DEVELOPERS
DOCUMENTATION FOR
COMPUCELL3D

Version 3.3.0

Authors: Maciej Swat, Trevor Cickovski, James Glazier, Alex Dementosv,

Benajmin Zaitlen

Last modified: 11/10/08

This manual will guide you through the process of building new plugins and modules for CompuCell.
Because of the modular design of the CompuCell3D you can get started quite quickly as in most cases
you do not need to understand the entire code of the CompuCell3D. Of course, occasionally you might
be forced to look up some parts of the code, but once you get some experience with plugin
development understanding rest of CompuCell3D code will be easy.

Prerequisites:

We assume that you know C++ . To be more precise, you need to understand polymorphism, how
virtual functions work and have basic knowledge of templates. We also assume that you are familiar
with Cellular Potts Model, that is that you understand what CPM is all about and how it works.

We will try to demonstrate how to develop new plugins by using a concrete example. This is probably
the best way to introduce you to CompuCell3D development. Before we go there it is probably a good
idea to understand how CompuCell3D works.

CompuCell3D code basics

One of the most important classes in CompuCell3D , called Potts3D implements the Metropolis
algorithm. The method that has the implementation of it has the following API:

virtual unsigned int metropolis(const unsigned int steps, const double
temp);

If you look at the code inside this function you will discover that it performs many spin-flip (or pixel
flips, if you prefer) attempts. Each flip consists of choosing randomly a point in the 3D lattice, lets call
it pt. Then we look up a list of neighboring pixels of pt and randomly pick one of such pixels , let's call
it changePixel. Now, what's going to happen next is that we will try to assign to changePixel a value
(actually it is a pointer to a cell object) from pr. Before we allow to assign the value we need to check
what energy change such a reassignment would cause. Looking in the code we find a call to a Potts3D's
method called:

virtual double changeEnergy(Point3D pt, const CellG *newCell, const CellG
*0ldCell)

In a nutshell, this method calls energy functions plugins and adds all the energy contributions from
each of those plugins and returns as a result overall energy change due to the proposed spin-flip.

Actual call to this method looks as follows:

double change = changeEnergy(changePixel, cell, cellFieldG-

2-

>get (changePixel));

This call tells you that the only piece of information that energy function plugins get from Potts are:

1) change point, i.e a location of the lattice at which spin reassignment will take place
2) pointer to newCell — this will be a pointer to a cell object that will be assigned to a changePixel
if the spin flip gets accepted
3) pointer to oldCell — this is a pointer to a cell object that is currently (i.e. before spin flip) at the
location of the changePixel
As you will see later, you can access more Potts3D information from the plugin, but this will be done
in a slightly different way (also very straightforward)

Another very important type of plugins in CompuCell3D are field watchers. What they do is , every
time a spin-flip takes place they update cell attributes such as volume, surface, list of neighbors, etc...
depending what field watchers user has requested for his/her simulation.

The API for field watcher most important function (i.e. field3DChange) looks as follows:

virtual void field3DChange(const Point3D &pt, CellG *newCell, CellG
*0ldCell);

Again, as it was the case for changeEnergy function presented earlier we pass to field3Dchange same
objects. It should be noted though that field3DChange is not called directly from Potts3D's metropolis
method. It is called through WatchableField3D API

Another type of object that is called from Potts3D, although is not used that often is Stepper. It another
type of plugin that is called every time spin-flip attempt. The difference is that it is called after all
energy function and field3DChange functions have been called. We will explain why we need Steppers
later when we will discuss implementation of the mitosis. For now, you should remember that there is a
way to call a plugin after all registered plugins have been called, for a given spin flip attempt.

So far we have been dealing with plugins than are being called either every spin-flip attempt or every
spin-flip. There is another category of modules of CompuCell3D which is being called every Monte
Carlo Step or every number of Monte Carlo Step. Quick reminder, A Monte Carlo step consist of many
spin-flip attempts (usually, but not always, equal to a number of lattice sites).

Steppable objects have three main methods that are being called by Compuell3D kernel:
1) void start()
2) void step(unsigned int mcs)
3) void finish()

start() and finish() usually perform pre-/post-initialization (although there are other initialization
methods that are also called, and we will discuss them later while workinig out a specific example).

step() is called every Monte Carlo step (or every user-predefined number of MCS's) and typically does
various kind of “maintenance” or solves PDE's . Steppables are also used to initialize cell field.

Below you can find a pseudo-code for the CompuCell3D

Initialize Plugins
Initialize Steppables
Additional Initialization of Plugins
Additional Initialization of Steppables
Start Simulation
for each Monte Carlo Step :
for every spin flip:
pick random points
calculate energy functions and sum them (will call changeEnergy for every
registered plugin)
check if the spin flip gets accepted
do spin reassignment (at this step field3DChange functions will be called)
call steppers
call steppables:
Finish Simulation

The above information should be sufficient to start coding new modules. In the following subsections
we will work out examples of particular plugins. At the end of of this manual we will provide how to
set up build system (makefiles etc... for CompuCell3D).

Note: Plugins written for version 3.2.* of the CompuCell3D are NOT backward compatible with the
version 3.3.0. The major change for the new version was done in parsing of the XML files. This
significantly simplifies the code makes the plugin development much easier.

Developing Plugins

Probably the best way to learn how to develop a plugin is to study an example. Here we will explain
how to develop several plugins. The easiest plugin to learn and understand is a SimpleVolume plugin
from DeveloperZone just to get feeling of what it is. Then we will consider the VolumeTracker plugin
from the plugins directory that that tracks the cell volumes.

SimpleVolume Plugin

Let's open up the header file SimpleVolumePlugin.h from the directory DeveloperZone/SimpleVolume
and consider the class SimpleVolumePlugin.

[SimpleVolumePlugin.h]

#ifndef SIMPLEVOLUMEPLUGIN H
#define SIMPLEVOLUMEPLUGIN H

#include <CompuCell3D/Plugin.h>
#include <CompuCell3D/Potts3D/Stepper.h>

-

#include <CompuCell3D/Potts3D/EnergyFunction.h>
#include <CompuCell3D/Potts3D/CellGChangeWatcher.h>
#include <CompuCell3D/Potts3D/Cell.h>

#include <CompuCell3D/dllDeclarationSpecifier.h>
#include <vector>

#include <string>

class CC3DXMLElement;

namespace CompuCell3D {
class Potts3D;
class CellgG;

class DECLSPECIFIER SimpleVolumePlugin : public Plugin , public
EnergyFunction
{
Potts3D *potts;
C3DXMLElement *xmlData;
double targetVolume;
double lambdaVolume;

public:
SimpleVolumePlugin() :potts(0){};
virtual ~SimpleVolumePlugin(){};

//EnergyFunction interface
virtual double changeEnergy(const Point3D &pt, const CellG
*newCell,const CellG *o0ldCell);

// SimObject interface
virtual void init(Simulator *simulator, CC3DXMLElement * xmlData);
virtual void update(CC3DXMLElement * xmlData, bool
_fullInitFlag=false);
virtual std::string steerableName();
virtual std::string toString();
}i
}i
#endif

Note: DECLSPECIFIER is a macro that is needed to compile dlls on Windows systems. On
Linux/OSX this macro is automatically replaced with empty string.

The purpose of the SimpleVolume plugin is to track cell volumes and add the volume energy. The class
SimpleVolumePlugin inherits from two superclasses Plugin and EnergyFunction. Any plugin that you
will develop should inherit from Plugin class. Additionally you can inherit also from other superclasses
depending on the purpose of your class. For example, the class NeighborTrackerPlugin inherits also
from CellGChangeWatcher as it tracks the cell neighbors and stores them in a list. In our case
SimpleVolumePlugin inherits also from EnergyFunction because it calculates the change in the energy
and adds and subtracts pixels from the cell depending on this value.

The most important task in our SimpleVolumePlugin development is to implement the changeEnergy
function.

Let's look at the actual implementation of this function:

double SimpleVolumePlugin::changeEnergy(const Point3D &pt,
const CellG *newCell,
const CellG *oldCell)

{
/// E = lambda * (volume - targetVolume) ~ 2
double energy = 0.0;
if (oldCell == newCell) return 0;
//as in the original version
if (newCell){
energy += lambdaVolume *
(1 + 2 * (newCell->volume - targetVolume));
}
if (oldCell){
energy += lambdaVolume *
(1 - 2 * (oldCell->volume - targetVolume));
}
return energy;
¥

As it was discussed earlier the only piece of information that is passed to this function is the point of
the lattice at which spin reassignment takes place and pointer to the current cell object (01dCel1l) at
this point and pointer to the cell object (newCe11) that will be assigned if the spin flip is accepted.

Notice that in the code we have 'if’ statement that goes like this:

if (newCell) or
if (oldCell)

Before accessing the object it is important that we make sure that a pointer is non-NULL. In
CompuCell3D implementation there might be many lattice points which have null pointer. We call
them 'Medium' . This is special way to mark non-cell objects. Always, check if you are not accessing
null pointer when trying to access cell , as otherwise you will get segmentation fault error.

OK, back to the volume energy. The volume energy has the expression E=A(V — V,)2 that depends
on two parameters: A and V, stored in our SimpleVolumePlugin class in the attributes lambda and
targetVolume. Of course you can come up with some other model and other expression for the energy
function but then you will need to rewrite the changeEnergy() function that would redefine would suit
the energy change to your model and may be introduce some other parameters. To pass the values for
lambda and targetVolume you will need to specify them in the XML tags as shown in the snippet

-6-

below.

<Plugin Name="SimpleVolume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>2.0</LambdaVolume>
</Plugin>

For the SimpleVolumePlugin these parameters are the same for all cells. But you might want to make
them different for different cell types. The example of how to do that is provided in the class
VolumePlugin and the actual model that you can play with can be found in dicty_try_40x40.xml under
Demos directory.

Note: The VolumePlugin class that we used to give as an example in the Developers' Manual in
previous versions of the CompuCell3D now became more complex because it now includes several
plugins: Volume, VolumeFlex and VolumeLocalFlex.

Let's learn how we got the formulas for the changeEnergy() that appear in the code. Recall that the
volume energy function is given by expression:

E=A(V-V)

Now, if a cell is going to gain extra pixel due to a spin flip (this will be new cell) that its change in
volume energy is given by:

AE =E_ —E AVHI=V)V=A(V=VV=A(1+2(V-V))

new — T after ™ before

Similarly, if cell would lose one pixel (oldCell) due to a proposed spin flip than change of volume
energy for this cell is given by:

AE,=E = Eppr,=A(V=1=V =2 (V =V)’=2(1-2(V-V))

after_
Now, overall energy change due to a spin flipisasumof AE,, and AE,,, :

AE=AE ,+AE
We hope you were able to match formulas in the code snippet with our derivation.

new

After we wrote the changeEnergy() function now we can move on and consider other member
functions in the SimpleVolumePlugin class. Before we start our simulation we need to initialize it. The
virtual member function init(Simulator *simulator, CC3DXMLElement * xmlData) does
just that. It passes the Simulator and CC3DXMLElement pointers to initialize the attributes potts and
xmlData. Let's look at the implementation of this member function.

void SimpleVolumePlugin::init(Simulator *simulator, CC3DXMLElement

-

* _xmlData)

{

potts = simulator->getPotts();

bool pluginAlreadyRegisteredFlag;

Plugin *plugin = Simulator::pluginManager.get("VolumeTracker",
&pluginAlreadyRegisteredFlaqg);

//this will load VolumeTracker plugin if it is not already loaded
if(!pluginAlreadyRegisteredFlaq)

plugin->init(simulator);
potts->registerEnergyFunctionWithName (this,toString());
simulator->registerSteerableObject(this);

xmlData=_ xmlData;
update(_xmlData);

First what this method does is that it assigns the potts attribute from Simulator object which passed as a
parameter to the init() member function.

potts = simulator->getPotts();

The potts attribute of the class Potts3D is one of main classes in the CompuCell3D. It implements the
metropolis algorithm of spin flip, registers cell change watchers, sets the neighbor order and many
other important operations.

We are sure you are puzzled why we have the next following lines:

bool pluginAlreadyRegisteredFlag;
Plugin *plugin = Simulator::pluginManager.get("VolumeTracker",
&pluginAlreadyRegisteredFlag);

//this will load VolumeTracker plugin if it is not already loaded
if(!pluginAlreadyRegisteredFlaq)
plugin->init(simulator);

As you may infer from the comment, this call loads another plugin that is needed by volume plugin. the
VolumeTracker. VolumeTracker as its name suggests tracks changes and updates cell volume due to
spin flips. Most important function there is field3DChange (). Next line registers
SimpleVolumePlugin object so that it will be called every time a spin flip attempt has been made. To
register we can also use the following statement:

potts->registerEnergyFunctionWithName(this, toString());
The method toString () returns the name of the plugin which in our example will be

"SimpleVolume" . Each plugin and steppable is register and searched by name in the Simulator
object so make sure that you include the name of your plugin in the toString () method.

-8-

simulator->registerSteerableObject(this);

The next important step is to assign the pointer to the xm/Data attribute. After that the xmlData will
refer to the parameters specified in the XML file. This has to be included in each plugin and steppable
if you want to get benefit from the XML file. After that you will need to call method

update (CC3DXMLElement * xmlData, bool fullInitFlag=false) which justlooks up the
tags <TargetVolume> and <LambdaVolume> and copies the values of these tags to the attributes
lambda and targetVolume (remember the parameters in the energy function?) as you can see in the
implementation of the update() method:

void SimpleVolumePlugin::update(CC3DXMLElement *_ xmlData, bool
_fullInitFlag)

{

//if there are no child elements for this plugin it means will use
changeEnergyByCellId
if(_xmlData->findElement ("TargetVolume"))
targetVolume=_ xmlData->getFirstElement ("TargetVolume")-
>getDouble();
if(_xmlData->findElement ("LambdaVolume"))
lambdaVolume=_xmlData->getFirstElement ("LambdaVolume")-
>getDouble();

}
so that for the snippet of the XML file:

<Plugin Name="SimpleVolume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>2.0</LambdaVolume>
</Plugin>

it will be equivalent to

targetVolume=25;
lambdaVolume=2.0;

The init(Simulator *simulator, CC3DXMLElement * xmlData) method itself is called
from the Simulator::initializeCC3D() (see the implementation in Simulator.cpp) method with
other plugins and steppables right before the simulation starts.

So far we have implemented most important functionalities. Now we need to add one more thing. We
write an implementation field that instantiates a template that will allow CompuCell3D to load
SimpleVolumePlugin during run time. In general all plugins are loaded during run time. This way
we do do end up with huge executables that contains an entire CompuCell3D functionality

The library that contains SimpleVolumePlugin implementations need to contain another a file

where we instantiate BasicPluginProxy template. This file is called in our case
SimpleVolumePluginProxy.cpp. Here is its content:

9.

[SimpleVolumePluginProxy.cpp]

#include "SimpleVolumePlugin.h"

#include <CompuCell3D/Simulator.h>
#include <BasicUtils/BasicPluginProxy.h>
using namespace CompuCell3D;

BasicPluginProxy<Plugin, SimpleVolumePlugin>
volumeProxy("SimpleVolume", "Tracks cell volumes and adds volume energy
function.", &Simulator::pluginManager);

BasicPluginProxy<Plugin, SimpleVolumePlugin>
volumeEnergyProxy("SimpleVolumeEnergy", "Tracks cell volumes and adds
volume energy function.", &Simulator::pluginManager);

As you can see all it is quite mechanical to code this file. all you need to know (if you need to know
more see the implementation of BasicPluginProxy and BasicPluginManager.h) is that in order to
enable loading SimpleVolumePlugin library you have to instantiate BasicPluginProxy<Plugin,
SimpleVolumePlugin> template. In the constructor call :

volumeProxy("SimpleVolume", "Tracks cell volumes and adds volume energy
function.", &Simulator::pluginManager);

you provide Name of the plugin (this is how the plugin is referred to as in the XML file), in our case it
is “SimpleVolume”, brief description of what plugin does, and pass address to an instance of
BasicPluginManager<Plugin>.

At this point you may coalesce all this files into one shared library and you are done with the plugin
development. It all may seem to be overwhelming at the first, but if you can pull out suitable examples
from the existing code base and modify them, your task becomes much easier.

One nice thing about such code architecture is that you do need to worry about placing hooks to the
plugin inside “main” CompuCell3D code. All you need to do is to provide library written according to
the above “recipe” and you are done. In fact you do not need to even worry about remaining
CompUCell3D code, because it remains untouched. This is pretty much all you need to know to write
the plugins :).

Note: As you might notice there is significant simplification in the new version 3.3.0 of the
CompuCell3D such as there is no SimpleVolumeParseData class that stores the parsed data from
nodes that are children to plugin node of the XML file. There is no SimpleVolumeEnergy class that
calculates the energy change, since the SimpleVolumePlugin takes care of it. There no readXML() and
writeXML() methods that parse and serialize data from and to XML file. Life is getting better! :)

-10-

VolumeTracker plugin

As we mentioned earlier for a SimpleVolume plugin to run the simulation we must make sure that
VolumeTracker plugin is loaded. Now we will present how to implement the VolumeTracker , that is
the plugin that monitors volume changes and correspondingly updates cells' volume. As usual first we
show the header file VolumeTrackerPlugin.h:

[VolumeTrackerPlugin.h]

#ifndef VOLUMETRACKERPLUGIN H
#define VOLUMETRACKERPLUGIN_ H

#include <CompuCell3D/Plugin.h>

#include <CompuCell3D/Potts3D/Stepper.h>

#include <CompuCell3D/Potts3D/CellGChangeWatcher.h>
#include <CompuCell3D/Potts3D/Cell.h>

#include <CompuCell3D/dllDeclarationSpecifier.h>

class CC3DXMLElement;
namespace CompuCell3D {
class Potts3D;
class CellG;

class DECLSPECIFIER VolumeTrackerPlugin : public Plugin, public
CellGChangeWatcher, public Stepper

{
Potts3D *potts;
CellG *deadCellG;
public:

VolumeTrackerPlugin();
virtual ~VolumeTrackerPlugin();

// SimObject interface
virtual void init(Simulator *simulator, CC3DXMLElement * xmlData);

// CellChangeWatcher interface
virtual void field3DChange(const Point3D &pt, CellG *newCell, CellG
*0ldCell);

// Stepper interface
virtual void step();
virtual std::string toString();
virtual std::string steerableName();
}i
}i
#endif

11-

As you may see this class inherits P1ugin, CellGChangeWatcherand Stepper and
implements init from Plugin, field3DChange from CellGChangeWatcher and step from
Stepper. Those are the most important functions there. We need to write this plugin in the XML file if
we want it to be loaded explicitly, however, we do not have to do it because, SimpleVolume plugin will
make sure that VolumeTracker is loaded.

Let's explain how the field3Dchange() method is implemented. Here is the code:

void VolumeTrackerPlugin::field3DChange(const Point3D &pt,
CellG *newCell,
CellG *oldCell)

{
if (newCell)
newCell->volume++;
if (oldcCell)
if((--oldCell->volume) == 0)
deadCellG = oldCell;
}

It is really simple, as you can see. When a spin flip is made at location location pt a cell that is
assigned to this location will have volume increased by one pixel (see newCell->volume++;
statement, notice that ass we said it before we always make sure that we do not deal with medium —
null pointer — before increasing volume of cell). Similarly, the cell that was at location 'pt' before spin
flip will have its volume decreased by one (--o0ldCell->volume). Additionally when volume of
the 01dCel1l reaches zero we mark this cell for destruction. This marking is done by assigning
deadCellG pointer to point to 01dCell whose volume just reached zero. Actual destruction will
take place in the 'step' function (from Stepper interface). As we said it earlier, steppers are called once
every objects which define field3DChange have been called.

Steppers are sort of “cleaners” that do “maintenance” after each successtul spin flip.

Let's now look at the implementation of 'step' function:

void VolumeTrackerPlugin::step()

{
if (deadCellG) {
potts->destroyCellG(deadCellG);
deadCellG = 0;
¥
}

It is also very simple, namely, we check if deadCe11G pointer has non zero value - if it does it means

that due to last spin flip 01dCe 11 has reached zero volume and need to be destroyed
potts—>destroyCellG (deadCellG) . After cell is destroyed we need to do is to reset

deadCellG to prevent destroying same cell twice (otherwise segmentation fault guaranteed).

-12-

We have all the functionality ready now we need to register changeWat chers and stepper objects
with potts object. As you may remember init function does this trick:

void VolumeTrackerPlugin::init(Simulator *simulator,ParseData * pd)

{

potts = simulator->getPotts();
potts->registerCellGChangeWatcher (this);
potts->registerStepper(this);

}

and we are almost done with VolumeTracker plugin. The only thing that remains is to instantiate
BasicPluginProxy template for VolumeTracker . Those is pretty mechanical (but important) task:

[VolumeTrackerPluginProxy.h]

#include "VolumeTrackerPlugin.h"
#include <CompuCell3D/Simulator.h>
#include <BasicUtils/BasicPluginProxy.h>

using namespace CompuCell3D;

BasicPluginProxy<Plugin, VolumeTrackerPlugin>
volumeTrackerProxy("VolumeTracker", "Tracks cell volumes",
&Simulator: :pluginManager);

This should look familiar. now all you need to do is to pack all the files (VolumeTrackerPlugin.cpp,
VolumeTrackerPluginProxy.cpp) into a shared library and you have another plugin ready.

At this point you should be able to explore CompuCell3D by yourself and try to understand how other
plugins are built.

We are going to show you another useful “trick” which is very often needed in CompuCell3D plugin
development, that is how to visit neighbors of a given pixel. Let's look at the implementation of the
SurfaceTracker plugin, in particular at the field3DChange function:

[SurfaceTrackerPlugin.cpp]

void SurfaceTrackerPlugin::field3DChange(const Point3D &pt,
CellG *newCell,
CellG *oldCell)
{
//this may happen if you are trying to assign same cell to one pixel
twice
if (newCell==o0ldCell)
return;

13-

unsigned int token = 0;
double distance;

double oldDiff = 0.;
double newDiff = 0.;
CellG *nCell = 0;

Neighbor neighbor;

for(unsigned int nIdx=0 ; nIdx <= maxNeighborIndex ; ++nIdx)

{
neighbor = boundaryStrategy-

>getNeighborDirect (const _cast<Point3D&>(pt),nIdx);
if(!neighbor.distance)
continue;

nCell = cellFieldG->get(neighbor.pt);
if (newCell == nCell) newDiff-=1mf.surfaceMF;
else newDiff+=1mf.surfaceMF;

if (oldCell == nCell) oldDiff+=1lmf.surfaceMF;
else oldDiff-=1mf.surfaceMF;

}

if (newCell) newCell->surface += newDiff;
if (oldCell) oldCell->surface += oldDiff;

}

Here you can see how we visit neighbors of the pixel 'pt'. It is important to first initialize poiter to
boundaryStrategy singleton class which manages neighbors this is done in the init function. Also note
that the surface gets increased or decreased in the increments of 1mf . surfaceMF they are
multiplicative factors that are determined depending on the type of lattice. For a square lattice all
multiplicative factors are 1 for other type lattices they are calculated by constraining the volume of the
pixel to be 1. Multiplicative factors are obtained from BoundaryStrategy class usually in the init
function of the plugin.

Developing Steppables

In older versions of CompuCell3D steppables (i.e. objects called every Monte Carlo Step) were merged
in the main CompuCell3D library (libCompuCell3D on UNIX/OSX/Linux systems). Recently we have
however adopted same methodology as for plugins i.e. steppables are loadable modules and they are
developed using the same “philosophy” as plugins. This means that your steppable will need to
instantiate properly BasicPluginProxy template, as we will show in the example.

To this end let's analyze one simple steppable to get an idea how to develop more complicated ones.
In the CompuCell3D/src/steppables/FoamDataOutput subdirectory you can find source files for

FoamData. traditionally let's analyze first a header file:

[FoamDataOutput.h]

-14-

#ifndef FOAMDATAOUTPUT H
#define FOAMDATAOUTPUT H

#include <CompuCell3D/Steppable.h>

#include <CompuCell3D/Field3D/Dim3D.h>

#include <CompuCell3D/plugins/NeighborTracker/NeighborTracker.h>
#include <CompuCell3D/dllDeclarationSpecifier.h>

#include <string>

template <typename Y> class BasicClassAccessor;

namespace CompuCell3D {
class Potts3D;
class CellInventory;

class DECLSPECIFIER FoamDataOutput : public Steppable
{

Potts3D *potts;

CellInventory * cellInventoryPtr;

Dim3D dim;

BasicClassAccessor<NeighborTracker> * neighborTrackerAccessorPtr;

std::string fileName;

bool surFlag;

bool volFlag;

bool numNeighborsFlag;

bool celllIDFlag;

public:
FoamDataOutput();
virtual ~FoamDataOutput(){};
void setPotts(Potts3D *potts) {this->potts = potts;}

// SimObject interface
virtual void init(Simulator *_simulator, CC3DXMLElement *_ xmlData=0);
virtual void extraInit(Simulator *simulator);
virtual std::string toString();
// Begin Steppable interface
virtual void start();
virtual void step(const unsigned int currentStep);
virtual void finish() {}
// End Steppable interface
}i
}i
#endif

As you can see Steppable API consists of the following functions:
1) void start()
2) void step(unsigned int mcs)
3) void finish()

-15-

In addition to that there are two more functions used to initialize a Steppable:

virtual void init(Simulator *_ simulator, CC3DXMLElement * xmlData=0);
virtual void extraInit(Simulator *simulator);

Now let's take a look at initialization of steppables. The init function fetches address to the potts3D
object and from there we get an address to the cell inventory — a data structures that stores pointers to
every cell sorted by memory address location (this actually is not tha important at the moment. What
matters that any look-up in cell inventory in O(log(N)) which might be important once you do
simulation with large number of cells). It also should be said that most of the steppables iterate over set
of cells and change their properties depending on requirements of the simulation.

Once init function has been called for all other steppables and plugins we can do extra round of
initialization. To enable extra initialization all you need to do is to provide implementation of
extraInit virtual function in a seppable or plugin. This additional initialization is very often
necessary as it is done when all the modules have been loaded into memory. At this point you can
reference/access steppables and plugins from any module that you decided to load. Moreover you may
even load certain modules from either init or extraInit functions (in principle you can do it at
any time but usually you do it in these two initialization functions, where it makes most sense). To get
a reference to NeighborTracker plugin you use the

Simulator::pluginManager.get ("NeighborTracker") call. If the plugin has not been
loaded Simulator: :pluginManager.get will load it.

void FoamDataOutput::init(Simulator *_ simulator, CC3DXMLElement *_ xmlData)

{
potts = simulator->getPotts();

cellInventoryPtr = & potts->getCellInventory();
CC3DXMLElement *outputXMLElement= xmlData->getFirstElement("Output");

ASSERT OR_THROW("You need to provide Output element to FoamDataOutput
Steppable with at least file name", outputXMLElement);

if (outputXMLElement)

{
if (outputXMLElement->findAttribute("FileName"))

fileName=outputXMLElement->getAttribute("FileName");

if (outputXMLElement->findAttribute("Volume"))
volFlag=true;

if (outputXMLElement->findAttribute("Surface"))
surFlag=true;

if (outputXMLElement->findAttribute ("NumberOfNeighbors"))
numNeighborsFlag=true;

if (outputXMLElement->findAttribute("CellID"))
numNeighborsFlag=cellIDFlag;

-16-

}

void FoamDataOutput::extraInit(Simulator *simulator)
{

if (numNeighborsFlag)

{

bool pluginAlreadyRegisteredFlag;

NeighborTrackerPlugin * neighborTrackerPluginPtr =
(NeighborTrackerPlugin*) (Simulator: :pluginManager.get("NeighborTracker",
&pluginAlreadyRegisteredFlaqg));

if (!pluginAlreadyRegisteredFlag)

neighborTrackerPluginPtr->init(simulator);

ASSERT_OR_THROW("NeighborTracker plugin not initialized!",
neighborTrackerPluginPtr);

neighborTrackerAccessorPtr = neighborTrackerPluginPtr->
getNeighborTrackerAccessorPtr();

ASSERT OR_THROW("neighborAccessorPtr not initialized!",
neighborTrackerAccessorPtr);

}
}

Now let's look how other core steppable functions are implemented in our FoamDataOutput
example.

void FoamDataOutput::start() {}

void FoamDataOutput::step(const unsigned int currentStep)
{

ostringstream str;

str<<fileName<<"."<<currentStep;

ofstream out(str.str().c_str());

CellInventory::cellInventoryIterator cInvItr;
CellG * cell;
std: :set<NeighborSurfaceData > * neighborData;

for(cInvIitr=cellInventoryPtr->cellInventoryBegin() ; cInvItr !
=cellInventoryPtr->cellInventoryEnd() ;++cInvItr)
{

cell=*cInvItr;
if(cellIDFlag)
out<<cell->id<<"\t";

if(volFlag)
out<<cell->volume<<"\t";

if (surFlag)
out<<cell->surface<<"\t";

if (numNeighborsFlag) {

-17-

neighborData = &(neighborTrackerAccessorPtr->get(cell-
>extraAttribPtr)->cellNeighbors);
out<<neighborData->size()<<"\t";

}

out<<endl;

}

This does not look too bad, especially given the fact that st art function is empty :-) and finish
has its default implementation which is empty function as well. Well, this is not always the case, and
especially in the start functions you perform all the initialization necessary before the actual simulation
begins. For example you may want to assign target volume for each cell, in which case you would
iterate over all cells and execute the for example following assignment:

cell->targetvVolume=15; // I have assumed that cell is a pointer to cell
object

Now, let's see how one iterates over cell inventory:

CellG * cell;

for(cInvItr=cellInventoryPtr->cellInventoryBegin()
cInvItr !=celllInventoryPtr->cellInventoryEnd()
++cInvItr)

~e <~

cell=*cInvItr;
//DO SOMETHING WITH THE CELL

Above code template is repeated in different variations quite frequently in the steppables. In our case
//DO SOMETHING WITH THE CELL is simply writing cell id, volume, surface and number of
neighbors to the stream out (which in our case is associated with the file, or in other words we are
writing to the file)

Notice how we get the number of neighbors of a cell:

neighborData = &(neighborTrackerAccessorPtr->get(cell-> extraAttribPtr)-
>cellNeighbors)
out<< neighborData->size()<<"\t";

Since cell neighbors are stored in cel1Neighbors additional attribute (which is of a type
std: :set<NeighborSurfaceData>), all we need to do is to get a size of this set, which we do

using the following statement:

neighborData->size()

However to access additional cell attribute, the one that is added during run time we do it using call of
the type:

-18-

& (accessorPtr->get(cell->extraAttribPtr)->additionalAttribute)

this will return a reference to additionalAttribute of a cell. Compare it to actual example fro
the code

One last thing, we need to provide a proxy for the steppable. As you remember in the case of plugins
writing proxy implementation was very automatic task. The same is true in the case of steppables:

[FoamDataOutoutProxy.cpp]

#include "FoamDataOutput.h"
#include <CompuCell3D/Simulator.h>
#include <BasicUtils/BasicPluginProxy.h>

using namespace CompuCell3D;

BasicPluginProxy<Steppable, FoamDataOutput>
FoamDataOutputProxy("FoamDataOutput", "Outputs basic simulation data for
foam coarsening", &Simulator::steppableManager);

There is however one crucial difference, namely that you use &Simulator::steppableManager in
the constructor call instead if &Simulator: :pluginManager as it was the case for plugins.

Our example is ready.

Above examples should give you at least an idea how to develop modules for CompuCell3D. We did
not discuss all the code features but we will do our best to provide more complete documentation in the
future.

Current Build System — CMake

CompuCell3D uses CMake as a build system. That means that every time you want to add new module
you will need to write CMakeLists.txt for this new module and integrate it with existing source code
base. Fortunately this task is very easy even for beginners. In the DeveloperZone directory there are
examples of plugins and steppables that you may either use as a template for your own extension
CompuCell3D modules. Let's see how one integrates extension module with existing source code.
Assuming that you are in the DeveloperZone directory modify CMakeLists.txt file in this directory as
follows

SET_TARGET_PROPERTIES(${LIBRARY_NAME}Shared PROPERTIES OUTPUT_NAME CC3DS$
{LIBRARY NAME}${LIBRARY SUFFIX})
INSTALL TARGETS(/lib/CompuCell3DSteppables RUNTIME DIRECTORY
/1lib/CompuCell3DSteppables
${LIBRARY NAME}Shared)

-19-

ENDMACRO (ADD_COMPUCELL3D_ STEPPABLE)

add_subdirectory(FancyVolume)

add_subdirectory(VolumeMean)

add_subdirectory(YourNewPlugin) # I assume this is a subdirectory of
DeveloperZone

add_subdirectory(pyinterface)

The actual CMakeLists.txt configuration file for YourNewPlugin (in the YourNewPlugin directory)
could look like this:

ADD_COMPUCELL3D_PLUGIN(YourNewPlugin YourNewEnergy.cpp YourNewPlugin.cpp
YourNewPluginProxy.cpp LINK LIBRARIES ${CC3DLibraries})

ADD COMPUCELL3D PLUGIN HEADERS(YourNewEnergy YourNewEnergy.h
YourNewPlugin.h)

Next, to make sure your new plugin is integrated with Python interface you need to go to pyinterface
directory (inside DeveloperZone) and edit CmakeLists.txt file there:

SET(LIBS_AUX
FancyVolumeShared
VolumeMeanShared
YourNewPluginShared #adding your new plugin to linked modules
PyPlugin
)

and also edit SWIG interface file CompuCellExtraModules.i:

gmodule CompuCellExtraModules
¢include "typemaps.i"
¢include <windows.i>

%{

#include "ParserStorage.h"

// **%*%%kxxx%x PUT YOUR PLUGIN PARSE DATA AND PLUGIN FILES HERE ****¥%%%xx%
#include <FancyVolume/FancyVolumePlugin.h>

#include <VolumeMean/VolumeMean.h>

#include <YourNewPlugin/YourNewPlugin.h>

/] **kkkkkkk* END OF SECTION ***kkhkkkhhhhhhhhhhhhhhhhhhkk

#include "dllDeclarationSpecifier.h"

#define DECLSPECIFIER //have to include this to avoid problems with
interpreting by swig win32 specific c++ extensions...

-20-

#include <iostream>

using namespace std;
using namespace CompuCell3D;

%}

// C++ std::string handling
$include "std_string.i"

// C++ std::map handling
$include "std map.i"

// C++ std::map handling
$include "std set.i"

// C++ std::vector handling
ginclude "std vector.i"

#define DECLSPECIFIER //have to include this to avoid problems with
interpreting by swig win32 specific c++ extensions...

$include "ParserStorage.h"

[/ **kkkkkxk*x*x* PUT YOUR PLUGIN PARSE DATA AND PLUGIN FILES HERE ****%x%%%%%
// REMEMBER TO CHANGE #include to %include

¢include <FancyVolume/FancyVolumePlugin.h>

// THIS IS VERY IMORTANT STETEMENT WITHOUT IT SWIG will produce incorrect
wrapper code which will compile but will not work
using namespace CompuCell3D;

¢inline %{
FancyVolumePlugin * reinterpretFancyVolumePlugin(Plugin * _plugin){

return (FancyVolumePlugin *) plugin;

}
%}
¢include <VolumeMean/VolumeMean.h>
¢inline %{

VolumeMean * reinterpretVolumeMean(Steppable * steppable){
return (VolumeMean *) steppable;

21-

$include <YourNewPlugin/YourNewPlugin.h>

%inline %{
YourNewPlugin * reinterpretYourNewPlugin (Plugin * plugin) {
return (YourNewPlugin *) plugin;

}

oo

}

/] *kkkkkkkkkkkkkk** END OF SECTION ****kkkkxk%

At this point you are ready to compile your plugins.

22-

Developing CompuCell3D plugins under Windows using Cmake and MS Visual
Studio 2005 (version 8)

We assume that you have Visual Studio 2005, Cmake and SWIG installed on your machine. CMake is
free (www.cmake.org) so is SWIG (www.swig.org). Visual Studio is not free and you might need to
purchase appropriate license. Some universities have access to educational licenses for Visual Studio
which are either free or have reduced price so you might want to check this before paying full price.

OK, let's get started. Make sure you have CompuCell3D version on your machine that contains a
directory called DeveloperZone. If you download latest source version from our repository

http://trac.compucell3d.net/svn/cc3d_svn/trunk/

There you will find all the CMake files necessary to develop plugins There are also examples of
plugins that you might study and reuse to build your own modules.

First thing you want to do is to open CMake on your machine and setup source and build directories:

_ioix
where iz the source code: IE:\F‘miectS\&rc-3.2fl -al\D eveloperZone Emw&e...l
[~ Show Advanced Yalues
LR el T [BTN g (=8 | \Projects build\DeveloperZone-3.2.1-all\binary
— Cache Valuez
Right click on a cache value for additional options [delete, ignore, and help].
Fress Configure to update and display news walues in red.
Prezs OF. to generate zelected build files and exit.
Canfigure IF Cancel Help |
Path to a file.

notice that I put as a path to the source code for new plugins as c:\Projects\src-3.2.1-all\DeveloperZone
and the directory where all object files and project files will be stored as
c:\Projects_build\DeveloperZone-3.2.1-all\binary.

23-

http://www.cmake.org/

It is always a good to pick binary directory spearately from source directory — as we did above.

The next step is to start configuration of CMake build system by pressing configure button. You should
get the following screen as a result:

-Ioix

‘Where iz the source code: IE:'\F‘IDiectS'\SIc-E.Q.'I -all\DevelopeiZone Browse...l

[Show &dvanced Values
L V= R Ca N alH [M R TG A Projectz buildhDeveloperZone-3. 2 1-allsbinary

— Cache Values

Select Generator x|

Flease select what build system you wank CMake ko generate Files Far,
You should select the tool that you will use bo build the project.
Press OF once vou have made your selection.

Buld For: [visual Studio 8 2005 =l

O Cancel

Right click on a cache value far additional options [delete. ignore, and help).
Press Configure to update and display new wvalues in red.
Prezz OF. to generate zelected build files and exit.

Configure [Cancel Delete Cache Help

Fath to a file.

Here you need to choose Visual Studio 8 2008. There are other options to choose from but have tested
CompUCelI3D using Visual Studio 8 2005. If you are interested in compiling CompUCell3D using
other compilers let us know and we can help you get started with this task

Anyway, after you picked Visual Studio 2005 you will get the following screen (followed by several

messages or error messages — this is OK as some of them are just debug uptputs. The only error is
missing SWIG directory but we will fix it in a moment):

24-

. CMake24-patche =10l x|

‘wihere iz the source code: IE: WProjectzverc-3.2.1-alN\Developerione Eru:uwse...l

[~ ShowAdvanced Yalues

LRt EN (ol T M (=R ot = L Projects buildhDeveloperone-3.2.1-allsbinary ErDWSB...l

— Cache Yalues

ON
24
C:/Program Filez/COMPUCELLID

SWIG_DIR-WNOTFOUND
HERCESC_INCLUDE_DIR-NOTFOUMD
XERCESC_LIBRARY-MNOTFOUMD

Right click on a cache value for additional options [delete, ignore, and help).
Presz Configure to update and dizplay new values in red.
Prezz OK. to generate selected buld fles and exit.

[F Cancel Delete Cache Help

Build zhared libraries

First thing you need to do is to point CMake to directory where SWIG is installed and also pick the

directory where you have stored full CompuCell3D source code (this is the directory that contains

DeveloperZone directory) and the directory where binary version of the CompuCell3D is installed

-COMPUCELL3D_INSTALL_PATH. We also need to pick installation point for the new modules

- CMAKE_INSTALL_PREFIX and we will set it to the same value as
COMPUCELL3D_INSTALL_PATH because we want new modules to be installed into same
directory as current binary CompuCell3D installation.

25-

. CMake 2.4 - patch & 18

Wwhere iz the zource code: IE:HPrDiectsHsrc-3.2.1 -all\DeveloperZone Browse. ..

[~ Show Advanced Values

L0 ST N (ol w01 B SN T T =t - Projectz buildsD eveloperZone-3.2.1-allhbinany ErDWSE...l

— Cache Walues

oM

24

C:/Program Files/COMPUCELL3D _a
C:/Projectsdsrc-3.2.7-all

C:/Program Files/COMPUCELL3D _a

C:dawig-1.31
HERCESC_IMCLUDE_DIR-NOTFOUND
HERCESC_LIBRARY-MOTFOUND

Right click an a cache wvalue for additional options [delete, ignare, and help).
Prezs Configure to update and dizplay new walues in red.
Prezz OF to generate selected build files and exit.

Configure I [k Cancel Delete Cache Help

|B uild zhared lbranes

Next you need to click Configure few times until all red fields become grey and OK button is
highlighted:

26-

_ii xi

‘where iz the source code: |C:NPrniects\src-3.2.1-aIIHDeveIuperZu:une Browse...

[~ Show Advanced Values

L R TW [a M RGN R Projects build\D eveloperifone-3. 2.1 -allsbinan ErDWSE...l

— Cache Yalues

BUILD_SHARED_LIBS
CMAKE_BACKWARDS COMPATIBILITY
ChMaKE_IMSTALL PREFIX
COMPUCELL3D_FULL SOURCE_PATH
COMPUCELL3D INSTALL PATH
EXECUTABLE_OUTPUT_PFATH
LIBRARY_OUTFUT_PATH

SWIG_DIR

SWIG_EXECUTABLE
HERCESC_INCLUDE_DIR

o A

24

C:/Pragram Files/COMPUCELL3D _a
C:/Projects/snc-3.2.1-all

C: #Program Files/COMPUCELL3D_a

C:Aewig-1. 31
cdewig-1. 37 Aewig. exe

C:/Projects/src-3.2 1-all/vercescdinciude

Right click on a cache value for additional options [delete, ignore, and help).
Press Configure to update and dizplay new values in red.
Press OF. to generate zelected build files and exit.

(] 4 Cancel Delete Cache Help

|Bui||:| shared libraries

Notice — our CompuCell3D was installed in C:\Program Files\CompuCell3D_a
(COMPUCELL3D_INSTALL_PATH, CMAKE_INSTALL_PREFIX), source code is stored in
C:\Projects\src-3.2.1-all and swig is located in c:\swig-1.31 directory.

All other variables are set automatically by CMake .

The error messages that may pop up are OK because they are just message windows not actual errors:

eror x|

CC3DLibraries=C: fProgram Files!miCompuCell 30/l C 3D ompuCelllib; C: fProgram Files/mjCompuCel30ylib/CC3DBoundary; C: ' Program
FilesfmCompuCel3D)lib/CC30BasicUkls;C: [Program FilesmiCampuCel30)libCC30Field30; C: fProgram FilesmCompuCell30)lib CC30PublicUklities

{Press Cancel to suppress any further messages.)

QK I Cancel

The true error message would look similar but would begin with “CMake Error: ...”

Now, once you pressed OK button Visual Studio files were generated and you are ready to open them
up in Visual Studio.

In my case we need to go to c:\Projects_build\DeveloperZone-3.2.1-all\binary and from there open up
the project called All_BUILD:

27-

file:///home/quasiben/CompuCell/Repo/swig-1.31
file:///home/quasiben/CompuCell/Repo/Program

#0Microsoft visual Studio

File Edt View Tools Window Community Help

CEHG Y RE| - FE-B - <|| (@ difusesingle

2ix
Loskin: [binary | @ -8 X Ly 3 - Tods~

SR e 2 fom S

[Corterofitass IZERD_CHECK
| Chemataxis

) CMakeFiles

| Corkact

|)FancyOutputDats
|)FancySurface

| Fancyvolume:

|)MeighborTracker
|_IPDESalverCaller

| C)FDESOlvers

|20 Plasticity

iy Prajects

My Computer

File: name: |

Open I

Files of type: [all Project Files

@ 0Errors|| 0 Warnings | (i) 0 Messages

Ll L«

Cancel

|| pescription

| Flle [tne

Before going any further go Build->Configuration Manager... and select Active solution configuration

to be ReleaseWithDebugInfo or simply Release.

Next, to compile the project, right click ALL_BUILD and select build from pop up menu:

The compilation begins and once it finishes without errors all you need to do is to install newly created
plugin into the place where other CompuCell3D plugins are installed. Right click on INSTALL project

and select Build option:

28-

OMPUCELL3D rosoft

sual Stus

Flz Edt View Project Buld Debug

ALL_BUILD
CerteroftassShared
Chemataxisshared
ContactShared
FancyOutputDatashared
FancySurfaceshared
Fancy'olumeShared

SNEIE

Dats Tools ‘indow Community Help

-0 - B - B | b Debug ~ Win32 - | #% diffuseSingle
~“Output - X
Show output From: Build R AB | =x|FE '
=
z>FaneyOutputDatathared - 0 erreris!, 0 warningls) - ’f‘
Build started: Project: ChemotaxisShared, Conf. ition: Debug Win32 - 5
4»------ Build started: Project: Center0fMassShared, Configurationm: Debug WinZZ =
3»Fuilding Custom Rule C:/ocmake project/cc?d plugin/Chemotaxis/CHakelists.txt 52 |

4>Building Custom Rule C:/cmake_project/cc3d plugin/CenterDfMass/CHakelists. txt
4>CC3DLibraries=C: /Program Files/m/CompuCell3D/1ib/CC3DCompuCelllib;C: /Program Files/un/ConpuCell3Dh/lib/CC3DBoundary;C: /Progran Files/m/Comput
4>THIS 15 COMPUCELLAD_THCLUDE_PATH=C:/Program Files/m/Compufell3D/includefCompuCell3Dh

3>CC3DLibraries=C: /Program Files/m/CompuCell3D/1ib/CC3DCompuCelllib;C: /Program Files/n/ConpuCell3D/lib/CC3DBoundary;0: /Progran Files/m/Comput

Build

PDE: Rebuild
Plas
cl
Yol =l
ZER, Project Only v

Froject Dependencizs...
Froject Buid Order. .
Custom Buid Rules. .

Tool Build Order .

add »
References...

Set as Startlp Praject

Debug »
& Cut
B rose
K Remave

Rename

Unload Project

Froperties

3=THTE I8 COMPUCELLSD_THCLUDE PATH=C:/Progrem Files/m/CompuCell3D/include/CompuCellsD
Comfiguring done
Comfiguring done
Generating done
Generating done

Build files have been written to: C:/cmake projectfecdd plugin/binary

47-- Build files have been written to: C:/cmake project/cc3d plugin/binary

32Build log was saved at "file://e:\emske proiecticedd pluginibinsr 1540 hared. diriDebugiBuildloy. htu"
47Build log was saved an "fil, c:\emake projecticcdd pluginibinaryCenter0fMass)Center0 AiryDebugiBuildloy. htu"
4rCenter0iMassshared - 0 ervor(s), 0 warning(s)

3>ChemonarisShared - 0 error(s), 0 warning(s)

Build d: Projees: , Configuranion: Debug Win32 -
S2Building Custom Iule O /cmske project/cedd_plugin/Contact/CHakelists. oxn
5»CC3DLibraries=C: /Program Files/m/CompuCell3D/1ib/CCIDConputel 1Lib;C: /Progran Files u/CompuCelldh/lik/CCaDBomdary;C: /Progran Files/m/Compul
S»THIS I8 COMPUCELLAD_THCLUDE_PATI FProgram Files/m/CompuCellaD/include/ConpuCell3Dh
S2-- Comfigquring done

Gensrating done

Build files have besn written to: C:/cmake project/cc3d plugin/binary

5rPuild log was saved at "file://e:\cmsks profecticc3d pluginibinaryyContactiC ed.dir\DebugyBuildLog. hru"
SrContactShared - 0 error(s), 0 warning(s)
§r------ Build starred: Project: FancySurfaceSharsd, Configuration: Debug Win3Z ———---

6xBuilding Custom Rule C:/cuske_project/cc3d_plugin/FancySurface/CHakelists. txt

6>CC3DLibraries=C: /Program Files/m/CompuCell3D 11k CCIDConpuCelllib;C: /Progran Files u/CompuCell3D/1ik/CCIDBmmAary;C: /Progran Files/m/Compul
6*THIS IS COMPUCELL3D_TNCLUDE_PATH=C:/Program Files/m/ComnpuCell3D/include/CompuCsll3D

Configuring done

Generating done
6=-- Build files have been written te: C:/cmake _preject/cc3d_pluginfbinary

6=PBuild log was saved at "file://c:‘emske proiecticc3d pluginibinsrv\FancySus face\FancySur dirDebug\Buildlog.htm"
6=Fancy®ur faceShared - 0 erzer{s), 0 warning(s)

7=---—-- Build started: Project: ALL_BUILD, Configuraticon: Debug Uin3Z -
7="Build all prejects"

7=Puild log was saved at "file://c:‘\cmske proiectlcc3d pluginibinsrviALL_BUILD.dir\Debug\Buildlog.htu"
7=ALL_BUILD - O erreris), O warningis)

Build: 7 succeedsd, 0 failed, § up-to-dats, O skipped =

5o, [FEas . [dProp... | FIRes.

Error Li

D OErors|| 1\ 0 Warnings | (i) 0 Messages

-=|_|
% <

| [peseription

| File [Line

Ready

Pistar| |G & | Barwefox

~| € conTEXT | 5 COMPUCELLS... [P Contral Panel | 1) Add or Remav... | 4 Totsl Comman. | /&8 Command Promptl J & @‘ @| 2 e 113pm

-29.

@9 COMPUCELL3D - Microsoft ¥isual Studio

=181 x]

Fie Edt View Project Buid Debug Data Tools Window Community Help

b RelwithDeblnfi + Win32 - | [# FancyVolume S B B B i B]

Solution 'COMPLCELLID' (6 projects)
_CompucelExtraModules
ALL_BUILD
FancyVoluneShared

" —— B WEE I
moTALL Recent Projects Visual C+-+ Developer Center
YalumeMeanshared

ZERO_CHECK W Microsoft NET Framework 3.5 Service Pack (SP) 1 Beta Now Available 1=
ALL_ELILD Wed, 07 May 2008 12:35:00 -0700 - Download the Microsaft .NET Framewark 3.5 SP1 Beta For improved Features for both clisnt and Web develapment.

additionally, 5P1 for the NET Framework introduces the ADO.NET Entity Framework and ADG NET Data Services,

Download ¥isual Studio 2008 Service Pack (SP) 1 Beta Today

Wied, 07 May 2008 12:30:00 -0700 - Visual Studio 2008 SP1 Beta introduces full support For SL Server 2008, improved performance in the IDE and WPF

& oo designers, impraved Web development and site deploymert, s well as mary Team Foundation Server enhancemerts,

= €++ Plus: Beef Up Windows Apps with the Yisual C+-+ 2008 Feature Pack

Tue, 06 May 2005 12:40:00 -0700 - Kenny Kerr sings the praises of the nevs Yisual C-++ 2008 Feature Pack, which brings modern corweriences to Yisual

CH

Wisual C++ 2008 Feature Pack Released

ton, 07 Apr 2008 08:30:00 -0700 - The final release of the Visual C++ 2008 Festure Packis nov svaiable for download. This release provides several

exciting Features for C++ developers, such as a major update to MFC and an implementation of TR1
Getting Started o il LULL P
MFC Update Powered By BCGSoft

Open: Project. |wieh Site..
Create: Project... |WebSite..,
\ J

“What's New in Visual C++ Mon, 03 Mar 2008 13:30:00 -0800 - When the Visual C++ team decided to reinvest in MFC, we looked hard at all the akternatives. After a thorough
Security Best Practices for C++ evaluation we turned to BCGSoft for assistance, BCGSoft, a leader in professional user interface components for MFC and JNET, had the features,
Creating and Managing Visual G+ Pr.. performance and qualty the team was looking For, Check out mare on why we thase ta wark with BCGSoft.

Building a C/C++ Pragram Heroes Happen Here

HowDal...?

Wed, 27 Feb 2008 07:20:00 -0800 - Welcome to the launch of Windows Server 2008, Visual Studio 2008, and SQL Server 2008, Together these three
Connect With the Cammunity

products provide a secure and trusted platform For building your most mission-critical applications. Learn more about these praducts and launch events in
your area at HeroesHappenHere, com,

Wisual C++ 2008 Express Edition Now Available

Fr, 011 Feb 20048 13:50:00 -0800 - The Yisual C-++ 2008 Express Edition provides a powerful and flesdble development environmentt for creating native
Windows and cool 23D games.

L 4 Development Kit for Yisual C++ 2008 Express Edition

Fr, (11 Feb 2008 13:45:00 -0800 - Microsoft and The Game Creators have partnered b deliver a fres 2D/3D game development: lbrary for Visual G+ —

[T —— 2008 users. Try out this powerful yet simple new way to develop your own games,
Windows with C++: Windows Template Library 8.0

Heroes Happen {Here} - welcome Th, 24 Jan 2008 13:40:00 -0800 - Kenny Kerr takes a lock ot Windows Template Library (WTL) suppart for new Windows Vista control enhancements,
to the launch of Windows Server including task dislogs, Aero wizards, and open Fle dislogs.
2008, visual Studio 2008, and SQL Give Us Your Feedback on ¥isual Studio Documentation
SR wed, 17 Otk 2007 13:20:00 -0700 - Help us help you by taking L0 minutes to il out our Visual Studia Content Survey an how to imprave the Wisual
Studin dormentatinn, We annrariate it LI
i, AN, J

4] |»
gsol... [l | FPro.. [FRe. .
D 0Erors | f\42Warnings | (i) 0 Messages

|| pescription | Fiie | Line

Ready

Now all the demo plugins were compiled and installed in the CompuCell3D installation directory on
my windows machine.

To compile your own plugins you need to make directory that would contain CMakeL.ists.txt file and
source code for your plugin and then in add subdirectory to the CMakeLists.txt file in the main
developer directory (C:\Projects\src-3.2.1-all\DeveloperZone):

SET_TARGET_PROPERTIES(${LIBRARY_NAME}Shared PROPERTIES OUTPUT_NAME
CC3D${LIBRARY_NAME}${LIBRARY_SUFFIX})

INSTALL_TARGETS(/lib/CompuCell3DSteppables RUNTIME_DIRECTORY
/ib/CompuCell3DSteppables

${LIBRARY_NAME}Shared)

ENDMACRO(ADD_COMPUCELL3D_STEPPABLE)
add_subdirectory(FancyVolume)
add_subdirectory(VolumeMean)

add_subdirectory(YourNewPlugin) # I assume this is a subdirectory of DeveloperZone

add_subdirectory(pyinterface)

-30-

Looking at the CMakeLists.txt files for plugins one can see that configuring new plugin using CMake
requires listing plugin's source files as parameters of ADD_COMPUCELL3D_PLUGIN and
ADD_COMPUCELL3D_PLUGIN_HEADERS (or for steppables
ADD_COMPUCELL3D_STEPPABLE

and ADD_COMPUCELL3D_STEPPABLE_HEADERS) macros.

The actual CMakeLists.txt configuration file for YourNewPlugin could look like this:

ADD_COMPUCELL3D_PLUGIN(YourNewPlugin YourNewEnergy.cpp YourNewPlugin.cpp
YourNewPluginProxy.cpp LINK_LIBRARIES ${CC3DLibraries})

ADD_COMPUCELL3D_PLUGIN_HEADERS(YourNewEnergy YourNewEnergy.h
YourNewPlugin.h)

For more examples please consult examples in the DeveloperZone directory and also read developers
manual for Linux and OSX where you can find much more detailed discussion on how to write plugin
source code and how to set up CMakeLists.txt configuration files.

31-

	CompuCell3D code basics
	Developing Plugins
	VolumeTracker plugin
	Developing Steppables
	Current Build System – CMake

