540.5]
a.real

Here, real is a member of the Python class complex, which represents complex numbers.
If the object has composite subobjects, we use the ’.” operator recursively:

object .subobject . member_of_subobject

Users may define Python objects without declaring their type. A single data structure
such as a list or dictionary can store objects of multiple types. Python provides auto-
matic memory management, which frees users from remembering to deallocate memory for
objects that are no longer used.

Long source code lines can be carried over to the following line using the ’\’ character:

very_long _variable_name = \
very_long_variable_name * very_important_constant

9

Note that double underscore '_" has a reserved meaning in Python and should not be
confused with a single underscore ’_".

We will present additional Python features in the subsequent sections and explain step-
by-step some basic concepts of Python programming (for more on Python, see Learning
Python, by Mark Lutz (98)). For more information on Python scripting in CompuCell3D,
see our Python Tutorials and CompuCell3D User Guide (available from the CompuCell3D
website, www.compucell3d.org).

6.2 Building Python-Based CompuCell3D Simulations

Python scripting allows users to augment their CC3DML configuration files with Python
scripts or to code their entire simulations in Python (in which case the Python script looks
very similar to the CC3DML script it replaces). Listing [7| shows the standard block of
template code for running a Python script in conjunction with a CC3DML configuration

file.

34

http://www.compucell3d.org

Listing 7: Basic Python template to run a CompuCell3D simulation through a Python
interpreter. Later examples will be based on this script.

Sys
os environ
0s getcwd
string
sys.path.append (environ ["PYTHON MODULE PATH” |)
CompuCellSetup

sim , simthread = CompuCellSetup. getCoreSimulationObjects ()

#Create extra player fields here or add attributes
CompuCellSetup. initializeSimulationObjects (sim ,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup . getSteppableRegistry ()
CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

The import sys line provides access to standard functions and variables needed to ma-
nipulate the Python runtime environment. The next two lines,

0s environ
0s getcwd

import environ and getcwd housekeeping functions into the current namespace (i.e., cur-
rent script) and are included in all our Python programs. In the next three lines,

string
sys.path.append (environ ["PYTHON MODULE PATH” |)
CompuCellSetup

we import the string module, which contains convenience functions for performing op-
erations on strings of characters, set the search path for Python modules and import the
CompuCellSetup module, which provides a set of convenience functions that simplify ini-
tialisation of CompuCell3D simulations.

Next, we create and initialize the core CompuCell3D modules:

sim , simthread = CompuCellSetup. getCoreSimulationObjects ()
CompuCellSetup . initializeSimulationObjects (sim,simthread)

We then create a steppable registry (a Python container that stores steppables, i.e., a list
of all steppables that the Python code can access) and pass it to the function that runs
the simulation:

35

steppableRegistry=CompuCellSetup . getSteppableRegistry ()
CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

In the next section, we extend this template to build a simple simulation.

6.3 Cell-Type-Oscillator Simulation

Suppose that we would like to add a caricature of oscillatory gene expression to our cell-
sorting simulation (Listing [3)) so that cells exchange types every 100 MCS. We will imple-
ment the changes of cell types using a Python steppable, since it occurs at intervals of 100
MCS.

Listing [§| shows the changes to the Python template in Listing [7| that are necessary to
create the desired type switching (changes are shown in bold).

Listing 8: Python script expanding the template code in Listing [7| into a simple
TypeSwitcherSteppable steppable. The code illustrates dynamic modification of cell
parameters using a Python script. Lines added to Listing [7| are shown in bold.

Sys

0s environ

0s getcwd
string

sys.path.append(environ ["PYTHONMODULE PATH” |)

CompuCellSetup
sim , simthread = CompuCellSetup. getCoreSimulationObjects ()

PySteppables *

TypeSwitcherSteppable (SteppablePy):
__init__(self , _simulator , frequency=100):
SteppablePy. __init__(self , frequency)
self.simulator=_simulator
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

step(self ,mcs):

cell self.cellList:
cell .type==1:
cell .type=2

(cell . type==2):

36

cell .type=1

"Unknown.type..In_cellsort _.simulation)
________________ there.should.only._be_two_types._1_and.2”

#Create extra player fields here or add attributes
CompuCellSetup . initializeSimulationObjects (sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup . getSteppableRegistry ()
typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable (typeSwitcherSteppable)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

A CompuCell3D steppable is a class (a type of object) that holds the parameters and
functions necessary for carrying out a task. Every steppable defines at least 4 functions:
__init__(self, _simulator, _frequency), start(self), step(self, mcs) and finish(self).

CompuCell3D calls the start(self) function once at the beginning of the simulation be-
fore any index-copy attempts. It calls the step(self, mcs) function periodically after
every _frequency MCS. It calls the finish(self) function once at the end of the simu-
lation. Listing |8l does not have explicit start(self) or finish(self) functions. Instead,
the class definition :

TypeSwitcherSteppable (SteppablePy):

causes the TypeSwitcherSteppable to inherit components of the SteppablePy class.
SteppablePy contains default definitions of the start (self), step(self,mcs) and finish(self)
functions. Inheritance reduces the length of the user-written Python code and ensures that

the TypeSwitcherSteppable object has all needed components. The line:

PySteppables *

makes the content of "PySteppables.py’ file (or module) available in the current namespace.
The PySteppables module includes the SteppablePy base class.

The __init__ function is a constructor that accepts user-defined parameters and initialises
a steppable object. Consider the __init__ function of the TypeSwitcherSteppable:

__init__(self , _simulator , _-frequency =100):

SteppablePy. __init__(self , frequency)
self.simulator=_simulator
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

37

In the def line, we pass the necessary parameters: self (which is used in Python to access
class variables from within the class), _simulator (the main CompuCell3D kernel object
which runs the simulation), and _frequency (which tells steppableRegistry how often to
run the steppable, here, every 100 MCS). Next we call the constructor for the inheritance
class, SteppablePy, as required by Python. The following statement:

self.simulator=_simulator

assigns to the class variable self.simulator a reference to _simulator object, passed
from the main script. We can think about Python reference as a pointer variable that
stores the address of the object but not a copy of the object itself. The last two lines
construct a list of all generalised cells in the simulation, a cell inventory, which allows us
to visit all the cells with a simple for loop to perform various tasks. The cell inventory
is a dynamic structure, i.e., it updates automatically when cells are created or destroyed
during a simulation.

The section of the TypeSwitcherSteppable steppable which implements the cell-type
switching is found in the step(self, mcs) function:

step (self ,mcs):

cell self.cellList:
cell . type==1:
cell .type=2
(cell.type==2):

cell .type=1

7 Unknown.type”

Here we use the cell inventory to iterate over all cells in the simulation and reassign their
cell types between cell.type 1 and cell.type 2. If we encounter a cell.type that is
neither 1 nor 2 (which we should not), we print an error message.

Once we have created a steppable (i.e., created an object of class TypeSwitcherSteppable)
we must register it using registerSteppable function from steppableRegistry object:

typeSwitcherSteppable=TypeSwitcherSteppable (sim,100);
steppableRegistry .registerSteppable (typeSwitcherSteppable)

CompuCell3D will not run unregistered steppables. As we will see, much of the script is
not specific to this example. We will recycle it with slight changes in later examples.

Figure 12| shows snapshots of the cell-type-oscillator simulation.

We mentioned earlier that users can run simulations without a CC3DML configuration file.
Listing [9] shows the cell-type-oscillator simulation written entirely in Python, with changes
to Listing [§ shown in bold.

38

Figure 12: Results of the Python cell-type-oscillator simulation using the TypeSwitcherSteppable
steppable implemented in Listing [§ in conjunction with the CC3DML cell-sorting simulation in Listing
Cells exchange types and corresponding adhesivities and colors every 100 MCS; i.e., between t = 90 MCS
and t = 110 MCS and between t = 1490 MCS and t = 1510 MCS.

Listing 9: Stand-alone Python cell-type-oscillator script containing an initial section
that replaces the CC3DML configuration file from Listing 3. Lines added to Listing
are shown in bold.

def configureSimulation (sim):
import CompuCell
import CompuCellSetup

ppd=CompuCell. PottsParseData ()

ppd. Steps (20000)

ppd. Temperature (5)

ppd. NeighborOrder (2)

ppd. Dimensions (CompuCell . Dim3D(100,100,1))

ctpd=CompuCell. CellTypeParseData ()

ctpd. CellType (”Medium” ,0)

ctpd. CellType (” Condensing” ,1)

ctpd. CellType (" NonCondensing” ,2)
cpd=CompuCell. ContactParseData ()

cpd . Energy (” Medium” ,” Medium” ,0)

cpd . Energy (" NonCondensing” ,” NonCondensing” ;16)
cpd . Energy (” Condensing” ,” Condensing” ,2)

cpd . Energy (" NonCondensing” ,” Condensing” ,11)
cpd.Energy (?”NonCondensing” ,” Medium” ,16)
cpd.Energy (” Condensing” ,” Medium” ,16)

vpd=CompuCell. VolumeParseData ()
vpd . LambdaVolume (1.0)
vpd. TargetVolume (25.0)

bipd=CompuCell. BlobInitializerParseData ()
region=bipd . Region ()
region . Center (CompuCell.Point3D (50,50,0))

39

region . Radius (40)

region . Types(” Condensing”)
region . Types(” NonCondensing”)
region . Width (5)

CompuCellSetup . registerPotts (sim ,ppd)
CompuCellSetup . registerPlugin (sim, ctpd)
CompuCellSetup . registerPlugin (sim , cpd)
CompuCellSetup . registerPlugin (sim ,vpd)
CompuCellSetup . registerSteppable (sim, bipd)

sys

0s environ

os getcwd
string

sys.path.append (environ ["PYTHONMODULE PATH”])

CompuCellSetup
sim , simthread = CompuCellSetup. getCoreSimulationObjects ()

configureSimulation (sim)
PySteppables *

TypeSwitcherSteppable (SteppablePy):
__init__(self ,_simulator , _frequency=100):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

step (self ,mcs):

cell self.cellList:
cell . type==1:
cell .type=2

(cell.type==2):
cell .type=1

"Unknown._type.._.In_cellsort._simulation_.there_should

wwwwwwwwwwwwwwww only_be_two_types.l_and._2”

#Create extra player fields here or add attributes
CompuCellSetup . initializeSimulationObjects (sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup. getSteppableRegistry ()

40

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable (typeSwitcherSteppable)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

The configureSimulation function replaces the CC3DML file from Listing 3. After im-
porting CompuCell and CompuCellSetup, we have access to functions and modules that
provide all the functionality necessary to code a simulation in Python. The general syntax
for the opening lines of each block is:

snpd=CompuCell. SectionNameParseData ()

where SectionName refers to the name of the section in a CC3DML configuration file and
snpd is the name of the object of type SectionNameParseData. The rest of the block
usually follows the syntax:

snpd . TagName (values)

where TagName corresponds to the name of the tag pair used to assign a value to a parameter
in a CC3DML file. For values within subsections, the syntax is:

snpd . SubsectionName (). TagName(values)

To input dimensions, we use the syntax:

snpd . TagName (CompuCell . Dim3D (x_dim ,y_dim ,z_dim))

where x_dim, y_dim, and z_dim are the x,y and z dimensions. To input a set of (z,y, z)
coordinates, we use the syntax:

snpd . TagName (CompuCell . Point3D (x_coord , y_coord ,z_coord))

where x_coord, y_coord, and z_coord are the x,y, and z coordinates.

In the first block (PottsParseData), we input the cell-lattice parameter values using the
syntax:

ppd.ParameterName (value)

where ParameterName matches a parameter name used in the CC3DML lattice section.

Next we define the cell types using the syntax:

41

ctpd. CellType(” cell _type” ,cell_id)

The next section assigns boundary energies between the cell types:

cpd.Energy (" cell type_1”,7cell _type_2” contact_energy)

We specify the rest of the parameter values in a similar fashion, following the general
syntax described above.

The examples in Listing [§ and Listing [J] define the TypeSwitcherSteppable class within
the main Python script. However, separating extension modules from the main script and
using an statement to refer to modules stored in external files is more practical.
Using separate files ensures that each module can be used in multiple simulations without
duplicating source code, and makes scripts more readable and editable. We will follow this
convention in our remaining examples.

6.4 Two-Dimensional Foam-Flow Simulation

CompuCell3D can simulate simple physical experiments with foams. Indeed, GGH tech-
niques grew out of foam-simulation techniques (73). Our next example shows how to use
CC3DML and Python scripts to simulate quasi-two-dimensional foam flow.

air injected
through top
plate
% foam enters /> glass plates l .
) V) foam exits
I/ ¥V
foam generator I

plate separation, d

Figure 13: Schematic of experiment for studying quasi-2D foam flow.

The experimental apparatus (Figure consists of a channel created by two parallel
rectangular glass plates separated by 5 mm, with the gap between their long sides sealed
and that between their short sides open. A foam generator injects small, uniform size
bubbles at one short end, pushing older bubbles towards the open end of the channel,
creating a foam flow. The top glass plate has a hole through which we inject air. Bubbles
passing under this point grow because of the air injected into them, forming characteristic

patterns (Figure (99).

42

Figure 14: Detail of processed experimental image of flowing quasi-2D bubbles. Image size is 15 x 15
cm.

Generalised cells will represent bubbles in this simulation. To simulate this experiment in
CompuCell3D we need to write Python steppables that 1) create bubbles at one end of
the channel, 2) inject air into the bubble which includes a given location (the identity of
this bubble will change in time due to the flow), 3) remove bubbles at the open end of the
channel. We will store the source code in a file called foamairSteppables.py. We will
also need a main Python script to call these steppables appropriately.

We simulate bubble injection by creating generalised cells (bubbles) along the lattice edge
corresponding to the left end of the channel (small-z values of the cell lattice). We simulate
air injection into a bubble at the injection point, by identifying the bubble currently at the
injection point and increasing its target volume at a fixed rate. Removing a bubble from
the simulation simply requires assigning it a target volume of zero once it comes close to
the right end of the channel (large-z values of the cell lattice).

We first define a CC3DML configuration file for the foam-flow simulation (Listing .

Listing 10: CC3DML configuration file for the foam-flow simulation. This file initialises
needed plugins but all of the interesting work is done in Python.

<CompuCell3D>

<Potts>
<Dimensions x="200" y="50" z="1"/>

43

<Steps>10000</Steps>

<Temperature>5</Temperature>

<LatticeType>Hexagonal</LatticeType>
</Potts>

<Plugin Name="VolumeLocalFlex” />

<P1ugin Name=" CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Foam” Typeld="1"/>
</Plugin>

<Plugin Name="Contact”>
<Energy Typel="Medium” Type2="Medium”>5</Energy>
<Energy Typel="Foam” Type2="Foam”>5</Energy>
<Energy Typel="Foam” Type2="Medium”>5</Energy>
<NeighborOrder>3</NeighborOrder>

</Plugin>

<Plugin Name=" CenterOfMass” />

</CompuCell3D>

The CC3DML configuration file is simple: it initialises the VolumeLocalFlex, CellType,
Contact and CenterOfMass plugins. We do not use a cell-lattice-initializer steppable,
because all bubbles are created as the simulation runs. We use VolumeLocalFlex because
individual bubbles will change their target volumes during the simulation. We also include
the CenterOfMass plugin to track the changing centroids of each bubble. The CenterOf
Mass plugin in CompuCell3D actually calculates x¢, the centroid of the generalised cell
multiplied by volume of the cell:

xg =Y 1d(a(j), (i), (11)

i

so the actual centroid of the bubble is:

(12)

The ability to track a generalised-cells centroid is useful if we need to pick a single reference
point in the cell. In this example we will remove bubbles whose centroids have z-coordinate
greater than a cutoff value.

We will implement the Python script in four sections: 1) a main script (Listing , which
runs every MCS and calls the steppables to (2) create bubbles at the left end of the cell

44

lattice (BubbleNucleator, Listing[12), (3) enlarge the target volume of the bubble at the
injector site (AirInjector, Listing 13), and (4) set the target volume of bubbles at the
right end of the cell lattice to zero (BubbleCellRemover, Listing 14). We store classes
(2-4) in a separate file called foamairSteppables.py.

Listing 11: Main Python Script for foam-flow simulation. Changes to the template
(Listing [7]) are shown in bold.

Sys
0s environ
string
sys.path.append (environ ["PYTHON MODULE PATH” |)

CompuCellSetup
sim , simthread = CompuCellSetup. getCoreSimulationObjects ()

#Create extra player fields here
CompuCellSetup . initializeSimulationObjects (sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup. getSteppableRegistry ()

foamairSteppables BubbleNucleator
bubbleNucleator=BubbleNucleator (sim,20)
bubbleNucleator.setNumberOfNewBubbles (1)
bubbleNucleator.setInitialTargetVolume (25)
bubbleNucleator.setInitialLambdaVolume (2.0)
bubbleNucleator.setInitialCellType (1)
steppableRegistry.registerSteppable (bubbleNucleator)

foamairSteppables AirInjector
airInjector=AirInjector (sim,40)
airInjector.setVolumelncrement (25)
airInjector.setInjectionPoint (50,25,0)
steppableRegistry.registerSteppable(airlnjector)

foamairSteppables BubbleCellRemover
bubbleCellRemover=BubbleCellRemover (sim)
bubbleCellRemover.setCutoffValue (170)
steppableRegistry.registerSteppable (bubbleCellRemover)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

The main script in Listing [I1] builds on the template Python code in Listing [7} we show
changes in bold. The line:

45

foamairSteppables BubbleNucleator

tells Python to look for the BubbleNucleator class in the file named foamairStep-
pables.py.

bubbleNucleator=BubbleNucleator (sim, 20)

creates the steppable BubbleNucleator that will run every 20 MCS. The next few lines in
this section pass the number of bubbles to create, which in our case is one:

bubbleNucleator.setNumberOfNewBubbles (1)

the initial V; for the new bubble, which is 25 pixels:

bubbleNucleator.setInitialTargetVolume (25)

the initial A, for the bubble:

bubbleNucleator.setInitialLambdaVolume (2.0)

and the bubbles type.id:

bubbleNucleator.setInitialCellType (1)

Finally, we register the steppable:

steppableRegistry .registerSteppable (bubbleNucleator)

The next group of lines repeats the process for the AirInjector steppable, reading it from
the file foamairSteppables.py:

foamairSteppables AirInjector

AirInjector is run every 40 MCS:

airInjector=AirInjector (sim, 40)

and increases V; by 25:

airInjector.setVolumelncrement (25)

for the bubble occupying the pixel at the point (50,25,0) on the cell lattice:

airInjector.setInjectionPoint (50,25,0)

As before, the final line registers the steppable:

46

steppableRegistry .registerSteppable (airInjector)

The final new section reads the BubbleCellRemover steppable from the file foamairStep-
pables.py:

foamairSteppables BubbleCellRemover

and invokes the steppable, telling it to run every MCS; note that we have omitted the
number after sim:

bubbleCellRemover=BubbleCellRemover (sim)

Next we set 170 as the x-coordinate at which we will destroy bubbles:

bubbleCellRemover.setCutoffValue (170)

and, finally, register BubbleCellRemover

steppableRegistry .registerSteppable (bubbleCellRemover)

We must also write Python code to define the three steppables BubbleCellRemover,
AirInjector, and BubbleCellRemover and save them in the file foamairSteppables.py.

Listing [12] shows the code for the BubbleNucleator steppable.

Listing 12: Python code for the BubbleNucleator steppable. This module creates
bubbles at points with random y coordinates and x coordinate of 3.

CompuCell Point3D
random randint

BubbleNucleator (SteppablePy):
__init__(self , _simulator , _frequency=1):
SteppablePy. __init__(self , _frequency)
self .simulator=_simulator

start (self):
self . Potts=self.simulator.getPotts ()
self .dim=self.Potts.getCellFieldG ().getDim ()

setNumberOfNewBubbles(self ,_numNewBubbles):
self .numNewBubbles=int (.numNewBubbles)

setInitialTargetVolume (self ,_initTargetVolume):
self .initTargetVolume=_initTargetVolume

47

setInitialLambdaVolume (self , _initLambdaVolume):
self .initLambdaVolume=_initLambdaVolume

setInitialCellType (self , _initCellType):
self.initCellType=_initCellType

createNewCell (self ,pt):

”Nucleated _bubble_at_” ,pt
cell=self.Potts.createCellG (pt)
cell .targetVolume=self .initTargetVolume
cell .type=self.initCellType
cell .lambdaVolume=self .initLambdaVolume

nucleateBubble (self):
pt=Point3D (0,0,0)
pt.y=randint (0,self.dim.y—1)
pt.x=3

self.createNewCell (pt)

step (self ,mcs):
i xrange (self .numNewBubbles):
self .nucleateBubble ()

The first two lines import necessary modules, where the line:

CompuCell Point3D

allows us to access points on the simulation cell lattice, and the line:

random randint

allows us to generate random integers.

In the constructor of the BubbleNucleator steppable class we assign to the variable
self.simulator a reference to the simulator object from the CompuCell3D kernel. In the
start(self) function, we assign a reference to the Potts object from the CompuCell3D
kernel to the variable self.Potts:

self . Potts=self.simulator.getPotts ()

and assign the dimensions of the cell lattice to self.dim:

self .dim=self.Potts.getCellFieldG ().getDim ()

In addition to the four essential steppable member functions (__init__(self, _simulator,
_frequency), start(self), step(self, mcs) and finish(self)), BubbleNucleator

48

includes several functions, some of which set parameters and some of which perform
necessary tasks. The functions setNumberOfNewBubbles, setInitialTargetVolume and
setInitialLambdaVolume accept the values passed from the main Python script in List-

ing 1]

The CreateNewCell function requires that we pass the coordinates of the point, pt, at
which to create a new bubble:

CreateNewCell (self ,pt):

Then we use a built-in CompuCell3D function to add a new bubble at that location:

cell=self.Potts.createCellG (pt)

assigning the new cell a target volume V; = targetV olume:

cell . targetVolume=self.initTargetVolume

type, T = type:

cell .type=self.initCellType

and compressibility Ay = lambdaV olume:

cell .lambdaVolume=initLambdaVolume

based on the values passed to the BubbleNucleator steppable from the main script.

The first three lines of the nucleateBubble function create a reference to a point on the
cell lattice (pt=Point3D(0,0,0)), assign it a random y-coordinate between 0 and y_dim-1:

pt.y=randint (0,self.dim.y—1)

and an z-coordinate of 3:

pt.x=3

The line calls the createNewCell function and passes it the point (pt) at which to create
the new bubble:

self.createNewCell (pt)

Finally, the step(self ,mcs) function calls the nucleateBubble function self .numNewBubbles
times per MCS.

Listing 13| shows the code for the AirInjector steppable.

49

Listing 13: Python code for the Airlnjector steppable which stimulates air injection
into the bubble currently occupying the cell-lattice pixel. Air injection begins after
5000 MCS to allow the channel to partially fill with bubbles.

AirInjector (SteppablePy):
__init__(self , _simulator , _frequency=1):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator
self.Potts=self.simulator.getPotts ()
self.cellField=self.Potts.getCellFieldG ()

start (self):

setInjectionPoint (self , x,_y, _z):
self.injectionPoint=CompuCell.Point3D (int (_x),int(.-y),int (-z))
setVolumelIncrement (self , _increment):
self.volumelncrement=_increment

step(self ,mcs):
mes <5000:

cell=self.cellField.get(self.injectionPoint)
cell:
cell .targetVolume+=self.volumelncrement

The first three lines of the __init__(self, _simulator, frequency) function are identical
to the same lines in the BubbleNucleator steppable (Listing . The final line of the
function:

self.cellField=self.Potts.getCellFieldG ()

loads the cell-lattice parameters. The start (self) function in this steppable does not do
anything:

start (self):

The next two functions read the injectionPoint and volumeIncrement passed to the
AirInjector steppable by the main Python script (Listing [I1)). The step function uses
these values to identify the bubble at the injection site, self.injectionPoint:

cell=self.cellField.get(self.injectionPoint)

and then increment that bubbles target volume V; by self.volumeIncrement:

20

cell:
cell . targetVolume+=self.volumelncrement

Note the syntax:

cell:

which we use to test whether a cell is Medium or not. Medium in CompuCell3D is assigned a
NULL pointer, which, in Python, becomes a None object. Python evaluates the None object
as False and other objects (in our case, bubbles) as True, so the task is only carried out
on bubbles, not Medium.

In the first two lines of the step(self,mcs) function, we tell the function not to perform
its task until 5000 MCS have elapsed:

mcs <5000:

The 5000 MCS delay allows the simulation to establish a uniform flow of small bubbles
throughout a large portion of the cell lattice.

Finally, we define the BubbleCellRemover steppable (Listing which we save in the file
foamairSteppables.py.

Listing 14: Python code for the BubbleCellRemover steppable. This module removes
cells once the x-coordinates of their centroids > cutoffValue by setting their target
volumes to zero and increasing their A, to 10000.

BubbleCellRemover (SteppablePy):
__init__(self , _simulator , _frequency=1):
SteppablePy. __init__(self , frequency)
self.simulator=_simulator
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

start (self):
self . Potts=self.simulator.getPotts ()
self .dim=self.Potts.getCellFieldG (). getDim ()

setCutoffValue (self , _cutoffValue):
self . cutoffValue=_cutoffValue

step(self ,mcs):
cell self.cellList:
cell:

51

int (cell .xCM/float (cell.volume))>self.cutoffValue:
cell .targetVolume=0
cell .lambdaVolume=10000

At each MCS we scan the cell inventory looking for cells whose centroid has an z-coordinate
close to the right end of the lattice and remove these cells from the simulation by setting
their target volumes to zero and increasing A, to 10000.

The first two lines of the __init__ (self, simulator, frequency) function are identical
to the corresponding lines in the BubbleNucleator and AirInjector steppables (Listing
and Listing . In the third line of the function, we gain access to the generalised-cell
inventory:

self .inventory=self.simulator.getPotts (). getCelllnventory ()

and in the fourth line we make a list containing all of the generalised cells in the simulation:

self.cellList=CellList (self.inventory)

The start(self) function is identical to that of the BubbleNucleator steppable (List-
ing , and performs the same function.

The next function:

setCutoffValue (self , _cutoffValue)

reads the cutoffValue for the z-coordinate that we passed to BubbleCellRemover from
the main Python script (Listing . Finally, the step(self, mcs) function iterates
through the cell inventory. We first check to make sure that the cell is not Medium:

cell:

For each non-Medium cell we test whether the z-coordinate of the cells centroid is greater
than the cutoffValue:

int (cell .xCM/float (cell .volume))>self.cutoffValue:

and, if it is, set that cells targetVolume, V;, to zero:

cell .targetVolume=0

and its Ao = 10000:

cell .lambdaVolume=10000

52

Running the CC3DML file from Listing [10| and the main Python script from Listing
(which loads the steppables in Listing Listing and Listing from the file foa-
mairSteppables.py) produces the snapshots shown in Figure

Fie R
e,
ERTAEEL T
RIS | Ay
R R
Ao a0 uipt iy g yw e,

i e o i T

BEEY: iﬁ,.}ﬂ

.8
(s

bt
Kol SS

Sainaey

AR
PaIReble e
Gifiaates

Figure 15: Results of the foam-flow simulation on a 2D 3rd-neighbor hexagonal lattice at ¢t = 200
MCS, t = 2000 MCS, t = 5500 MCS, t = 7500 MCS, and ¢t = 9880 MCS. Simulation code is given in

Listing [I0] Listing [TT} Listing [I2] Listing [I3] and Listing [14}

6.5 Diffusing-Field-Based Cell-Growth Simulation

One of the most frequent uses of Python scripting in CompuCell3D simulations is to
modify cell behavior based on local field concentrations. To demonstrate this use, we

23

incorporate stem-cell-like behavior into the cell-sorting simulation from Listing 1. This
extension requires including relatively sophisticated interactions between cells and diffusing
chemical, FGF (100).

We simulate a situation where NonCondensing cells secrete FGF, which diffuses freely
through the cell lattice and obeys:

a[%f](?) = 0.10V*[FGF](7) + 0.05(7(o(i)), NonCondensing) , (13)

where [FGF] denotes the FGF concentration and Condensing cells respond to the field by

growing at a constant rate proportional to the FGF concentration at their centroids:

dVi(o)
dt

— 0.01[FGF](Z,) (14)

When they reach a threshold volume, the Condensing cells undergo mitosis. One of the re-
sulting daughter cells remains a Condensing cell, while the other daughter cell has an equal
probability of becoming either another Condensing cell or a DifferentiatedCondensing
cell. DifferentiatedCondensing cells do not divide.

Each generalised cell in CompuCell3D has a default list of attributes, e.g., type, volume,
surface (area), target volume, etc. However, CompuCell3D allows users to add cell at-
tributes during execution of simulations. For example, in the current simulation, we will
record data on each cell division in a list attached to each cell. Generalised cell attributes
can be added using either C++ or Python. However, attributes added using Python are
not accessible from C++ modules.

As in the foam-flow simulation, we divide the necessary simulation tasks among different
Python modules (or classes) which we save in a file cellsort_2D _field modules.py and
call from the main Python script. We reuse elements of the CC3DML files we presented
earlier to construct the CC3DML configuration file, presented in Listing [15]

Listing 15: CC3DML code for the diffusing-field-based cell-growth simulation.

<CompuCell3D>

<Potts>
<Dimensions x="200" y="200" z="1"/>
<Steps>10000</Steps>

<Temperature>10</Temperature>
<NeighborOrder>2</NeighborOrder>
</Potts>

o4

<Plugin Name="VolumeLocalFlex” />

<Plugin Name=" CellType”>

<CellType TypeName="Medium” Typeld="0" />

<CellType TypeName="Condensing” Typeld="1"/>

<CellType TypeName="NonCondensing” Typeld="2" />

<CellType TypeName="CondensingDifferentiated” Typeld="3"/>
</Plugin>

<Plugin Name="Contact”>
<Energy Typel="Medium” Type2="Medium”>0</Energy>
<Energy Typel="NonCondensing” Type2="NonCondensing”>16</Energy>
<Energy Typel="Condensing” Type2="Condensing”’>2</Energy>
<Energy Typel="NonCondensing” Type2="Condensing”>11</Energy>
<Energy Typel="NonCondensing” Type2="Medium”>16</Energy>
<Energy Typel="Condensing” Type2="Medium”>16</Energy>
<Energy Typel="CondensingDifferentiated”
Type2="CondensingDifferentiated”>2</Energy>
<Energy Typel="CondensingDifferentiated” Type2="Condensing”>2</Energy>
<Energy Typel="CondensingDifferentiated”
Type2="NonCondensing”>11</Energy>
<Energy Typel="CondensingDifferentiated” Type2="Medium”>16</Energy>
<NeighborOrder>2</NeighborOrder>
</Plugin>

<Plugin Name="CenterOfMass” />

<Steppable Type="FlexibleDiffusionSolverFE”">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.10</DiffusionConstant>
<DecayConstant>0.00005</DecayConstant>
</DiffusionData>
<SecretionData>
<Secretion Type="NonCondensing”>0.05</Secretion>
</SecretionData>
</DiffusionField>
</Steppable>

<Steppable Type="Bloblnitializer”>
<Region>
<Gap>0</Gap>
<Width>5</Width>
<Radius>40</Radius>
<Center x="100" y="100" z="0"/>
<Types>Condensing , NonCondensing</Types>
</Region>
</Steppable>

95

</CompuCell3D>

The CC3DML code is a slightly extended version of the cell-sorting code in Listing |3| plus
the FlexibleDiffusionSolverFE discussed in the bacterium-and-macrophage simulation
(see Listing [4)). The initial cell-lattice does not contain any CondensingDifferentiated
cells. These cells appear only as the result of mitosis. We use the VolumeLocalFlex
plugin to allow the target volume to vary individually for each cell, allowing cell growth as
discussed in the foam-flow simulation. We manage the volume-constraint parameters using
a Python script. The Center0OfMass plugin provides a reference point in each cell at which
we measure the FGF concentration. We then adjust the cell’s target volume accordingly.

To build this simulation in CompuCell3D we need to write several Python routines. We
need:

1. A steppable, VolumeConstraintSteppable to initialize the volume-constraint pa-
rameters for each cell and to simulate cell growth by periodically increasing Condensing
cells target volumes in proportion to the FGF concentration at their centroids.

2. A plugin, CellsortMitosis, that runs the CompuCell3D mitosis algorithm when
any cell reaches a threshold volume and then adjusts the parameters of the resulting
parent and daughter cells. This plugin also appends information about the time and
type of cell division to a list attached to each cell.

3. A steppable, MitosisDataPrinterSteppable, that prints the cell-division informa-
tion from the lists attached to each cell.

4. A class, MitosisData, which MitosisDataPrinterSteppable uses to extract and
format the data it prints.

5. A main Python script to call the steppables and the CellsortMitosis plugin ap-
propriately.
We store the source code for routines 1)-4) in a separate file called cellsort_2D_field_modules.py.

Listing[16]shows the main Python script for the diffusing-field-based cell-growth simulation,
with changes to the template (Listing 7)) shown in blue.

26

Listing 16: Main Python script for the diffusing-field-based cell-growth simulation.
Changes to the template code (Listing [7]) shown in blue.

sys

0s environ

os getcwd
string

sys.path.append (environ ["PYTHON MODULE PATH” |)
CompuCellSetup
sim , simthread = CompuCellSetup. getCoreSimulationObjects ()

#add additional attributes
pyAttributeAdder ,list Adder=CompuCellSetup . attachList ToCells (sim)

CompuCellSetup. initializeSimulationObjects (sim,simthread)

#notice importing CompuCell to main script has to be
#done after call to getCoreSimulationObjects ()
CompuCell
changeWatcherRegistry=CompuCellSetup . getChangeWatcherRegistry (sim)
stepperRegistry=CompuCellSetup. getStepperRegistry (sim)

cellsort_2D _field_modules CellsortMitosis
cellsortMitosis=CellsortMitosis (sim,changeWatcherRegistry ,\
stepperRegistry)
cellsortMitosis .setDoublingVolume (50)

#Add Python steppables here
steppableRegistry=CompuCellSetup . getSteppableRegistry ()

cellsort_2D _field_-modules VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable (sim)
steppableRegistry .registerSteppable (volumeConstraint)

cellsort_2D _field _modules MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable (sim)
steppableRegistry .registerSteppable (mitosisDataPrinterSteppable)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

The first change to the template code (Listing [7]) is:

pyAttributeAdder ,list Adder=CompuCellSetup. attachList ToCells (sim)

which instructs the CompuCell3D kernel to attach a Python-defined list to each cell when

o7

it creates it. This list serves as a generic container which can store any set of Python
objects and hence any set of generalized-cell properties. In the current simulation, we use
the list to store objects of the class MitosisData, which records the Monte Carlo Step at
which each cell division involving the current cell or its parent, happened, as well as, the
cell index and cell type of the parent and daughter cells.

, we need to
create stepperRegistry and changeWatcherRegistry objects, which store the two types
of lattice monitors:

changeWatcherRegistry=CompuCellSetup . getChangeWatcherRegistry (sim)
stepperRegistry=CompuCellSetup . getStepperRegistry (sim)

because it acts in response to certain
index-copy events; it is invoked whenever a cell’s volume reaches the threshold volume for
mitosis. The following lines create the CellsortMitosis lattice monitor and register it
with the stepperRegistry and changeWatcherRegistry:

cellsort_2D _field _modules CellsortMitosis
cellsortMitosis = CellsortMitosis (sim,changeWatcherRegistry ,\
stepperRegistry)

Because the base class inherited by CellsortMitosis, unlike our steppables, handles reg-
istration internally, . We can now
set the threshold volume at which Condensing cells divide:

cellsortMitosis.setDoublingVolume (50)

Next we import the VolumeConstraintSteppable steppable, which initializes cells target
volumes and compressibilities at the beginning of the simulation and also implements
chemical-dependent cell growth for Condensing cells, and register it:

cellsort_2D _field_modules VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable (sim)
steppableRegistry.registerSteppable (volumeConstraint)

Finally, we import, create and register the MitosisDataPrinterSteppable steppable,
which prints the content of MitosisData objects for cells that have divided:

cellsort_2D _field _modules MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable (sim)
steppableRegistry.registerSteppable (mitosisDataPrinterSteppable)

The number of MitosisData objects stored in each cell at any given Monte Carlo Step
depends on cell type (NonCondensing cells do not divide, whereas Condensing cells can
divide multiple times), and how often a given cell has divided.

o8

Moving on to the Python modules, we consider the VolumeConstraintSteppable step-
pable shown in Listing [17]

Listing 17: Python code for the VolumeConstraintSteppable written in the file cell-
sort_2D _field_modules.py for the diffusing-field-based cell-growth simulation.

Sys

(oF environ

os getcwd
string

VolumeConstraintSteppable (SteppablePy):
__init__(self , _simulator , _frequency=1):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator

self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

start (self):
cell self.cellList:
cell . targetVolume=25
cell .lambdaVolume=2.0

step (self ,mcs):
field=CompuCell. getConcentrationField (self.simulator ,”FGF”)
comPt=CompuCell. Point3D ()
cell self.cellList :
cell .type==1: #Condensing cell
comPt.x=int (round (cell .xCM/float (cell .volume)))
comPt.y=int (round (cell .yCM/float (cell .volume)))
comPt.z=int (round (cell .zCM/ float (cell .volume)))
concentration=field . get (comPt) #get concentration at comPt
#and increase cell’s target volume
cell .targetVolume+=0.1xconcentration

The __init__ constructor looks very similar to the one in Listing [14] with the difference
that we pass _frequency=1 to update the cell volumes once per MCS. We also request the
field-lattice dimensions and values from CompuCell3D:

self .dim=self.simulator.getPotts (). getCellFieldG ().getDim ()

and specify that we will work with a field named FGF:
self . fieldName="FGF”

29

The script contains two functions: one that initializes the cells volume-constraint param-
eters (start(self)) and one that updates them (step(self, mcs)). The start(self)
function executes only once, at the beginning of the simulation. It iterates over each cell
(for cell in self.celllist:) and assigns the initial cells targetVolume (Vi(o) = 25
pixels) and lambdaVolume (Ay(0) = 2.0) parameters as the VolumeLocalFlex plugin
requires.

The first line of the step(self, mcs) function extracts a reference to the FGF concentra-
tion field defined using the FlexibleDiffusionSolverFE steppable in the CC3DML file
(each field created in a CompuCell3D simulation is registered and accessible by both C++
and Python). The function then iterates over every cell in the simulation. If a cell is of
cell.type 1 (Condensing - see the CC3DML configuration file, Listing , we calculate
its centroid:

comPt.x=int (round (cell .xCM/float (cell .volume)))
comPt.y=int (round (cell .yCM/ float (cell .volume)))
comPt.z=int (round (cell .zCM/float (cell .volume)))

and retrieve the FGF concentration at that point:

concentration=field . get (comPt)

We then increase the target volume of the cell by 0.01 times that concentration:

cell .targetVolume+=0.1xconcentration

We must include the Center0fMass plugin in the CC3DML code. Otherwise the centroid
(cell.xCM, cell.yCM, cell.zCM) will have the default value (0,0,0).

Listing shows the code for the CellsortMitosis plugin. The plugin divides the
mitotic cell into two cells and adjusts both cells’ attributes. It also initializes and ap-
pends MitosisData objects to the original cell’s (self.parentCell) and daughter cell’s
(self.childCell) attribute lists.

Listing 18: Python code for the CellsortMitosis written in the file cell-
sort_2D field modules.py. The plugin handles division of cells when they reach
a threshold volume.

random random
PyPluginsExamples MitosisPyPluginBase

CellsortMitosis (MitosisPyPluginBase):
__init__(self , _simulator ,_changeWatcherRegistry , \
_stepperRegistry):

60

MitosisPyPluginBase. __init__(self , _simulator ,\
_changeWatcherRegistry , _stepperRegistry)

updateAttributes(self):

self .parentCell.targetVolume=self.parentCell.volume /2.0
self.childCell.targetVolume=self.parentCell.targetVolume
self.childCell.lambdaVolume=self.parentCell.lambdaVolume

(random () <0.5):
self.childCell.type=self.parentCell.type

self.childCell.type=3

##record mitosis data in parent and daughter cells
mes=self.simulator.getStep ()

mitData=MitosisData (mcs, self.parentCell.id, self.parentCell.type,\
self.childCell.id,self.childCell.type)

#get a reference to lists storing Mitosis data
parentCellList=CompuCell. getPyAttrib(self.parentCell)
childCellList=CompuCell. getPyAttrib(self.childCell)

parentCellList . append (mitData)
childCellList .append (mitData)

The second line of Listing [I8}
PyPluginsExamples MitosisPyPluginBase

lets us access the CompuCell3D base class MitosisPyPluginBase.

CellsortMitosis inherits the content of the MitosisPyPluginBase class. MitosisPyPluginBase
internally accesses the CompuCell3D-provided Mitosis plugin, which is written in C++,

and handles all the technicalities of plugin initialization behind the scenes. The MitosisPyPluginBase
class provides a simple-to-use interface to this plugin. To create a customized version of
MitosisPyPluginBase, CellsortMitosis, we must call the constructor of MitosisPyPluginBase
from the CellsortMitosis constructor:

MitosisPyPluginBase. __init__(self , _simulator , _changeWatcherRegistry , \
_stepperRegistry)

We also need to reimplement the function updateAttributes(self), which is called by
MitosisPyPluginBase after mitosis takes place, to define the post-division cells param-
eters. The objects self.childCell and self.parentCell that appear in the function
are initialized and managed by MitosisPyPluginBase. In the current simulation, after
division we set V; for the parent and daughter cells to half of the V; of the parent just prior

61

to cell division. A is left unchanged for the parent cell and the same value is assigned to
the daughter cell:

self.parentCell.targetVolume=self.parentCell.volume /2.0
self.childCell.targetVolume=self.parentCell.targetVolume
self.childCell.lambdaVolume=self.parentCell.lambdaVolume

The cell type of one of the two daughter cells (childCell) is randomly chosen to be either
Condensing (i.e., the same as the parent type) or CondensingDifferentiated, which we
have defined to be cell.type 3 (Listing [L5)):

(random () <0.5):
self.childCell.type=self.parentCell.type

self.childCell.type=3

The parent cell remains Condensing. We now add a description of this cell division to the
lists attached to each cell. First we collect the data in a list called mitData:

mes=self.simulator.getStep ()
mitData=MitosisData (mcs, self . parentCell.id , self.parentCell.type, \
self.childCell.id , self.childCell.type)

then we access the lists attached to the two cells:

parentCellList=CompuCell. getPyAttrib(self.parentCell)
childCellList=CompuCell. getPyAttrib(self.childCell)

and append the new mitosis data to these lists:

parentCellList .append (mitData)
childCellList .append (mitData)

Listing [19| shows the Python code for the MitosisData class, which stores the data on the
cell division that we append to the cells attribute lists after each cell division.

Listing 19: Python code for the MitosisData written in the file cell-
sort_2D _field_ modules.py. MitosisData objects store information about cell di-
visions involving the parent and daughter cells.

random random
PyPluginsExamples MitosisPyPluginBase
MitosisData:

__init__(self , MCS, _parentld ,_parentType, _offspringld , \

62

_offspringType):
self .MCS=MCS
self.parentld=_parentld
self.parentType=_parentType
self.offspringld=_offspringld
self.offspringType=_offspringType

__str__(self):

"Mitosis . time="+str (self .MCS)+ \
"parentld="+str (self.parentld)+ \
"offspringld="+str (self.offspringld)

In the constructor of MitosisData, we read in the time (in MCS) of the division, along with
the parent and daughter cell indices and types. The __str__(self) convenience function
returns an ASCII string representation of the time and cell indices only, to allow the Python
print command to print out this information.

Listing[20]shows the Python code for the MitosisDataPrinterSteppable steppable, which
prints the mitosis data to the user’s screen.

Listing 20: Python code for the MitosisDataPrinter steppable written in the file cell-
sort_2D field modules.py. The steppable prints the cell-division history for dividing
cells (see Figure 18).

MitosisDataPrinterSteppable (SteppablePy):
__init__(self , _simulator , _frequency=100):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

step (self ,mcs):
cell self.cellList:
mitDataList=CompuCell. getPyAttrib(cell)
len (mitDataList) > 0:
"MITOSIS .DATA_FOR._CELL_ID” | cell . id
mitData mitDataList:
mitData

The constructor is identical to that for the VolumeConstraintSteppable steppable (List-
ing [17). Within the step(self,mcs) function, we iterate over each cell (for cell in
self.celllist:) and access the Python list attached to the cell

63

(mitDataList=CompuCell.getPyAttrib(cell)). If a given cell has undergone mitosis,
then the list will have entries, and thus a nonzero length. If so, we print the MitosisData
objects stored in the list:

if len(mitDataList) > 0:
print "MITOSIS_.DATA_FOR_CELL_ID” , cell . id
for mitData in mitDataList:
print mitData

Figure|16|and Figure[17]show snapshots of the diffusing-field-based cell-growth simulation.
Figure [18| shows a sample screen output of the cell-division history.

[§

P

Figure 16: Snapshots of the diffusing-field-based cell-growth simulation obtained by running the
CC3DML file in Listing in conjunction with the Python file in Listing As the simulation pro-
gresses, NonCondensing cells (light gray) secrete diffusing chemical, FGF, which causes Condensing (dark
gray) cells to proliferate. Some Condensing cells differentiate to CondensingDifferentiated (white) cells.

Figure 17: Snapshots of FGF concentration in the diffusing-field-based cell-growth simulation obtained
by running the CC3DML file in Listing [I5] in conjunction with the Python files in Listing [I6] Listing [17}
Listing [I8] Listing[19] Listing[20] The bars at the bottom of the field images show the concentration scales
(blue, low concentration; red, high concentration).

The diffusing-field-based cell-growth simulation includes concepts that extend easily to

simulate biological phenomena that involve diffusants, cell growth and mitosis, e.g., limb-
bud development (58, 59), tumor growth (5-9) and Drosophila imaginal-disc development.

64

- mswat@biosoft: ~/CompuCell3D-3.2.0 install - Shell - Konsole
Session Edit ‘\iew Bookmarks Settings Help

459 Inventory=469

L ID 48

8 offspringld=253

Figure 18: Sample output from the MitosisDataPrinterSteppable steppable in Listing

7 Conclusion

In most cases, building a complex CompuCell3D simulation requires writing Python mod-
ules, a main Python script and a CC3DML configuration file. While the effort to write this
code can be substantial, it is much less than that required to develop custom simulations
in lower-level languages. Working from the substantial base of Python templates provided
by CompuCell3D further streamlines simulation development. Python programs are fairly
short, so simulations can be published in journal articles, greatly facilitating simulation
validation, reuse and adaptation. Finally, CompuCell3Ds modular structure allows new
Python modules to be reused from simulation to simulation. The CompuCell3D website,
www.compucell3d.org, allows users to archive their modules and make them accessible to
other users.

We hope the examples we have shown will convince readers to evaluate the suitability of
GGH simulations using CompuCell3D for their research. All the code examples presented

65

http://www.compucell3d.org

in this chapter are available from www.compucell3d.org. They will be curated to ensure
their correctness and compatibility with future versions of CompuCell3D.

8 Acknowledgements

We gratefully acknowledge support from the National Institutes of Health, National Insti-
tute of General Medical Sciences, grants 1R01 GM077138-01A1 and 1R01 GM076692-01,
and the Office of Vice President for Research, the College of Arts and Sciences, the Per-
vasive Technologies Laboratories and the Biocomplexity Institute at Indiana University.
Indiana Universitys University Information Technology Services provided time on their Bi-
gRed clusters for simulation execution. Early versions of CompuCell and CompuCell3D
were developed at the University of Notre Dame by J.A.G., Dr. Mark Alber and Dr. Jesus
Izaguirre and collaborators with the support of National Science Foundation, Division of
Integrative Biology, grant IBN-00836563. Since the primary home of CompuCell3D moved
to Indiana University in 2004, the Notre Dame team have continued to provide important
support for its development.

9 XML Syntax of CompuCell3D modules

9.1 Potts Section

The first section of the .xml file defines the global parameters of the lattice and the simu-
lation.

<Potts>
<Dimensions x="101" y="101" z="1" />
<Anneal>0</Anneal>
<Steps>1000</Steps>
<FluctuationAmplitude>5</FluctuationAmplitude>
<Flip2DimRatio>1</Flip2DimRatio>
<Boundary_y>Periodic</Boundary_y>
<Boundary_x>Periodic</Boundary_x>
<NeighborOrder>2</NeighborOrder>
<DebugOutputFrequency>20</DebugOutputFrequency>
<RandomSeed>167473</RandomSeed>
<EnergyFunctionCalculator Type="Statistics”>
<OutputFileName Frequency="10">statData.txt</OutputFileName>
<OutputCoreFileNameSpinFlips Frequency="1" GatherResults=""
OutputAccepted="" OutputRejected="" OutputTotal="">
statDataSingleFlip
</OutputCoreFileNameSpinFlips>
</EnergyFunctionCalculator>

66

http://www.compucell3d.org

‘</Potts>

This section appears at the beginning of the configuration file. Line <Dimensions x="101"
y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1, i.e., the
lattice is two-dimensional and extends in the xy plane. The basis of the lattice is 0 in
each direction, so the 101 lattice sites in the x and y directions have indices ranging
from 0 to 100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts
in MCS. After executing this number of steps, CompuCell can run simulation at zero
temperature for an additional period. In our case it will run for <Anneal>10</Anneal>
extra steps. FluctuationAmplitude parameter determines intrinsic fluctuation or motility of
cell membrane. Fluctuation amplitude is a temperature parameter in classical GGH model
formulation. We have decided to use FluctuationAmplitude term instead of temperature
because using word “temperature” to describe intrinsic motility of cell membrane was quite
confusing.

In the above example, fluctuation amplitude applies to all cells in the simulation. To define
fluctuation amplitude separately for each cell type we use the following syntax:

<FluctuationAmplitude>
<FluctuationAmplitudeParameters CellType="Condensing” \
FluctuationAmplitude="10" />
<FluctuationAmplitudeParameters CellType="NonCondensing” \
FluctuationAmplitude="5" />
</FluctuationAmplitude>

When CompuCell3D encounters expanded definition of FluctuationAmplitude it will use
it in place of a global definition - <FluctuationAmplitude>5</FluctuationAmplitude>

To complete the picture CompUCell3D allows users to set fluctuation amplitude individ-
ually for each cell. Using Python scripting we write:

cell self.cellList:
cell .type==1:
cell . fluct Ampl=20

When determining which value of fluctuation amplitude to use, CompuCell first checks if
fluctAmpl is non-negative. If this is the case it will use this value as fluctuation amplitude.
Otherwise it will check if users defined fluctuation amplitude for cell types using expanded
XML definition and if so it will use those values as fluctuation amplitudes. Lastly it will
resort to globally defined fluctuation amplitude (Temperature). Thus, it is perfectly fine
to use FluctuationAmplitude XML tags and set fluctAmpl for certain cells. In such a case
CompuCell3D will use fluctAmpl for cells for which users defined it and for all other cells
it will use values defined in the XML.

In GGH model, the fluctuation amplitude is determined taking into account fluctuation
amplitude of “source” (expanding) cell and destination (being overwritten) cell. Currently

67

CompuCell3D supports 3 type functions used to calculate resultant fluctuation amplitude
(those functions take as argument fluctuation amplitude of “source” and “destination” cells
and return fluctuation amplitude that is used in calculation of pixel-copy acceptance). The
3functions are Min, Max, and ArithmeticAverage and we can set them using the following
option of the Potts section:

<Potts>
<FluctuationAmplitudeFunctionName>
Min
</FluctuationAmplitudeFunctionName>

</Potts>

By default we use Min function. Notice that if you use global fluctuation amplitude defini-
tion (Temperature) it does not really matter which function you use. The differences arise
when “source” and “destination” cells have different fluctuation amplitudes.

The above concepts are best illustrated by the following example:

<PythonScript>Demos/FluctuationAmplitude/FluctuationAmplitude . py)\
</PythonScript>

<Potts>
<Dimensions x="100" y="100" z="1"/>
<Steps>10000</Steps>

<FluctuationAmplitude>5</FluctuationAmplitude>
<FluctuationAmplitudeFunctionName>ArithmeticAverage\
</FluctuationAmplitudeFunctionName>
<NeighborOrder>2</NeighborOrder>

</Potts>

Where in the XML section we define global fluctuation amplitude and we also use Arith-
meticAverage function to determine resultant fluctuation amplitude for the pixel copy.

In python script we will periodically set higher fluctuation amplitude for lattice quadrants
so that when running the simulation we can see that cells belonging to different lattice
quadrants have different membrane fluctuations:

FluctuationAmplitude (SteppableBasePy):
__init__(self , _simulator , _frequency=1):
SteppableBasePy. __init__(self , _simulator , _frequency)
self.quarters=[[0,0,50,50],[0,50,50,100],\
[50,50,100,100],[50,0,100,50]]
self.steppableCallCounter=0

step (self , mcs):
quarterIndex=self.steppableCallCounter % 4
quarter=self.quarters|[quarterIndex]

cell self.cellList:

68

cell .xCOM>=quarter [0] cell .yCOM>=quarter [1] \
cell .xCOM<quarter [2] cell .yCOM<quarter [3]:
cell . fluctAmpl=50

#this means CompuCell3D will use globally
#defined FluctuationAmplitude

cell . fluctAmpl=-—1

self .steppableCallCounter+=1

Assigning negative fluctuationAmplitude cell.fluctAmpl=-1 is interpreted by Compu-
Cell3D as a hint to use fluctuation amplitude defined in the XML.

The below section describes Temperature and CellMotility tags which are being
deprecated (however for compatibility reasons we still support those):

The first section of the .xml file defines the global parameters of the lattice and the simu-
lation.

<Potts>
<Dimensions x="101" y="101" z="1" />
<Anneal>0</Anneal>
<Steps>1000</Steps>
<Temperature>5</Temperature>
<Flip2DimRatio>1</Flip2DimRatio>
<Boundary_y>Periodic</Boundary_y>
<Boundary_x>Periodic</Boundary_x>
<NeighborOrder>2</NeighborOrder>
<DebugOutputFrequency>20</DebugOutputFrequency>
<RandomSeed>167473</RandomSeed>
<EnergyFunctionCalculator Type="Statistics”>
<OutputFileName Frequency="10">statData.txt</OutputFileName>
<OutputCoreFileNameSpinFlips Frequency="1" GatherResults=""
OutputAccepted="" OutputRejected="" OutputTotal="">statDataSingleFlip
</OutputCoreFileNameSpinFlips>
</EnergyFunctionCalculator>
</Potts>

This section appears at the beginning of the configuration file. Line <Dimensions x="101"
y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1, i.e., the
lattice is two-dimensional and extends in the zy plane. The basis of the lattice is 0 in each
direction, so the 101 lattice sites in the x and y directions have indices ranging from 0 to
100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts in MCS. After
executing this number of steps, CompuCell can run simulation at zero temperature for an
additional period. In our case it will run for <Anneal>10</Anneal> extra steps. Setting
the temperature is as easy as writing <Temperature>5</Temperature>.

69

We can also set temperature (or in other words cell motility) individually for each cell type.
The syntax to do this is following:

<CellMotility>
<MotilityParameters CellType="Condensing” Motility="10" />
<MotilityParameters CellType="NonCondensing” Motility="5"/>
</CellMotility>

You may use it in the Potts section in place of <Temperature>.

Now, as you remember from the discussion about the difference between spin-flip attempts

and MCS we can specify how many spin flips should be attempted in every MCS. We specify

this number indirectly by specifying the Flip2DimRatio - <Flip2DimRatio>1</Flip2DimRatio>,
which tells CompuCell that it should make 1x number of lattice sites attempts per MCS

in our case one MCS is 101 x 101 x 1 spin-flip attempts. To set 2.5 x 101 x 101 x 1 spin

flip attempts per MCS you would write <Flip2DimRatio>2.5</Flip2DimRatio>.

The next line specifies the neighbor order. The higher neighbor order the longer the
Euclidian distance from a given pixel. In previous versions of CompuCell3D we have
been using <FlipNeighborMaxDistance> or <Depth> (in Contact energy plugins) flag to
accomplish same task. Since now CompuCell3D supports two kinds of latices it would
be inconvenient to change distances. It is much easier to think in terms n-th nearest
neighbors. For the backwards compatibility we still support old flags but we discourage its
use, especially that in the future we might support more than just two lattice types. Using
nearest neighbor interactions may cause artefacts due to lattice anisotropy. The longer the
interaction range, the more isotropic the simulation and the slower it runs. In addition, if
the interaction range is comparable to the cell size, you may generate unexpected effects,
since non-adjacent cells will contact each other.

On hex lattice those problems seem to be less severe and there 1st or 2nd nearest neighbor
usually are sufficient.

The Potts section also contains tags called <Boundary_y> and <Boundary_x>.These tags
impose boundary conditions on the lattice. In this case the z and y axes are periodic
(<Boundary_x>Periodic</Boundary_x>) so that e.g. the pixel withz =0,y =1,z = 1 will
neighbor the pixel with x = 100,y = 1,z = 1. If you do not specify boundary conditions
CompuCell will assume them to be of type no-flux, i.e. lattice will not be extended.
The conditions are independent in each direction, so you can specify any combination of
boundary conditions you like.

DebugOutputFrequency is used to tell CompuCell3D how often it should output text
information about the status of the simulation. This tag is optional.

RandomSeed is used to initialise random number generator. If you do not do this all
simulations will use same sequence of random numbers. Something you may want to avoid

70

in the real simulations but is very useful while debugging your models.

EnergyFunctionCalculator is another option of Potts object that allows users to output
statistical data from the simulation for further analysis. The OutputFileName tag is used to
specify the name of the file to which CompuCell3D will write average changes in energies
returned by each plugins with corresponding standard deviations for those MCS whose
values are divisible by the Frequency argument. Here it will write these data every 10

MCS.

A second line with OutputCoreFileNameSpinFlips tag is used to tell CompuCell3D to
output energy change for every plugin, every spin flip for MCS’ divisible by the fre-
quency. Option GatherResults= will ensure that there is only one file written for accepted
(OutputAccepted), rejected (OutputRejected)and accepted and rejected (OutputTotal)
spin flips. If you will not specify GatherResults CompuCell3D will output separate files
for different MCS’s and depending on the Frequency you may end up with many files in
your directory.

One option of the Potts section that we have not used here is the ability to customise
acceptance function for Metropolis algorithm:

<Offset>—0.1</Offset>
<KBoltzman>1.2</KBoltzman>

This ensures that spin flips attempts that increase the energy of the system are accepted
with probability P = exp™(AF=9/*T wwhere § and k are specified by 0ffset and KBoltzman
tags respectively. By default 6 =0 and k£ = 1.

As an alternative to exponential acceptance function you may use a simplified version
which is essentially 1 order expansion of the exponential:
E—9

P=1———+
kT

To be able to use this function all you need to do is to add the following line in the Potts
section:

<AcceptanceFunctionName>FirstOrderExpansion</AcceptanceFunctionName>

9.1.1 Lattice Type

Early versions of CompuCell3D allowed users to use only square lattice. Most recent
versions however, allow the simulation to be run on hexagonal lattice as well. To enable
hexagonal lattice you need to put

71

<LatticeType>Hexagonal</LatticeType>

in the Potts section of the XML configuration file.

There are few things to be aware of. When using hexagonal lattice. Obviously your pixels
are hexagons (2D) or rhombic dodecahedrons (3D) but what is more important is that
surface or perimeter of the pixel (depending whether in 2D or 3D) is different than in the
case of square pixel. The way CompuCell3D hex lattice implementation was done was
that the volume of the pixel was constrained to be 1 regardless of the lattice type. Second,
there is one to one correspondence between pixels of the square lattice and pixels of the hex
lattice. Consequently we can come up with transformation equations which give positions
of hex pixels as a function of square lattice pixel position:

(2,9, 2)hex = | =, ?y + \/?g, ?2) for y odd A z odd
(Z,Y, 2)hex = |+ %, ? \/?57 \/?62) for y even A z odd
(2,9, 2)hex = |, ?y, ? for y odd A z even

(Z,y, 2)hex = |+ %, ?y, ?2) for y even A z even

Based on the above facts one can work out how unit length and unit surface transform to
the hex lattice. The conversion factors are given below:

For the 2D case, assuming that each pixel has unit volume, we get:

2
S ex-unit — —— =~ 0.6204
et 3v3
[2
Lhex—unit - ﬁ ~ 1.075

where Sphexunit denotes length of the hexagon and Lypeeunit denotes a distance between
centres of the hexagons. Notice that unit surface in 2D is simply a length of the hexagon
side and surface area of the hexagon with side ’a’ is:

V3

S—GTCL

72

In 3D we can derive the corresponding unit quantities starting with the formulae for Volume
and surface of rhombic dodecahedron (12 hedra)

1
9
S = 8v/2a?

where ’a’ denotes length of dodecahedron edge.

Constraining the volume to be one we get

R
1613

3

and thus unit surface is given by:

S 8\/_ 9V
Sunlt-hex 12 16\/_ 0 5

and unit length by:

N2 VB,

Luni -hex — ~ 1.122
v =2 B0 16f

9.2 Plugins Section

In this section we overview XML syntax for all the plugins available in CompuCell3D.
Plugins are either energy functions, lattice monitors or store user assigned data that Com-
puCell3D uses internally to configure simulation before it is run.

9.2.1 CellType Plugin

An example of the plugin that stores user assigned data that is used to configure simulation
before it is run is a Cel1Type Plugin. This plugin is responsible for defining cell types and
storing cell type information. It is a basic plugin used by virtually every CompuCell
simulation. The syntax is straight forward as can be seen in the example below:

<Plugin Name="CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Fluid” Typeld="1"/>
<CellType TypeName="Wall” Typeld="2" Freeze=""/>
</Plugin>

73

Here we have defined three cell types that will be present in the simulation: Medium,Fluid,Wall.
Notice that we assign a number (TypeId) to every cell type. It is strongly recommended
that Typelds are consecutive positive integers (e.g., 0,1,2,3...). Medium is traditionally
given TypeId=0 but this is not a requirement. However every CC3D simulation must
define CellType Plugin and include at least Medium specification.

Notice that in the example above cell type “Wall” has extra attribute Freeze="". This
attribute tells CompuCell that cells of “frozen” type will not be altered by spin flips.
Freezing certain cell types is a very useful technique in constructing different geometries
for simulations or for restricting ways in which cells can move. In the example below we
have frozen cell types wall to create tube geometry for fluid flow studies.

9.2.2 Simple Volume and Surface Constraints

One of the most commonly used energy term in the GGH Hamiltonian is a term that
restricts variation of single cell volume. Its simplest form can be coded as show below:

<Plugin Name="Volume”>
<TargetVolume>25</Target Volume>
<LambdaVolume>2.0</LambdaVolume>
</Plugin>

By analogy we may define a term which will put similar constraint regarding the surface
of the cell:

<Plugin Name="Surface”>
<TargetSurface>20</TargetSurface>
<LambdaSurface>1.5</LambdaSurface>
</Plugin>

These two plugins inform CompuCell that the Hamiltonian will have two additional terms
associated with volume and surface conservation. That is when spin flip is attempted one
cell will increase its volume and another cell will decrease. Thus overall energy of the
system may or will change. Volume constraint essentially ensures that cells maintain the
volume which close (this depends on thermal fluctuations) to target volume. The role of
surface plugin is analogous to volume, that is to “preserve” surface. Note that surface
plugin is commented out in the example above.

Energy terms for volume and surface constraints have the form:

2
Evolume =)\volume (Ucell — ‘/target)

2
Esurface -)\surface<scell - Starget)

74

Remark:
Notice that flipping a single spin may cause surface change in more that two
cells - this is especially true in 3D.

6 pixels

4 pixels
Figure 19: How to set target volume and target surface.

VAdd: Target volume is the total number of the pixels inside of the cell, that is a multi-
plication of the length and width. For example, in Fig. [I9] the target volume of the cell
size 4 x 6 pixels is 24. And the target surface is 4 +4 + 6 + 6 = 20.

9.2.3 VolumeTracker and SurfaceTracker plugins

These two plugins monitor lattice and update volume and surface of the cells once spin flip
occurs. In most cases users will not call those plugins directly. They will be called automat-
ically when either Volume (calls VolumeTracker) or Surface (calls SurfaceTracker) or
CenterOfMass (calls VolumeTracker) plugins are requested. However one should be aware
that in some situations, for example when doing foam coarsening simulation as presented
in the introduction, when neither Volume or Surface plugins are called, one may still want
to track changes ion surface or volume of cells . In such situations one can explicitly invoke
VolumeTracker or SurfaceTracker plugin with the following syntax:

<Plugin Name="VolumeTracker” />

<Plugin Name="SurfaceTracker” />

75

9.2.4 VolumeFlex Plugin

VolumeFlex plugin is more sophisticated version of Volume plugin. While Volume plugin
treats all cell types the same, i.e., they all have the same target volume and lambda
coefficient, VolumeFlex plugin allows you to assign different lambda and different target
volume to different cell types. The syntax for this plugin is straightforward and essentially
mimics the example below.

<Plugin Name=" VolumeFlex”>
<VolumeEnergyParameters CellType="Prestalk” TargetVolume="68"
LambdaVolume="15" />
<VolumeEnergyParameters CellType="Prespore” TargetVolume="69"
LambdaVolume="12" />
<VolumeEnergyParameters CellType="Autocycling” TargetVolume="80"
LambdaVolume="10" />
<VolumeEnergyParameters CellType="Ground” TargetVolume="0"
LambdaVolume="0" />
<VolumeEnergyParameters CellType="Wall” TargetVolume="0"
LambdaVolume="0" />
</Plugin>

Notice that in the example above cell types Wall and Ground have target volume and
coefficient lambda set to 0 - very unusual. That’s because in this particular those cells
are were frozen so the parameters specified for these cells do not matter. In fact it is safe
to remove specifications for these cell types, but just for the illustration purposes we left
them.

Using VolumeFlex plugin you can effectively freeze certain cell types. All you need to do
is to put very high lambda coefficient for the cell type you wish to freeze. You have to be
careful though , because if initial volume of the cell of a given type is different from target
volume for this cell type the cells will either shrink or expand to match target volume (this
is out of control and you should avoid it), and only after this initial volume adjustment will
they remain frozen. That is provided LambdaVolume is high enough. In any case, we do
not recommend this way of freezing cells because it is difficult to use, and also not efficient
in terms of speed of simulation run.

9.2.5 SurfaceFlex Plugin

SurfaceFlex plugin is more sophisticated version of Surface plugin. Everything that was
said with respect to VolumeFlex plugin applies to SurfaceFlex. For syntax see example
below:

<Plugin Name="SurfaceFlex”>
<SurfaceEnergyParameters CellType="Prestalk” TargetSurface="90"
LambdaSurface="0.15" />

76

<SurfaceEnergyParameters CellType="Prespore” TargetSurface="98"
LambdaSurface="0.15" />

<SurfaceEnergyParameters CellType="Autocycling” TargetSurface="92"
LambdaSurface="0.1" />

<SurfaceEnergyParameters CellType="Ground” TargetSurface="0"
LambdaSurface="0" />

<SurfaceEnergyParameters CellType="Wall” TargetSurface="0"
LambdaSurface="0" />

</Plugin>

9.2.6 VolumeLocalFlex Plugin

VolumeLocalFlex plugin is very similar to Volume plugin. You specify both lambda coef-
ficient and target volume, but as opposed to Volume Plugin the energy is calculated using
target volume and lambda volume that are specified individually for each cell. In the
course of simulation you can change this target volume depending on e.g., concentration of
FGF in the particular cell. This way you can specify which cells grow faster, which slower
based on a state of the simulation. This plugin requires you to develop a module (plugin
or steppable) which will alter target volume for each cell. You can do it either in C++ or
even better in Python.

Example syntax:

<Plugin Name="VolumeLocalFlex” />

9.2.7 SurfaceLocalFlex Plugin

This plugin is analogous to VolumeLocalFlex but operates on cell surface.

Example syntax:

<Plugin Name="SurfaceLocalFlex” />

9.2.8 NeighborTracker Plugin

This plugin, as its name suggests, tracks neighbors of every cell. In addition it calculates
common contact area between cell and its neighbors. We consider a neighbor this cell that
has at least one common pixel side with a given cell. This means that cells that touch each
other either “by edge” or by “corner” are not considered neighbors. See Fig [20]

Example syntax:

77

Figure 20: Cells 5,4,1 are considered neighbors as they have non-zero common surface area. Same
applies to pair of cells 4,2 and to 1 and 2. However, cells 2 and 5 are not neighbors because they touch
each other “by corner”. Notice that cell 5 has 8 pixels, cell 4 has 7 pixels, cell 1 has 4 pixels, and cell 2
has 6 pixels.

<Plugin Name="NeighborTracker” />

This plugin is used as a helper module by other plugins and steppables e.g., Elasticity
and AdvectionDiffusionSolver use NeighborTracker plugin.

9.2.9 Chemotaxis

Chemotaxis plugin , as its name suggests is used to simulate chemotaxis of cells. For every
spin flip this plugin calculates change of energy associated with pixel move. There are
several methods to define a change in energy due to chemotaxis. By default we define a
chemotaxis using the following formula:

AEchem =)\(C(fneighbor) - c(f))

where ¢(Zneighbor), ¢(Z) denote chemical concentration at the spin-flip-source and spin-flip
destination pixel. respectively.

We also support a slight modification of the above formula in the Chemotaxis plugin where
AFE is non-zero only if the cell located at Z after the spin flip is non-medium to enable such
mode users need to include <Algorithm="Regular"/> tag in the body of XML plugin.

Let’s look at the syntax by studying the example usage of the Chemotaxis plugin:

78

<Plugin Name="Chemotaxis”>
<ChemicalField Source="FlexibleDiffusionSolverFE” Name="FGF”>
<ChemotaxisByType Type="Amoeba” Lambda="300" />
<ChemotaxisByType Type="Bacteria” Lambda="200" />
</ChemicalField>
</Plugin>

The body of the chemotaxis plugin description contains sections called ChemicalField.
In this section you tell CompuCell3D which module contains chemical field that you wish
to use for chemotaxis. In our case it is FlexibleDiffusionSolverFE. Next, you need to
specify the name of the field - FGF in our case. Next, you specify lambda for each cell type so
that cells of different type may respond differently to a given chemical. In particular types
not listed will not respond to chemotaxis at all. Older versions of CompuCell3D allowed
for different syntaxes as well. Despite the fact that those syntaxes are still supported
for backward compatibility reasons, we discourage their use, because, they are somewhat
confusing.

Occasionally you may want to use different formula for the chemotaxis than the one pre-
sented above. Current CompCell3D allows you to use the following definitions of change
in chemotaxis energy (Saturation and SaturationLinear respectively):

AEvchern =A (c<fn’ighb0r) - C<f>—»)
S + ¢(Zneighbor) S + ¢(Z)

or

_ C(fneighbor) . C<f)
AEChem = A ((S . C(fneighbor) + 1) (S) C(f) + 1)>

where s’ denotes saturation constant. To use first of the above formulas all you need to
do is to let CompuCell3D know the value of the saturation coefficient:

<Plugin Name=" Chemotaxis”>
<ChemicalField Source="FlexibleDiffusionSolverFE” Name="FGF”>
<ChemotaxisByType Type="Amoeba” Lambda="0" />
<ChemotaxisByType Type="Bacteria” Lambda="2000000"
SaturationCoef="1" />
</ChemicalField>
</Plugin>

Notice that this only requires small change in line where you previously specified only
lambda.

<ChemotaxisByType Type="Bacteria” Lambda="2000000" SaturationCoef="1"/>

To use second of the above formulas use SaturationLinearCoef instead of SaturationCoef:

<Plugin Name=" Chemotaxis”> ‘

79

<ChemicalField Source="FlexibleDiffusionSolverFE” Name="FGF”>
<ChemotaxisByType Type="Amoeba” Lambda="0" />
<ChemotaxisByType Type="Bacteria” Lambda="2000000"
SaturationLinearCoef="1" />
</ChemicalField>
</Plugin>

Sometimes it is desirable to have chemotaxis between only certain types of cells and
not between other pairs of types. To deal with this situation it is enough to augment
ChemotaxisByType element with the following attribute:

<ChemotaxisByType Type="Amoeba” Lambda="100" ChemotactTowards="Medium” />

This will cause that the change in chemotaxis energy will be non-zero only for those spin
flip attempts that will try to slip Amoeba and Medium pixels.

The definitions of chemotaxis presented so far do not allow specification of chemotaxis
parameters individually for each cell. To do this we will use Python scripting. We still
need to specify in the XML which fields are important from chemotaxis stand point. Only
fields listed in the XML will be used to calculate chemotaxis energy:

<Plugin Name="CellType”>
<CellType TypeName="Medium” Typeld="0"/>
<CellType TypeName="Bacterium” Typeld="1" />
<CellType TypeName="Macrophage” Typeld="2" />
<CellType TypeName="Wall” Typeld="3" Freeze=""/>
</Plugin>

<Plugin Name="Chemotaxis”>
<ChemicalField Source="FlexibleDiffusionSolverFE” Name="ATTR”>
<ChemotaxisByType Type="Macrophage” Lambda="20" />
</ChemicalField>
</Plugin>

In the above excerpt from the XML configuration file we see that cells of type Macrophage
will chemotax in response to ATTR gradient.

Using Python scripting we can modify chemotaxis properties of individual cells as follows:

ChemotaxisSteering (SteppableBasePy):
__init__(self , _simulator , _frequency=100):
SteppableBasePy . __init_-_(self , _simulator , _frequency)

start (self):
cell self.cellList:
cell .type==2:
cd=self.chemotaxisPlugin.addChemotaxisData(cell ,”ATTR”)
cd.setLambda (20.0)
#cd . initializeChemotact TowardsVectorTypes (” Bacterium , Medium”)

80

cd.assignChemotactTowardsVectorTypes ([0,1])

step(self ,mcs):
cell self.cellList :
cell .type==2:
cd=self.chemotaxisPlugin.getChemotaxisData (cell ,”ATTR")
cd:
l=cd . getLambda()—3
cd .setLambda (1)

In the start function for first encountered cell of type Macrophage (type==2) we insert
ChemotaxisData object (it determines chemotaxis properties) and initialize A parameter to
20. We also initialize vector of cell types towards which Macrophage cell will chemotax (it
will chemotax towards Medium and Bacterium cells). Notice the break statement inside the
if statement, inside the loop. It ensures that only first encountered Macrophage cell will
have chemotaxing properties altered. In the step function we decrease lambda chemotaxis
by 3 units every 100 MCS. In effect we turn a cell from chemotaxing up ATTR gradient
to being chemorepelled.

In the above example we have more than one macrophage but only one of them has altered
chemotaxis properties. The other macrophages have chemotaxis properties set in the XML
section. CompuCell3D first checks if local definitions of chemotaxis are available (i.e., for

individual cells) and if so it uses those. Otherwise it will use definitions from from the
XML.

The ChemotaxisData structure has additional functions which allow to set chemotaxis
formula used. For example we may type:

start (self):

cell self.cellList:
cell .type==2:
cd=self.chemotaxisPlugin.addChemotaxisData(cell ,”ATTR”)
cd.setLambda (20.0)
cd.setSaturationCoef (200.0)
#cd . initializeChemotact TowardsVectorTypes (” Bacterium , Medium”)
cd.assignChemotactTowardsVectorTypes ([0,1])

to activate Saturation formula. To activate SaturationLinear formula we would use:

cd.setSaturationLinearCoef (2.0)

CAUTION: when you use chemotaxis plugin you have to make sure that fields that you
refer to and module that contains this fields are declared in the xml file. Otherwise you will
most likely cause either program crash (which is not as bad as it sounds) or unpredicted

81

behavior (much worse scenario, although unlikely as we made sure that in the case of
undefined symbols, CompuCell3D exits)

9.2.10 ExternalPotential plugin

Chemotaxis plugin is used to cause directional cell movement. Another way to achieve
directional movement is to use ExternalPotential plugin. This plugin is responsible for
imposing a directed pressure (or rather force) on cells. It is used mainly in fluid flow
studies with periodic boundary conditions along these coordinates along which force acts.
If NoFlux boundary conditions are set instead , the cells will be squeezed.

This is the example usage of this plugin:

<Plugin Name=" ExternalPotential”>
<Lambda x="—0.5" y="0.0" 2="0.0"/>
</Plugin>

Lambda is a vector quantity and determines components of force along three axes. In this
case we apply force along x.

We can also apply external potential to specific cell types:

<Plugin Name=" ExternalPotential”>
<ExternalPotentialParameters CellType="Bodyl” x="-10"7 y="0" z="0" />
<ExternalPotentialParameters CellType="Body2” x="0" y="0" z="0"/>
<ExternalPotentialParameters CellType="Body3” x="0" y="0" z="0"/>
</Plugin>

Where in ExternalPotentialParameters we specify which cell type is subject to external
potential (Lambda is specified using x,y,z attributes).

We can also apply external potential to individual cells. In that case, in the XML section
we only need to specify:

<Plugin Name=" ExternalPotential” />

and in the Python file we change lambdaVecX, lambdaVecY, lambdaVecZ, which are prop-
erties of cell. For example in Python we could write:

cell .lambdaVecX=-10

Calculations done by ExternalPotential Plugin are by default based on direction of pixel
copy (similarly as in chemotaxis plugin). One can however force CC3D to do calculations
based on movement of center of mass of cell. To use algorithm based on center of mass
movement we use the following XML syntax:

82

<Plugin Name="ExternalPotential”>
<Algorithm>CenterOfMassBased</Algorithm>

</Plugin>

Remark: Note that in the pixel-based algorithm the typical value of pixel displacement
used in calculations is of the order of 1 (pixel) whereas typical displacement of center
of mass of cell due to single pixel copy is of the order of 1/cell volume (pixels) - ~ 0.1
pixel. This implies that to achieve compatible behavior of cells when using center of mass
algorithm we need to multiply lambdas by appropriate factor, typically of the order of 10.

9.2.11 CellOrientation plugin

Similarly as ExternalPotential plugin this plugin gives preference to those pixel copies
whose direction aligns with polarization vector (which is a property of each cell):

AE = =A(o(2)) * plo(i)) - €,

where o(i) denotes cell at site ¢, pis polarization vector for cell at site ¢ and ¢ pixel copy
vector. Because two cell participate in the pixel copy process the net energy change is
simply a sum of above expressions: one for growing cell and one for shrinking cell. To set
lambda we have two options: use global setting in the XML:

<Plugin Name=" CellOrientation”>
<LambdaCellOrientation>0.5</LambdaCellOrientation>
</Plugin>

Or set A individually for each cell and manage values of A from Python. In this case we
use the following XML syntax:

<Plugin Name=" CellOrientation”>
<LambdaFlex />
</Plugin>

or equivalently the shorter version:

<Plugin Name="CellOrientation” />

If we manage A values in Python we would use the following syntax to access and modify
values of lambda:

self.cellOrientationPlugin.getLambdaCellOrientation(cell)

self.cellOrientationPlugin.setLambdaCellOrientation(cell ,0.5)

83

Calculations done by CellOrientation Plugin are by default based on direction of pixel copy
(similarly as in chemotaxis plugin). One can however force CC3D to do calculations based
on movement of center of mass of cell. To use algorithm based on center of mass movement
we use the following XML syntax:

<Plugin Name=" CellOrientation”>
<Algorithm>CenterOfMassBased</Algorithm>

</Plugin>

See remark in External potential description about rescaling of parameters when changing
algorithm to Center Of Massbased.

9.2.12 PolarizationVector plugin

PolarizationVector plugin is a simple plugin whose only task is to ensure that each cell in
CompuCell3D simulation has as its attribute 3-component vector of floating point numbers.
This plugin is normally used in together with CellOrientation but it also can be reused in
other applications, assuming that we do not use CellOrientation plugin at the same time.
The XML syntax is very simple:

<Plugin Name="PolarizationVector” />

To access or modify polarization vector requires use of Python scripting:

self .polarizationVectorPlugin.getPolarizationVector (cell)

or to change values of the polarization vector:

self.polarizationVectorPlugin.getPolarizationVector (cell ,0.1,0.2,0.3)

9.2.13 CenterOfMass plugin

This plugin monitors changes n the lattice and updates centroids of the cell:
ToM = in, Yom = Zyi, RCM = Zzi

where ¢ denotes pixels belonging to a given cell. To obtain coordinates of a center of mass
f a given cell you need to divide centroids by cell volume:

oM Yom ZCM
X = = Y == 7 = —.
CM Vv 5 CM vV 5 CM vV

84

This plugin is aware of boundary conditions and centroids are calculated properly regardless
which boundary conditions are used. The XML syntax is very simple:

<Plugin Name="CenterOfMass” />

9.2.14 Contact Energy plugin

Energy calculations for the foam simulation are based on the boundary or contact energy
between cells (or surface tension, if you prefer). Together with volume constraint contact
energy is one of the most commonly used energy terms in the GGH Hamiltonian. In essence
it describes how cells “stick” to each other.

The explicit formula for the energy is:

Eadneson = Y J(7(0(0), 7(0(5))(1 = 8(a(i), 0 (4)))

i,j neighbors

where 7 and j label two neighboring lattice sites , o’s denote cell Ids, 7’s denote cell types.
In the case of foam simulation the total energy of the foam is simply the total boundary
length times the surface tension (here defined to be 2.J).

Once again, in the above formula, you need to differentiate between cell types and cell Ids.
This formula shows that cell types and cell Ids are not the same. The Contact plugin in
the .xml file, defines the energy per unit area of contact between cells of different types
J(1(o(i)),7(c(j))) and the interaction range (NeighborOrder) of the contact:

<Plugin Name="Contact”>
<Energy Typel="Foam” Type2="Foam”>3</Energy>
<Energy Typel="Medium” Type2="Medium”>0</Energy>
<Energy Typel="Medium” Type2="Foam”>0</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

In this case, the interaction range is 2, thus only up to second nearest neighbor pixels of a
pixel undergoing a change or closer will be used to calculate contact energy change. Foam
cells have contact energy per unit area of 3 and Foam and Medium as well as Medium and
Medium have contact energy of 0 per unit area.

9.2.15 ContactLocalProduct plugin

This plugin calculates contact energy based on local (i.e., per cell) cadherin expression
levels. This plugin has to be used in conjunction with a steppable that assigns cadherin

85

expression levels to the cell. Such steppables are usually written in Python - see Contact-
LocalProductExample in Demos directory.

We use the following formulas to calculate energy for this plugin:

E = Y (Boiet — ko(iyoi) F(N(i),N(j))) if o(i) and o(j) # medium
i,j neighbors
E = Z (Eofiset — ko(i),0()) if o(i) or o(j) = medium

i,j neighbors

By default, Eugset = 0. The f(N(i), N(j)) is a function of cadherins and can be ei-
ther a simple product N(i)N(j), a product of squared expression levels N(i)2N(j)? or a
min(N(2), N(7)).

In the case of the second formula Fyger — Fq(i),0(j) Plays the role of “regular” contact energy
between cell and medium.

The syntax of this plugin is as follows:

<Plugin Name=" ContactLocalProduct”>
<ContactSpecificity Typel="Medium” Type2="Medium”>0</ContactSpecificity>
<ContactSpecificity Typel="Medium” Type2="CadExpLevell”>-16</ContactSpecificity>
<ContactSpecificity Typel="Medium” Type2="CadExpLevel2”>-16</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevell” Type2="CadExpLevell”>—2</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevell” Type2="CadExpLevel2”>2.75</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevel2” Type2="CadExpLevel2”>—1</ContactSpecificity>
<ContactFunctionType>Quadratic</ContactFunctionType>
<EnergyOffset>0.0</EnergyOffset>
<NeighborOrder>2</NeighborOrder>

</Plugin>

Users need to specify ContactSpecificity (ko(;),0(;)) between different cell types ContactFunctionType
(by default it is set to Linear - N(i)N(j) but other allowed key words are Quadratic -
N(i)®2N(j)? and Min - min(N(i)N(j))). EnergyOffset can be set to user specified value
using above syntax. NeighborOrder has the same meaning as for “regular” Contact plugin.

Alternatively one can write customized function of the two cadherins and use it instead of
the 3 choices given above. To do this, simply use the following syntax:

<Plugin Name="ContactLocalProduct”>

<ContactSpecificity Typel="Medium” Type2="Medium”>0</ContactSpecificity>
<ContactSpecificity Typel="Medium” Type2="CadExpLevell”>-16</ContactSpecificity>
<ContactSpecificity Typel="Medium” Type2="CadExpLevel2”>-16</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevell” Type2="CadExpLevell”>—2</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevell” Type2="CadExpLevel2”>2.75</ContactSpecificity>
<ContactSpecificity Typel="CadExpLevel2” Type2="CadExpLevel2”>-1</ContactSpecificity>
<ContactFunctionType>Quadratic</ContactFunctionType>
<EnergyOffset>0.0</EnergyOffset>
<NeighborOrder>2</NeighborOrder>
<CustomFunction>

<Variable>J1</Variable>

<Variable>J2</Variable>

86

<Expression>sin (J1%xJ2)</Expression>
</CustomFunction>
</Plugin>

Here we define variable names for cadherins in interacting cells (J1 denotes cadherin for
one of the cells and J2 denotes cadherin for another cell). Then in the Expression tag
we give mathematical expression involving the two cadherin levels. The expression syntax
has to follow syntax of the muParser

http://muparser.sourceforge.net /mup_features.html#idDef2.

9.2.16 AdhesionFlex plugin

Adhesion Flex is a generalization of ContactLocalProduct plugin. It allows setting indi-
vidual adhesivity properties for each cell. Users can use either XML syntax or Python
scripting to initialize adhesion molecule density for each cell. In addition, Medium can
also carry its own adhesion molecules. We use the following formula to calculate Contact
energy in AdhesionFlex plugin:

E= Y | =D knaF(Nu(i), Na(h)) | (1= 050009)

1,j neighbors

where indexes i, j label pixels, J(o(7),0(j)) denotes contact energy between cell types o (i)
and o(j), exactly as in “regular” contact plugin and indexes m,n label cadherins in cells
composed of pixels 7 and j respectively. I’ denotes user-defined function of N,, and N,.
Although this may look a bit complex, the basic idea is simple: each cell has certain number
of cadherins on its surface. When cell touch each other the resultant energy is simply a
“product” - Ky, F'(Np(i), No(j)) - of every cadherin from one cell with every cadherin
from another cell. The XML syntax for this plugin is given below:

<Plugin Name="AdhesionFlex”>
<AdhesionMolecule Molecule="NCad” />
<AdhesionMolecule Molecule="NCam” />
<AdhesionMolecule Molecule="1Int” />
<AdhesionMoleculeDensity CellType="Celll” Molecule="NCad” Density="6.1" />
<AdhesionMoleculeDensity CellType="Celll” Molecule="NCam” Density="4.1" />
<AdhesionMoleculeDensity CellType="Celll” Molecule="Int” Density="8.1"/>
<AdhesionMoleculeDensity CellType="Medium” Molecule="Int” Density="3.1"/>
<AdhesionMoleculeDensity CellType="Cell2” Molecule="NCad” Density="2.1"/>
<AdhesionMoleculeDensity CellType="Cell2” Molecule="NCam” Density="3.1" />

<BindingFormula Name=" Binary”>
<Formula> min(Moleculel , Molecule2)</Formula>
<Variables>
<AdhesionInteractionMatrix>
<BindingParameter Moleculel="NCad” Molecule2="NCad” > —1.0</BindingParameter>
<BindingParameter Moleculel="NCam” Molecule2="NCam”> 2.0</BindingParameter>
<BindingParameter Moleculel="NCad” Molecule2="NCam” > —10.0</BindingParameter>
<BindingParameter Moleculel="Int” Molecule2="1Int” > —10.0</BindingParameter>
</AdhesionInteractionMatrix>
</Variables>

87

http://muparser.sourceforge.net/mup_features.html#idDef2

</BindingFormula>
<NeighborOrder>2</NeighborOrder>
</Plugin>

kn matrix is specified within the AdhesionInteractionMatrix tag - the elements are
listed using BindingParameter tags. The AdhesionMoleculeDensity tag specifies initial
concentration of adhesion molecules. Even if you are going to modify those from Python (in
the start function of the steppable) you are still required to specify the names of adhesion
molecules and associate them with appropriate cell types. Failure to do so may result in
simulation crash or undefined behaviors. The user-defined function F' is specified using
Formula tag where the arguments of the function are called Moleculel and Molecule2.
The syntax has to follow syntax of the muParser -

http://muparser.sourceforge.net /mup_features.html#idDef2.

CompuCell3D example - Demos/AdhesionFlex - demonstrates how to manipulate concen-
tration of adhesion molecules:

self.adhesionFlexPlugin.getAdhesionMoleculeDensity (cell ,”NCad”)

allows to access adhesion molecule concentration using its name (as given in the XML
above using AdhesionMoleculeDensity tag).

self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex (cell ;1)

allows to access adhesion molecule concentration using its index in the adhesion molecule
density vector. The order of the adhesion molecule densities in the vector is the same as
the order in which they were declared in the XML above - AdhesionMoleculeDensity
tags.

self.adhesionFlexPlugin.getAdhesionMoleculeDensityVector (cell)

allows access to entire adhesion molecule density vector.

Each of these functions has its corresponding function which operates on Medium. In this
case we do not give cell as first argument:

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensity (” Int”)

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityByIndex (0)

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityVector(cell)

To change the value of the adhesion molecule density we use set functions:

self.adhesionFlexPlugin.setAdhesionMoleculeDensity (cell ,”NCad” ,0.1)

88

http://muparser.sourceforge.net/mup_features.html#idDef2

self.adhesionFlexPlugin.setAdhesionMoleculeDensityByIndex (cell ,1,1.02)

self.adhesionFlexPlugin.setAdhesionMoleculeDensityVector (cell , \
[3.4,2.1,12.1])

Notice that in this las function we passed entire Python list as the argument. CC3D will
check if the number of entries in this vector is the same as the number of entries in the
currently used vector. If so the values from the passed vector will be copied, otherwise
they will be ignored.

IMPORTANT: during mitosis we create new cell (childCell) and the adhesion molecule
vector of this cell will have no components. However in order for simulation to continue
we have to initialize this vector with number of cadherins appropriate to childCell type.
We know that setAdhesionMoleculeDensityVector is not appropriate for this task so we
have to use:

self.adhesionFlexPlugin.assignNewAdhesionMoleculeDensityVector (cell , \
(3.4,2.1,12.1])

which will ensure that the content of passed vector is copied entirely into cells vector
(making size adjustments as necessary).

IMPORTANT: You have to make sure that the number of newly assigned
adhesion molecules is exactly the same as the number of adhesion molecules
declared for the cell of this particular type.

All of get functions has corresponding set function which operates on Medium:

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensity (?NCam” ,2.8)

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityByIndex (2,16.8)

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityVector (\
[1.4,3.1,18.1])

self.adhesionFlexPlugin.assignNewMediumAdhesionMoleculeDensityVector (\
[1.4,3.1,18.1])

9.2.17 ContactMultiCad plugin

ContactMultiCad plugin is a modified version of ContactLocalProduct plugin. In this case
users can use several cadherins and describe how they translate into contact energy. The

89

energy formula used by this plugin is given below:
E= Y (Eoﬂset +J(o(i),0(j) = > kzmnNm(z‘)Nn(j))
1,j neighbors m,n

where indexes i, j label pixels, J(o(7), (7)) denotes contact energy between cell types o ()
and o(j), exactly as in “regular” contact plugin and indexes m,n label cadherins in cells
composed of pixels ¢ and j respectively.

The syntax for this plugin is as follows:

<Plugin Name="ContactMultiCad”>
<Energy Typel="Medium” Type2="CadExpLevell”>0</Energy>
<Energy Typel="Medium” Type2="CadExpLevel2”>0</Energy>
<Energy Typel="CadExpLevell” Type2="CadExpLevell”>0</Energy>
<Energy Typel="CadExpLevell” Type2="CadExpLevel2”>0</Energy>
<Energy Typel="CadExpLevel2” Type2="CadExpLevel2”>0</Energy>

<SpecificityCadherin>
<Specificity Cadherinl="NCadl” Cadherin2="NCadl”>-10</Specificity>
<Specificity Cadherinl="NCad0” Cadherin2="NCad0”>-12</Specificity>
<Specificity Cadherinl="NCadl” Cadherin2="NCad0”">—1</Specificity>
</SpecificityCadherin>

<EnergyOffset>0.0</EnergyOffset>
<NeighborOrder>2</NeighborOrder>
</Plugin>

Entries of the type <Energy Typel="Medium" Type2="CadExpLevell">0</Energy> have
the same meaning as in “regular” contact energy. Specificity parameters specification k£,
are enclosed between tags <SpecificityCadherin> and <SpecificityCadherin>. The
names NCadO and Ncadl are arbitrary. However the matrix k,,, will be ordered according
to lexiographic order of Cadherin names. For that reason we recommend that you name
cadherins in such a way that makes it easy what the order will be. As in the example
above using NameNumber (e.g., NCad0, NCadl) makes it easy to figure out what the
order will be (NCad0 will get index 0 and NCadl will get index 1). This is important
because cadherins will be set in Python and if you won’t keep track of the ordering of the
specificity you might wrongly assign cadherins in Python and get unexpected results. In
the example the order of cadherins is clear based on the definition of cadherin specificity
parameters.

9.2.18 MolecularContact

This plugin is analogous to ContactLocalProduct and allows users to specify functional
form of adhesion molecules interactions using Python syntax. It is in beta state and for

90

this reason we are not discussing it in more detail and currently suggest to use Either
AdhesionFlex or ContactLocal product plugins.

9.2.19 ContactCompartment

This plugin is a generalization of the contact energy plugin for the case of compartmental
cell models.

EContactCompartment = Z J [O—(H’ia Vi)’ O-(ILL.j7 Vj)}
1,7 neighbors

where 7 and j denote pixels, o(u, v) denotes, as before, a cell type of a cell with p cluster id
and v cell id. In compartmental cell models, a cell is a collection of subcells. Each subcell
has a unique id (cell id). In addition to that, each subcell will have additional attribute,
a cluster id that determines to which cluster of subcells a given subcell belongs (think of
a cluster as a cell with nonhomogenous cytoskeleton). The idea here is to have different
contact energies between subcells belonging to the same cluster and different energies
for cells belonging to different clusters. Technically, subcells of a cluster are “regular”
CompuCell3D cells. By giving them an extra attribute cluster id we can introduce a
concept of compartmental cells. In our convention, ¢(0,0) denotes medium

Introduction of cluster id and cell id are essential for the definition of J [o(1s, 1), o/(p, v5)].

Joema o (i, v), 0 (pg, vy)| i s # py
I o (i, vi), 0 (g,)] = , .
Jmemallo (1, 1), 0 (g, vp)] i s =

As you can see from above there are two hierarchies of contact energies: external and
internal. The energies depend on cell types as in the case “regular” Contact plugin. Now,
however, depending whether pixels for which we calculate contact energies belong to the
same cluster or not, we will use internal or external contact energies respectively.

9.2.20 LengthConstraint plugin

This plugin imposes elongation constraint on the cell. Effectively it “measures” a cell along
its “axis of elongation” and ensures that cell length along the elongation axis is close to
target length. For detailed description of this algorithm in 2D see Roeland Merks’ paper
“Cell elongation is a key to in silico replication of in vitro vasculogenesis and subsequent
remodeling” Developmental Biology 289 (2006) 44-54. This plugin is usually used in
conjunction with Connectivity Plugin. The syntax is as follows:

91

Figure 21: Two compartmental cells (cluster id u = 1 and cluster id g = 2) Compartmentalized cell
1 =1 consists of subcells with cell id v = 1, 2,3 and compartmentalized cell ;1 = 2 consists of subcells with
cellid v =4, 5,6.

<Plugin Name="LengthConstraint”>
<LengthEnergyParameters CellType="Bodyl” TargetLength="30"
LambdaLength="5" />

</Plugin>

LambdalLength determines the degree of cell length oscillation around TargetLength pa-
rameter. The higher LambdaLength, the less freedom a cell will have to deviate from
TargetLength. In the 3D case we use the following syntax:

<Plugin Name="LengthConstraint”>
<LengthEnergyParameters CellType="Bodyl” TargetLength="20"
MinorTargetLength="5" LambdaLength="100" />

</Plugin>

Notice new attribute called MinorTargetLength. In 3D it is not sufficient to constrain the
“length” of the cell, you also need to constrain “width” of the cell along axis perpendicular
to the major axis of the cell. This “width” is referred to as MinorTargetLength.

For 2D simulations we have also an option to use LengthConstraintLocalFlex plugin
which calculate elongation constraints based on local parameters (i.e., on a per cell basis).
The syntax is as follows:

<Plugin Name="LengthConstraintLocalFlex” />

The parameters are assigned using Python — see Demos/elongationLocalFlexTest ex-
ample.

Remark: For 3D simulations we can only define elongation parameters on a per cell type
basis. We will fix this limitation in the next release.

92

Remark: When using target length plugins (either global , as shown here, or local as we
will show in the subsequent subsection) it is important to use connectivity constraint. This
constrain will check if a given pixel copy can break cell connectivity. If so, it will add large
energy penalty (defined by a user) to change of energy effectively prohibiting such pixel
copy. In the case of 2D on square lattice checking cell connectivity can be done locally
and thus is very fast. Unfortunately on hex lattice and in 3D on either lattice we dont
have an algorithm of performing such check locally and therefore we do it globally using
breadth first search algorithm and comparing volumes of cells calculated this way with
actual volume of the cell. If they agree we conclude that cell connectivity is preserved.
However the computational cost of running such algorithm, can be quite high. Therefore
if one does need extremely elongated cells (it is when connectivity algorithm has to do a
lot of work) one may neglect connectivity constraint and use Length constrain only. For
slight cells elongations the connectivity should be preserved however, occasionally cells
may fragment.

9.2.21 Connectivity plugin

The basic Connectivity plugin works only in 2D and only on square lattice and is
used to ensure that cells are connected or in other words to prevent separation of the cell
into pieces. The detailed algorithm for this plugin is described in Roeland Merks’ paper
“Cell elongation is a key to in-silico replication of in vitro vasculogenesis and subsequent
remodeling” Developmental Biology 289 (2006) 44-54. There was one modification of the
algorithm as compared to the paper. Namely, to ensure proper connectivity we had to
reject all spin flips that resulted in more that two collisions. (see the paper for detailed
explanation what this means).

The syntax of the plugin is straightforward:

<Plugin Name=" Connectivity”>
<Penalty>100000</Penalty>
</Plugin>

Penalty denotes energy that will be added to overall change of energy if attempted spin
flip would violate connectivity constraints. If the penalty is positive and much larger than
the absolute value of other energy changes in the simulation this has the effect of preventing
a spin flip from occurring.

A more general type of connectivity constraint is implemented in ConnectivityGlobal plu-
gin. In this case we calculate volume of a cell using breadth first search algorithm and
compare it with actual volume of the cell. If they agree we conclude that cell connectivity
is preserved. This plugin works both in 2D and 3D and on either type of lattice. However,
the computational cost of running such algorithm, can be quite high so it is best to limit
this plugin to cell types for which connectivity of cell is really essential:

93

<Plugin Name=" ConnectivityGlobal”>
<Penalty Type="Bodyl”>1000000000</Penalty>
</Plugin>

In certain types of simulation it may happen that at some point cells change cell types.
If a cell that was not subject to connectivity constraint, changes type to the cell that
is constrained by global connectivity and this cell is fragmented before type change this
situation normally would result in simulation freeze. However CompuCell3D, first before
applying constraint it will check if the cell is fragmented. If it is, there is no constraint.
Global connectivity constraint is only applied when cell is non-fragmented. The numerical
value of Penalty in the XML syntax above does not really matter as long as it is greater
than 0. CompuCell3D guarantees that cells for which penalty is greater than 0 will remain
connected. We will modify global connectivity plugin to allow application of connectivity
constraints to individual cells.

Quite often in the simulation we don’t need to impose connectivity constraint on all cells
or on all cells of given type. Usually only select cell types or select cells are elongated and
therefore need connectivity constraint. In such a case we use ConnectivityLocalFlex plugin
and assign connectivity constraints to particular cells in Python.

In XML we only declare:

<Plugin Name=" ConnectivityLocalFlex” />

In Python we manipulate/access connectivity parameters for individual cells using the
following syntax:

self.connectivityLocalFlexPlugin.setConnectivityStrength (cell ,20.7)

self.connectivityLocalFlexPlugin.getConnectivityStrength (cell)

See also example in Demos/elongationLocalFlexTest.

9.2.22 Mitosis plugin

Mitosis plugin carries out cell division into two cells once the parent cell reaches critical
volume (DoublingVolume). The two cells after mitosis will have approximately the same
volume although it cannot be guaranteed in general case if the parent cell is fragmented.
One major problem with Mitosis plugin is that after mitosis the attributes of the offspring
cell might not be initialized properly. By default cell type of the offspring cell will be the
same as cell type of parent and they will also share target volume. All other parameters
for the new cell remain uninitialized.

94

Remark: For this reason we stringly recommend using Mitosis plugin through Python
interface as there users can quite easily customize what happens to parent and offspring
cells after mitosis. An example of the use of Mitosis plugin through Python scripting
is provided in CompuCell3Ds Python Scripting Manual. The syntax of the “standard”
mitosis plugin is the following:

<Plugin Name=" Mitosis”>
<DoublingVolume>50</DoublingVolume>
</Plugin>

Every time a cell reaches DoublingVolume it will undergo the mitosis and the offspring cell
will inherit type and target volume of the parent. If this simple behavior is unsatisfactory
consider use Python scripting to implement proper mitotic divisions of cells.

9.2.23 Secretion plugin

In earlier version os of CC3D secretion was part of PDE solvers. We still support this mode
of model description however, starting in 3.5.0 we developed separate plugin which handles
secretion only. Via secretion plugin we can simulate cellular secretion of various chemicals.
The secretion plugin allows users to specify various secretion modes in the XML file - XML
syntax is practically identical to the SecretionData syntax of PDE solvers. In addition to
this Secretion plugin allows users to manipulate secretion properties of individual cells from
Python level. To account for possibility of PDE solver being called multiple times during
each MCS, the Secretion plugin can be called multiple times in each MCS as well. We
leave it up to user the rescaling of secretion constants when using multiple secretion calls
in each MCS. Note: Secretion for individual cells invoked via Python will be called only
once per MCS.

Typical XML syntax for Secretion plugin is presented below:

<Plugin Name=" Secretion”>
<Field Name="ATTR” ExtraTimesPerMC= 2 >
<Secretion Type="Bacterium”>200</Secretion>
<SecretionOnContact Type="Medium”
SecreteOnContact With="B">300</SecretionOnContact>
<ConstantConcentration Type="Bacterium”>500</ConstantConcentration>
</Field>
</Plugin>

By default ExtraTimesPerMC is set to 0 - meaning no extra calls to Secretion plugin per

MCS.

Typical use of secretion from Python is demonstrated best in the example below:

‘ class SecretionSteppable (SecretionBasePy):

95

def __init__(self,_simulator ,_frequency=1):
SecretionBasePy. __init__(self , _simulator, _frequency)

def step (self jmcs):
attrSecretor=self.getFieldSecretor ("ATIR")
for cell in self.cellList:
if cell.type==3:

attrSecretor.secretelnsideCell (cell ;300)
attrSecretor.secretelnsideCellAtBoundary (cell ,300)
attrSecretor.secreteOutsideCellAtBoundary (cell ,500)
attrSecretor.secretelnsideCellAtCOM (cell ,300)

Remark: Instead of using SteppableBasePy class we are using SecretionBasePy class.
The reason for this is that in order for secretion plugin with secretion modes accessible from
Python to behave exactly as previous versions of PDE solvers (where secretion was done
first followed by “diffusion” step) we have to ensure that secretion steppable implemented
in Python is called before each Monte Carlo Step, which implies that it will be also called
before “diffusing” function of the PDE solvers. SecretionBasePy sets extra flag which
ensures that steppable which inherits from SecretionBasePy is called before MCS (and
before all “regular” Python steppables). There is no magic to SecretionBasePy - if you still
want to use SteppableBasePy as a base class for secretion (or for that matter SteppablePy)
do so, but remember that you need to set flag:

self .runBeforeMCS=1

to ensure that your new stoppable will run before each MCS. See example below for alter-
native implementation of SecretionSteppable using SteppableBasePy as a base class:

class SecretionSteppable (SteppableBasePy):
def __init__(self,_simulator, _frequency=1):
SteppableBasePy. __init__(self , _simulator, _frequency)
self . runBeforeMCS=1

def step (self ,mcs):
attrSecretor=self.getFieldSecretor ("ATTR")
for cell in self.cellList:
if cell.type==3:

attrSecretor.secretelnsideCell (cell ,300)
attrSecretor.secretelnsideCellAtBoundary (cell ,300)
attrSecretor.secreteOutsideCellAtBoundary (cell ,500)
attrSecretor.secretelnsideCellAtCOM (cell ,300)

The secretion of individual cells is handled through Field Secretor objects. Field Secretor
concenpt is quite convenient because the amoun of Python coding is quite small. To
secrete chemical (this is now done for individual cell) we first create field secretor object,
attrSecretor=self.getFieldSecretor ("ATTR"), which allows us to secrete into field
called ATTR.

96

Remark: Make sure that fields into which you will be secreting chemicals exist. They
are usually fields defined in PDE solvers. When using secretion plugin you do not need
to specify SecretionData section for the PDE solvers Then we pick a cell and using field
secretor we simulate secretion of chemical ATTR by a cell:

attrSecretor.secretelnsideCell (cell ,300)

Currently we support 4 secretion modes for individual cells:

1. secreteInsideCell this is equivalent to secretion in every pixel belonging to a cell

2. secretelInsideCellAtBoundary secretion takes place in the pixels belonging to the
cell boundary

3. secreteInsideCellAtBoundary secretion takes place in pixels which are outside
the cell but in contact with cell boundary pixels

4. secreteInsideCellAtCOM secretion at the center of mass of the cell

As you may infer from above modes 1, 2, and 3 require tracking of pixels belonging to cell
and pixels belonging to cell boundary. If you are not using modes 1—3 you may disable pixel
tracking by including <DisablePixelTracker/> and/or <DisableBoundaryPixelTracker/>
tags as shown in the example below:

<Plugin Name="Secretion”>
<DisablePixelTracker />
<DisableBoundaryPixelTracker />
<Field Name="ATTR” ExtraTimesPerMC= 2 >
<Secretion Type="Bacterium”>200</Secretion>
<SecretionOnContact Type="Medium” SecreteOnContactWith="B”">300
</SecretionOnContact>
<ConstantConcentration Type="Bacterium”>500</ConstantConcentration>
</Field>
</Plugin>

9.2.24 PDESolverCaller plugin

PDE solvers in CompuCell3D are implemented as steppables . This means that by default
they are called every MCS. In many cases this is insufficient. For example if diffusion con-
stant is large, then explicit finite difference method will become unstable and the numerical
solution will have no sense. To fix this problem one could call PDE solver many times dur-
ing single MCS. This is precisely the task taken care of by PDESolverCaller plugin. The
syntax is straightforward:

97

<Plugin Name="PDESolverCaller”>
<CallPDE PDESolverName="FlexibleDiffusionSolverFE”ExtraTimesPerMC="8" />
</Plugin>

All you need to do is to give the name of the steppable that implements a given PDE solver
and pass let CompCell3D know how many extra times per MCS this solver is to be called
(here FlexibleDiffusionSolverFE was 8 extra times per MCS).

9.2.25 Elasticity and ElasticityTracker plugins

This plugin is responsible for handling the following energy term:

E= > Nl —Ly)

i,j-cellneighbors

where [;; is a distance between center of masses of cells 7 and j and L;; is a target length
corresponding to [;;.

The syntax of this plugin is the following

<Plugin Name=" ElasticityEnergy”>
<LambdaElasticity>200.0</LambdaElasticity>
<TargetLengthElasticity>6</TargetLengthElasticity>
</Plugin>

In this case A;; and L;; are the same for all participating cells types.

By adding extra attribute <Local/> to the above plugin:

<Plugin Name=" ElasticityEnergy”>
<Local />
<LambdaElasticity>200.0</LambdaElasticity>
<TargetLengthElasticity>6</TargetLengthElasticity>
</Plugin>

we tell CompuCell3D to use \;; and L;; defined on per pair of cells basis. The initialization
of \;j; and L;; usually takes place in Python script and users must make sure that [;; = [;;
and \;; = Aj; or else one can get unexpected results. We provide example python and xml
files that demo the use of plasticity plugin.

Users have to specify which cell types participate in the plasticity calculations. This is
done by including ElasticityTracker plugin before Elasticity plugin in the xml file. The
syntax is very clear:

<Plugin Name=" ElasticityTracker”>

98

<IncludeType>Bodyl</IncludeType>

<IncludeType>Body2</IncludeType>

<IncludeType>Body3</IncludeType>
</Plugin>

All is required is a list of participating cell types. Here cells of type Body1, Body2, and
Body3 will be taken into account for elasticity energy calculation purposes. The way in
which CompuCell3D determines which cells are to be included in the elasticity energy
calculations is by examining which cells are in contact with each other before simulation
begins.

If the types of cells touching each other are listed in the list of IncludeTypes of Elastici-
tyTracker then such cells are being taken into account when calculating elastic constraint.
Cells which initially are not touching will not participate in calculations even if their type
is included in the list of “ElasticityTracker”. However, in some cases it is desirable to
add elasticity pair even for cells that do not touch each other or do it once simulation has
started. To do this ElasticityTracker plugin defines two function :

assignElasticityPair (_celll , _cell2)

removeElasticityPair(.celll |, _cell2)

where _celll and _cell2 denote pointers to cell objects. These functions add or remove
two cell links to or from elastic constraint. Typically they are called from Python level.

9.2.26 FocalPointPlasticity plugin

Similarly as Elasticity plugin, FocalPointPlasticity put constrains the distance between cells
center of masses. The main difference is that the list of “focal point plasticity neighbors”
can change as the simulation goes and user specifies the maximum number of “focal point
plasticity neighbors” a given cell can have. Lets look at relatively simple XML syntax
of FocalPointPlasticity plugin (see Demos/FocalPointPlasticity example and we will
show more complex examples later):

<Plugin Name=" FocalPointPlasticity”>

<Parameters Typel="Condensing” Type2="NonCondensing”>
<Lambda>10.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions>2</MaxNumberOfJunctions>

</Parameters>

<Pa1‘ameters Typ61:77 Condcrlsing"" Typ62:77 Cond(‘,nsing">
<Lambda>10.0</Lambda>

99

<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions>2</MaxNumberOfJunctions>
</Parameters>
<NeighborOrder>1</NeighborOrder>
</Plugin>

Parameters section describes properties of links between cells. MaxNumberOfJunctions,
ActivationEnergy, MaxDistance and NeighborOrder are responsible for establishing
connections between cells. CC3D constantly monitors pixel copies and during pixel copy
between two neighboring cells/subcells it checks if those cells are already participating in
focal point plasticity constraint. If they are not, CC3D will check if connection can be
made (e.g., Condensing cells can have up to two connections with Condensing cells and
up to 2 connections with NonCondensing cells - see first line of Parameters section and
MaxNumberOf Junctions tag). The NeighborOrder parameter determines the pixel vicinity
of the pixel that is about to be overwritten which CC3D will scan in search of the new
link between cells. NeighborOrder 1 (which is default value if you do not specify this pa-
rameter) means that only nearest pixel neighbors will be visited. The ActivationEnergy
parameter is added to overall energy in order to increase the odds of pixel copy which
would lead to new connection.

Once cells are linked the energy calculation is carried out in a very similar way as for the
Elasticity plugin:
E= Y lly—Ly)?
1,7 cell neighbors

where [;; is a distance between center of masses of cells ¢ and j and L;; is a target length
corresponding to [;;.

Aij and L;; between different cell types are determined using Lambda and TargetDistance
tags. The MaxDistance determines the distance between cells center of masses when the
link between those cells break. When the link breaks, then in order for the two cells to
reconnect they would need to come in contact (in order to reconnect). However, it is
usually more likely that there will be other cells in the vicinity of separated cells so it is
more likely to establish new link than restore the broken one.

The above example was one of the simplest examples of use of FocalPointPlasticity. A more
complicated one involves compartmental cells. In this case each cell has separate “internal”
list of links between cells belonging to the same cluster and another list between cells
belonging to different clusters. The energy contributions from both lists are summed up
and everything that we have said when discussing example above applies to compartmental
cells. Sample syntax of the FocalPointPlasticity plugin which includes compartmental cells
is shown below. We use InternalParameters tag/section to describe links between cells
of the same cluster (see Demos/FocalPointPlasticity example):

100

<Plugin Name="FocalPointPlasticity”>

<Parameters Typel="Top” Type2="Top”">
<Lambda>10.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
</Parameters>

<Parameters Typel="Bottom” Type2="Bottom”>
<Lambda>10.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
</Parameters>

<InternalParameters Typel="Top” Type2="Center”’>
<Lambda>10.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions>1</MaxNumberOfJunctions>
</InternalParameters>

<InternalParameters Typel="Bottom” Type2="Center”>
<Lambda>10.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
<TargetDistance>7</TargetDistance>
<MaxDistance>20.0</MaxDistance>
<MaxNumberOfJunctions>1</MaxNumberOfJunctions>
</InternalParameters>

<NeighborOrder>1</NeighborOrder>
</Plugin>

Sometimes it is necessary to modify link parameters individually for every cell pair. In
this case we would manipulate FocalPointPlasticity links using Python scripting. Exam-
ple Demos/FocalPointPlasticityCompartments demonstrates exactly this situation.
Still, you need to include XML section as the one shown above for compartmental cells,
because we need to tell CC3D how to link cells. The only notable difference is that in the
XML we have to include <Local/> tag to signal that we will set link parameters (Lambda,
TargetDistance, MaxDistance) individually for each cell pair:

<Plugin Name=" FocalPointPlasticity”>
<Local />
<Parameters Typel="Top” Type2="Top”>
<Lambda>10.0</Lambda>

101

<ActivationEnergy>—50.0</ActivationEnergy>

<TargetDistance>7</TargetDistance>

<MaxDistance>20.0</MaxDistance>

<MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
</Parameters>

</Plugin>

Python steppable where we manipulate cell-cell focal point plasticity link properties is
shown below:

FocalPointPlasticityCompartmentsParams (SteppablePy):
__init__(self , _simulator , _frequency=10):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator
self.focalPointPlasticityPlugin=CompuCell. \
getFocalPointPlasticityPlugin ()
self.inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

step(self ,mcs):
cell self.cellList:
fppd InternalFocalPointPlasticityDatalList
\ (self.focalPointPlasticityPlugin , cell):
self.focalPointPlasticityPlugin. \
setInternalFocalPointPlasticityParameters \
(cell ,fppd.neighborAddress ,0.0,0.0,0.0)

The syntax to change focal point plasticity parameters (or as here internal parameters) is
as follows:

setFocalPointPlasticityParameters(celll ; cell2 , lambda, \
targetDistance , maxDistance)

setFocalPointPlasticityParameters(celll , cell2 , lambda, \
targetDistance , maxDistance)

Similarly to inspect current values of the focal point plasticity parameters we would use
the following Python construct:

cell self.cellList:
fppd InternalFocalPointPlasticityDataList)\
(self.focalPointPlasticityPlugin , cell):
"fppd.neighborld” ,fppd.neighborAddress.id
7 _lambda=" ,fppd.lambdaDistance

For non-internal parameters we simply use FocalPointPlasticityDataList instead of
InternalFocalPointPlasticityDatalist.

102

Examples Demos/FocalPointPlasticity show in relatively simple way how to use Fo-
calPointPlasticity plugin. Those examples also contain useful comments.

When using FocalPointPlasticity Plugin from mitosis module one might need to break
or create focal point plasticity links. To do so FocalPointPlasticity Plugin provides 4
convenience functions which can be invoked from the Python level:

deleteFocalPointPlasticityLink (celll , cell2)
deleteInternalFocalPointPlasticityLink (celll ,cell2)

createFocalPointPlasticityLink (\
celll ,cell2 ,lambda,targetDistance ,maxDistance)

createlnternalFocalPointPlasticityLink (\
celll ,cell2 lambda,targetDistance ,maxDistance)

VAdd: An example of the use of FocalPointPlasticity plugin with mitosis is as follows. In
an XML file, which we name for example mitosis_fpp.xml we set the following:

<CompuCell3D>

<!— Basic properties of CPM (GGH) algorithm —>

<Potts>
<Dimensions x="100" y="100" z="1" />
<Steps>1200</Steps>

<Temperature>10.0</Temperature>
<NeighborOrder>1</NeighborOrder>
</Potts>

<!— Listing all cell types in the simulation —>
<Plugin Name=" CellType”>
<CellType Typeld="0" TypeName="Medium” />
<CellType Typeld="1" TypeName="typel” />

</Plugin>
<!— Constraint on cell volume. Each cell has different constraint —
constraints have to be initialized and managed in Python —>

<Plugin Name="VolumeLocalFlex” />

<!— Module tracking center of mass of each cell —>
<Plugin Name=" CenterOfMass” />

<!— Specification of adhesion energies —>

<Plugin Name="Contact”>
<Energy Typel="Medium” Type2="Medium”>10</Energy>
<Energy Typel="Medium” Type2="typel”>10</Energy>
<Energy Typel="typel” Type2="typel”>10</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

103

<!— Specification of focal point junctions —>

<!— We separetely specify links between members of same cluster —
InternalParameters and members of different clusters Parameters.
When not using compartmental cells comment out InternalParameters
specification —>

<Plugin Name="FocalPointPlasticity”>

<!— To modify FPP links individually for each cell pair uncomment
line below —>

<!— <Local/> —>

<!— Note that even though you may manipulate lambdaDistance
targetDistance and maxDistance using Python you still need to set
activation energy from XML level —>

<!— See CC3D manual for details on FPP plugin —>

<Parameters Typel="typel” Type2="typel”>
<Lambda>10</Lambda>
<ActivationEnergy>—50</ActivationEnergy>
<TargetDistance>5</TargetDistance>
<MaxDistance>10</MaxDistance>
<MaxNumberOfJunctions NeighborOrder="1">6</MaxNumberOfJunctions>
</Parameters>

<NeighborOrder>1</NeighborOrder>

</Plugin>
<!— Initial layout of cells in the form of rectangular slab —>
<Steppable Type="UniformlInitializer”>
<Region>

<BoxMin x="40" y="40" z="0" />
<BoxMax x="60" y="60" z="1"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>typel</Types>
</Region>
</Steppable>
</CompuCell3D>

In the main function of python file, we name it mitosis_fpp_main.py we set

import sys

from os import environ

from os import getcwd

import string

sys.path.append (environ ["PYTHON MODULE PATH” |)

import CompuCellSetup

sim, simthread = CompuCellSetup.getCoreSimulationObjects ()

add extra attributes here

104

CompuCellSetup . initializeSimulationObjects (sim,simthread)
Definitions of additional Python—managed fields go here

#Add Python steppables here
steppableRegistry=CompuCellSetup . getSteppableRegistry ()

from mitosis_fppSteppables import ConstraintInitializerSteppable
ConstraintInitializerSteppablelnstance=\
ConstraintInitializerSteppable (sim, _frequency=40)
steppableRegistry.registerSteppable (ConstraintInitializerSteppableInstance)

from mitosis_fppSteppables import GrowthSteppable
GrowthSteppableInstance=GrowthSteppable (sim , _frequency =40)
steppableRegistry .registerSteppable (GrowthSteppablelnstance)

from mitosis_fppSteppables import MitosisSteppable
MitosisSteppableInstance=MitosisSteppable (sim , _frequency=40)
steppableRegistry .registerSteppable (MitosisSteppableInstance)

CompuCellSetup . mainLoop (sim , simthread , steppableRegistry)

and in the steppable file, we name it mitosis_fppSteppables.py:

from PySteppables import =x
import CompuCell
import sys

from PySteppablesExamples import MitosisSteppableBase

class ConstraintInitializerSteppable (SteppableBasePy):
def __init__(self,_simulator , _frequency=1):
SteppableBasePy. __init_-_(self , _simulator , _frequency)
del start(self):
for cell in self.cellList:
cell .targetVolume=25
cell .lambdaVolume=2.0

class GrowthSteppable (SteppableBasePy):
def __init__(self,_simulator , _frequency=1):
SteppableBasePy. __init__(self , _simulator , _frequency)

del step(self ,mes):
for cell in self.cellList:
cell .targetVolume+=1
alternatively if you want to make growth a function of chemical
concentration uncomment lines below and comment lines above
field=CompuCell. getConcentrationField (self.simulator ,\

105

#PUT NAME_OF CHEMICAL FIELD HERE")
pt=CompuCell. Point3D ()
for cell in self.cellList:
pt.x=int (cell .xCOM)
pt.y=int (cell .yCOM)
pt.z=int (cell .z2COM)
concentrationAtCOM=field . get (pt)
cell.targetVolume+=0.01*concentrationAtCOM
you can use here any fcn of concentrationAtCOM

class MitosisSteppable (MitosisSteppableBase):
def __init__(self,_simulator , _frequency=1):
MitosisSteppableBase. __init__(self , _simulator , _frequency)

def step(self ;jmes):
print 7INSIDE MITOSIS STEPPABLE”
cells_to_divide =[]
for cell in self.cellList:
if cell.volume>50:
cells_to_divide .append(cell)
Here is where we delete the links
for fppd in self.getFocalPointPlasticityDataList(cell):
self.focalPointPlasticityPlugin.\
deleteFocalPointPlasticityLink (cell ,fppd.neighborAddress)

for cell in cells_to_divide:
to change mitosis mode leave one of the below lines uncommented
self . divideCellRandomOrientation (cell)
self.divideCellOrientationVectorBased (cell ;1,0,0)
self . divideCellAlongMajorAxis(cell)
self.divideCellAlongMinorAxis(cell)

def updateAttributes(self):
parentCell=self. mitosisSteppable.parentCell
childCell=self.mitosisSteppable.childCell

childCell . targetVolume=parentCell . targetVolume
childCell .lambdaVolume=parentCell .lambdaVolume
childCell .type = parentCell.type
Here is where we reform the links
it parentCell:
for neighbordata in self.getFocalPointPlasticityDataList(parentCg
self.focalPointPlasticityPlugin .\
createFocalPointPlasticityLink (parentCell ,\
neighbordata.neighborAddress ,10,5,20)
if childCell:
for neighbordata in self.getFocalPointPlasticityDataList(childCel
self.focalPointPlasticityPlugin.createFocalPointPlasticityLin}
(childCell ;neighbordata.neighborAddress ,10,5,20)

106

9.2.27 Curvature Plugin

This plugin implements energy term for compartmental cells. It is based on “A New
Mechanism for Collective Migration in Myxococcus xanthus”, J. Starrufl, Th. Bley, L.
Sogaard-Andersen and A. Deutsch, Journal of Statistical Physics, DOI: 10.1007/s10955-
007-9298-9, (2007). For a “long” compartmental cell composed of many subcells it imposes
constraint on curvature of cells. The syntax is slightly complex:

<Plugin Name=" Curvature”>
<InternalParameters Typel="Top” Type2="Center”’>
<Lambda>100.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
</InternalParameters>

<InternalParameters Typel="Center” Type2="Center”>
<Lambda>100.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
</InternalParameters>

<InternalParameters Typel="Bottom” Type2="Center”>
<Lambda>100.0</Lambda>
<ActivationEnergy>—50.0</ActivationEnergy>
</InternalParameters>

<InternalTypeSpecificParameters>
<Parameters TypeName="Top” MaxNumberOfJunctions="1"
NeighborOrder="1" />
<Parameters TypeName="Center” MaxNumberOfJunctions="2"
NeighborOrder="1" />
<Parameters TypeName="Bottom” MaxNumberOfJunctions="1"
NeighborOrder="1" />
</InternalTypeSpecificParameters>
</Plugin>

The InternalTypeSpecificParameter tells Curvature Plugin how many neighbors a cell
of given type will have. In this case, numbers which make sense are 1 and 2. The middle
segment will have 2 connection and head and tail segments will have only one connection
with neighboring segments (subcells). The connections are established dynamically. The
way it happens is that during simulation CC3D constantly monitors pixel copies and dur-
ing pixel copy between two neighboring cells/subcells it checks if those cells are already
“connected” using curvature constraint. If they are not, CC3D will check if connection
can be made (e.g., Center cells can have up to two connections and Top and Bottom
only one connection). Usually establishing connections takes place at the beginning if the
simulation and often happens within first Monte Carlo Step (depending on actual initial
configuration, of course, but if segments touch each other connections are established al-
most immediately). The ActivationEnergy parameter is added to overall energy in order
to increase the odds of pixel copy which would lead to new connection. Lambda tag/param-

107

eter determines “the strength” of curvature constraint. The higher the Lambda the more
“stiff” cells will be, i.e., they will tend to align along straight line.

9.2.28 PlayerSettings Plugin

This plugin allows users to specify or configure Player settings directly from XML, without
s single click. Some users might prefer this way of setting configuring Player. In addition
to this if users want to run two different simulations at the same time on the same machine
but with different , say, cell colors, then doing it with “regular” Player configuration file
might be tricky. The solution is to use PlayerSetting Plugin. The syntax of this plugin is
as follows:

<Plugin Name="PlayerSettings”>
<Project2D XZProj="50" />
<Concentration LegendEnable="true” NumberOfLegendBoxes="3" />
<VisualControl ScreenshotFrequency="200" ScreenUpdateFrequency="10"
NoOutput="true” ClosePlayerAfterSimulationDone="true” />
<Border BorderColor="red” BorderOn="false” />
<TypesInvisibleIn3D Types="0,2,4,5” />
<Cell Type="1" Color="red” />
<Cell Type="2" Color="yellow” />

<!— Note: SaveSettings flag is unimportant for the new Player because
whenever settings are changed from XML script they are written by
to disk. This seems to be behavior of most modern applications.

We may implement this feature later
<Settings SaveSettings="false” /> —>
</Plugin>

108

9.2.29 BoundaryPixelTracker Plugin
9.2.30 GlobalBoundaryPixelTracker
9.2.31 PixelTracker Plugin

9.2.32 MomentOfInertia plugin
9.2.33 SimpleClock plugin

9.2.34 ConvergentExtension plugin

9.3 Steppable Section

Steppables are CompuCell modules that are called every Monte Carlo Step (MCS). More
precisely, they are called after all the spin attempts in a given MCS have been carried out.
Steppables may have various functions like for example solving PDFE’s; checking if critical
concentration threshold have been met, updating target volume or target surface given the
concentration of come growth factor, initializing cell field, writing numerical results to a file
etc. In summary Steppables perform all functions that need to be done every MCS. In the
reminder of this section we will present steppables currently available in the CompuCell
and describe their usage.

9.3.1 Uniformlnitializer steppable

This steppable lays out pattern of cells on the lattice. It allows users to specify rectangular
regions of field with square (or cube in 3D) cells of user defined types (or random types).
Cells can be touching each other or can be separated by a gap.

The syntax of the plugin is as follows:

109

9.3.2 Bloblnitializer steppable
9.3.3 PIFInitializer steppable
9.3.4 PIFDumper steppable
9.3.5 Mitosis steppable

This steppable is described in great detail in Python tutorial but because of its importance
we are including a copy of that description here.

In developmental simulations we often need to simulate cells which grow and divide. In
earlier versions of CompuCell3D we had to write quite complicated plugin to do that which
was quite cumbersome and unintuitive (see example 9). The only advantage of the plugin
was that exactly after the pixel copy which had triggered mitosis condition CompuCell3D
called cell division function immediately. This guaranteed that any cell which was sup-
posed divide at any instance in the simulation, actually did. However, because state of the
simulation is normally observed after completion of full a Monte Carlo Step, and not in
the middle of MCS it makes actually more sense to implement Mitosis as a steppable. Let
us examine the simplest simulation which involves mitosis. We start with a single cell and
grow it. When cell reaches critical (doubling) volume it undergoes Mitosis. We check if
the cell has reached doubling volume at the end of each MCS. The folder containing this
simulation is examples_PythonTutorial /steppableBasedMitosis. The mitosis algo-
rithm is implemented in

examples_PythonTutorial /steppableBasedMitosis/steppableBasedMitosisSteppables.py.

from PySteppables import x

from PySteppablesExamples import MitosisSteppableBase
import CompuCell

import sys

class VolumeParamSteppable(SteppablePy):
def __init__(self,_simulator ,_frequency=1):
SteppablePy. __init__(self , _frequency)
self.simulator=_simulator
self .inventory=self.simulator.getPotts (). getCelllnventory ()
self.cellList=CellList (self.inventory)

def start(self):
for cell in self.cellList:
cell .targetVolume=25
cell .lambdaVolume=2.0

def step(self ,mcs):
for cell in self.celllList:
cell .targetVolume+=1

110

class MitosisSteppable (MitosisSteppableBase):
def __init__(self,_simulator ,_frequency=1):
MitosisSteppableBase. __init__(self , _simulator , _frequency)

def step(self ,mcs):
cells_to_divide =[]
for cell in self.cellList:
if cell.volume>50: #mitosis condition
cells_to_divide .append(cell)

for cell in cells_to_divide:
self.divideCellRandomOrientation (cell)

def updateAttributes(self):
parentCell=self.mitosisSteppable.parentCell
childCell=self.mitosisSteppable.childCell
childCell . targetVolume=parentCell . targetVolume
childCell .lambdaVolume=parentCell .lambdaVolume

if parentCell.type==1:
childCell . type=2
else:
childCell . type=1

Two steppables: VolumeParamSteppable and MitosisSteppable are the essence of the
above simulation. The first steppable initializes volume constraint for all the cells present
at T = 0 MCS (only one cell) and then every 10 MCS (see the frequency with which
VolumeParamSteppable is initialized to run -

examples_PythonTutorial /steppableBasedMitosis/steppableBasedMitosis.py) it
increases target volume of cells, effectively causing cells to grow.

The second steppable checks every 10 MCS (we can, of course, run it every MCS) if cell
has reached doubling volume of 50. If so, such cell is added to the list cells_to_divide
which subsequently is iterated and all the cells in it divide.

Remark: It is important to divide cells outside the loop where we iterate over entire cell
inventory. If we keep dividing cells in this loop we are adding elements to the list over
which we iterate over and this might have unwanted side effects. The solution is to use use
list of cells to divide as we did in the example.

Notice that we call self.divideCellRandomOrientation(cell) function to divide cells.

Other modes of division are available as well and they are shown in

examples_PythonTutorial /steppableBasedMitosis/steppableBasedMitosisSteppables.py
as commented line with appropriate explanation.

Notice MitosisSteppable inherits MitosisSteppableBase class (defined in PySteppable-

111

sExamples.py).It is the base class which ensures that after we call any of the cell divid-
ing function (e.g., divideCellRandomOrientation) CompuCell3D will automatically call
updateAttributes function as well. updateAttributes function is very important and
we must call it in order to ensure integrity and sanity of the simulation. During mitosis
new cell is created (accessed in Python as childCell - defined in MitosisSteppableBase
- self .mitosisSteppable.childCell) and as such this cell is uninitialized. It does have
default attributes of a cell such as volume, surface (if we decide to use surface constraint
or SurfaceTracker plugin) but all other parameters of such cell are set to default values.
In our simulation we have been setting targetVolume and lambdaVolume individually for
each cell. After mitosis childCell will need those parameters to be set as well. To make
things more interesting, in our simulation we decided to change type of cell to be different
than type of parent cell.

In more complex simulations where cells have more attributes which are used in the sim-
ulation, we have to make sure that in the updateAttributes function childCell and its
attributes get properly initialized. It is also very common practice to change attributes
of parentCell after mitosis as well to account for the fact that parentCell is not the
original parentCell from before the mitosis.

Important: If you specify orientation vector for the mitosis the actual division will take
place along the line/plane perpendicular to this vector.

Important: the name of the function where we update attributes after mitosis has to be
exactly updateAtttributes. If it is called differently CC3D will not call it automatically.
We can of course call such function by hand, immediately we do the mitosis but this is not
a very elegant solution.

Now we will discuss how to use PDE solvers in CompuCell3D. Most of the PDE solvers
solve PDE with diffusive terms. Let’s take a look at them.

References

[1] M.A.J. Chaplain and G. Lolas, Mathematical Modelling of Cancer Cell Invasion of
Tissue: The Role of The Urokinase Plasminogen Activation System, Mathematical
Models and Methods in Applied Sciences, 15 (2005) 1685 - 1734.

[2] M.A.J. Chaplain, A. Gerisch, G. Lolas, A Mathematical and Computational Analysis
of a Model of Cancer Cell Invasion of Tissue, Journal of Mathematical Biology

[3] A. Gerisch and M.A.J. Chaplain, Mathematical Modelling of Cancer Cell Invasion
of Tissue: Local and non-Local Models and the Effect of Adhesion, J. Theor. Biol.
2007.

112

[4] Kevin J. Painter and Thomas Hillen, Volume-Filling and Quorum-Sensing in Models
for Chemosensitive Movement, Canadian Applied Mathematics Quarterly, Vol. 10,
No. 4, (2002).

[5] Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowd-
ing, Advances in Applied Mathematics, 26 (2001), pp. 280 — 301.

[6] J.D. Murray, Mathematical Biology I An Introduction, Springer, 2002.

113

	Introduction
	GGH Applications
	GGH Simulation Overview
	Effective Energy
	Dynamics
	Algorithmic Implementation of Effective-Energy Calculations

	CompuCell3D
	Building CC3DML-Based Simulations Using CompuCell3D
	A Short Introduction to XML
	Grain-Growth Simulation
	Cell-Sorting Simulation
	Bacterium-and-Macrophage Simulation

	Python Scripting
	A Short Introduction to Python
	Building Python-Based CompuCell3D Simulations
	Cell-Type-Oscillator Simulation
	Two-Dimensional Foam-Flow Simulation
	Diffusing-Field-Based Cell-Growth Simulation

	Conclusion
	Acknowledgements
	XML Syntax of CompuCell3D modules
	Potts Section
	Lattice Type

	Plugins Section
	CellType Plugin
	Simple Volume and Surface Constraints
	VolumeTracker and SurfaceTracker plugins
	VolumeFlex Plugin
	SurfaceFlex Plugin
	VolumeLocalFlex Plugin
	SurfaceLocalFlex Plugin
	NeighborTracker Plugin
	Chemotaxis
	ExternalPotential plugin
	CellOrientation plugin
	PolarizationVector plugin
	CenterOfMass plugin
	Contact Energy plugin
	ContactLocalProduct plugin
	AdhesionFlex plugin
	ContactMultiCad plugin
	MolecularContact
	ContactCompartment
	LengthConstraint plugin
	Connectivity plugin
	Mitosis plugin
	Secretion plugin
	PDESolverCaller plugin
	Elasticity and ElasticityTracker plugins
	FocalPointPlasticity plugin
	Curvature Plugin
	PlayerSettings Plugin
	BoundaryPixelTracker Plugin
	GlobalBoundaryPixelTracker
	PixelTracker Plugin
	MomentOfInertia plugin
	SimpleClock plugin
	ConvergentExtension plugin

	Steppable Section
	UniformInitializer steppable
	BlobInitializer steppable
	PIFInitializer steppable
	PIFDumper steppable
	Mitosis steppable

