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The goal of this manual is to teach biomodelers how to effectively use multi-scale, multi-
cell simulation environment CompuCell3D to build, test, run and post-process 
simulations of biological phenomena occurring at single cell, tissue or even up to single 
organism levels. We first introduce basics of the Glazier-Graner-Hogeweg (GGH) model 
aka Cellular Potts Model (CPM) and then follow with essential information about how to 
use CompuCell3D and show simple examples of biological models implemented using 
CompuCell3D. Subsequently we will introduce more advanced simulation building 
techniques such as Python scripting and writing extension modules using C++. In 
everyday practice, however, the knowledge of C++ is not essential and C++ modules are 
usually developed by core CompuCell3D developers. However, to build sophisticated 
and biologically relevant models you will probably want to use Python scripting. Thus we 
strongly encourage readers to acquire at lease basic knowledge of Python. We don’t want 
to endorse any particular book but to guide users we might suggests names of the authors 
of the most popular books on Python programming: David Beazley, Mark Lutz, Mark 
Summerfield, Michael Dawson, Magnus Lie Hetland. 
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I.	Introduction	
The last decade has seen fairly realistic simulations of single cells that can confirm or 
predict experimental findings. Because they are computationally expensive, they can 
simulate at most several cells at once. Even more detailed subcellular simulations can 
replicate some of the processes taking place inside individual cells. E.g., Virtual Cell 
(http://www.nrcam.uchc.edu) supports microscopic simulations of intracellular dynamics 
to produce detailed replicas of individual cells, but can only simulate single cells or small 
cell clusters. 

Simulations of tissues, organs and organisms present a somewhat different challenge: 
how to simplify and adapt single cell simulations to apply them efficiently to study, in-
silico, ensembles of several million cells. To be useful, these simplified simulations 
should capture key cell-level behaviors, providing a phenomenological description of cell 
interactions without requiring prohibitively detailed molecular-level simulations of the 
internal state of each cell. While an understanding of cell biology, biochemistry, genetics, 
etc. is essential for building useful, predictive simulations, the hardest part of simulation 
building is identifying and quantitatively describing appropriate subsets of this 
knowledge. In the excitement of discovery, scientists often forget that modeling and 
simulation, by definition, require simplification of reality. 

One choice is to ignore cells completely, e.g., Physiome (1) models tissues as continua 
with bulk mechanical properties and detailed molecular reaction networks, which is 
computationally efficient for describing dense tissues and non-cellular materials like 
bone, extracellular matrix (ECM), fluids, and diffusing chemicals (2, 3), but not for 
situations where cells reorganize or migrate. 

 

Figure 1. Detail of a typical two-dimensional GGH cell-lattice configuration. Each 
colored domain represents a single spatially-extended cell. The detail shows that each 

generalized cell is a set of cell-lattice sites (or pixel), i


, with a unique index,  i


, here 

4 or 7. The color denotes the cell type,   i 


. 

Multi-cell simulations are useful to interpolate between single-cell and continuum-tissue 
extremes because cells provide a natural level of abstraction for simulation of tissues, 
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organs and organisms (4). Treating cells phenomenologically reduces the millions of 
interactions of gene products to several behaviors: most cells can move, divide, die, 
differentiate, change shape, exert forces, secrete and absorb chemicals and electrical 
charges, and change their distribution of surface properties. The Glazier-Graner-
Hogeweg (GGH) approach facilitates multiscale simulations by defining spatially-
extended generalized cells, which can represent clusters of cells, single cells, sub-
compartments of single cells or small subdomains of non-cellular materials. This flexible 
definition allows tuning of the level of detail in a simulation from intracellular to 
continuum without switching simulation framework to examine the effect of changing the 
level of detail on a macroscopic outcome, e.g., by switching from a coupled ordinary-
differential-equation (ODE) Reaction-Kinetics (RK) model of gene regulation to a 
Boolean description or from a simulation that includes subcellular structures to one that 
neglects them. 

II.	GGH	Applications	
Because it uses a regular cell lattice and regular field lattices, GGH simulations are often 
faster than equivalent Finite Element (FE) simulations operating at the same spatial 
granularity and level of modeling detail, permitting simulation of tens to hundreds of 
thousands of cells on lattices of up to 10243 pixels on a single processor. This speed, 
combined with the ability to add biological mechanisms via terms in the effective energy, 
permit GGH modeling of a wide variety of situations, including: tumor growth (5-9), 
gastrulation (10-12), skin pigmentation (13-16), neurospheres (17), angiogenesis (18-23), 
the immune system (24, 25), yeast colony growth (26, 27), myxobacteria (28-31), stem-
cell differentiation (32, 33), Dictyostelium discoideum (34-37), simulated evolution (38-
43), general developmental patterning (14, 44), convergent extension (45, 46), epidermal 
formation (47), hydra regeneration (48, 49), plant growth, retinal patterning (50, 51), 
wound healing (47, 52, 53), biofilms (54-57), and limb-bud development (58, 59). 

III.	GGH	Simulation	Overview		
All GGH simulations include a list of objects, a description of their interactions and 
dynamics and appropriate initial conditions.  

Objects in a GGH simulation are either generalized cells or fields in two dimensions (2D) 
or three dimensions (3D). Generalized cells are spatially-extended objects (Figure 1), 
which reside on a single cell lattice and may correspond to biological cells, sub-
compartments of biological cells, or to portions of non-cellular materials, e.g. ECM, 
fluids, solids, etc. (8, 48, 60-72). We denote a lattice site or pixel by a vector of integers, 

i


, the cell index of the generalized cell occupying pixel i


by  i


 and the type of the 

generalized cell  i


 by   i 


. Each generalized cell has a unique cell index and 

contains many pixels. Many generalized cells may share the same cell type. Generalized 
cells permit coarsening or refinement of simulations, by increasing or decreasing the 
number of lattice sites per cell, grouping multiple cells into clusters or subdividing cells 
into variable numbers of subcells (subcellular compartments). Compartmental simulation 
permits detailed representation of phenomena like cell shape and polarity, force 
transduction, intracellular membranes and organelles and cell-shape changes. For details 
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on the use of subcells, which we do not discuss in this chapter see (27, 31, 73, 74). Each 
generalized cell has an associated list of attributes, e.g., cell type, surface area and 
volume, as well as more complex attributes describing a cell’s state, biochemical 
interaction networks, etc.. Fields are continuously-variable concentrations, each of which 
resides on its own lattice. Fields can represent chemical diffusants, non-diffusing ECM, 
etc.. Multiple fields can be combined to represent materials with textures, e.g., fibers. 

Interaction descriptions and dynamics define how GGH objects behave both biologically 
and physically. Generalized-cell behaviors and interactions are embodied primarily in the 
effective energy, which determines a generalized cell’s shape, motility, adhesion and 
response to extracellular signals. The effective energy mixes true energies, such as cell-
cell adhesion with terms that mimic energies, e.g., the response of a cell to a chemotactic 
gradient of a field (75). Adding constraints to the effective energy allows description of 
many other cell properties, including osmotic pressure, membrane area, etc. (76-83).  

The cell lattice evolves through attempts by generalized cells to move their boundaries in 
a caricature of cytoskeletally-driven cell motility. These movements, called index-copy 
attempts, change the effective energy, and we accept or reject each attempt with a 
probability that depends on the resulting change of the effective energy, H, according to 
an acceptance function. Nonequilibrium statistical physics then shows that the cell lattice 
evolves to locally minimize the total effective energy. The classical GGH implements a 
modified version of a classical stochastic Monte-Carlo pattern-evolution dynamics, called 
Metropolis dynamics with Boltzmann acceptance (84, 85). A Monte Carlo Step (MCS) 
consists of one index-copy attempt for each pixel in the cell lattice.  

Auxiliary equations describe cells’ absorption and secretion of chemical diffusants and 
extracellular materials (i.e., their interactions with fields), state changes within cells, 
mitosis, and cell death. These auxiliary equations can be complex, e.g., detailed RK 
descriptions of complex regulatory pathways. Usually, state changes affect generalized-
cell behaviors by changing parameters in the terms in the effective energy (e.g., cell 
target volume or type or the surface density of particular cell-adhesion molecules).  

Fields also evolve due to secretion, absorption, diffusion, reaction and decay according to 
partial differential equations (PDEs). While complex coupled-PDE models are possible, 
most simulations require only secretion, absorption, diffusion and decay, with all 
reactions described by ODEs running inside individual generalized cells. The movement 
of cells and variations in local diffusion constants (or diffusion tensors in anisotropic 
ECM) mean that diffusion occurs in an environment with moving boundary conditions 
and often with advection. These constraints rule out most sophisticated PDE solvers and 
have led to a general use of simple forward-Euler methods, which can tolerate them.  

The initial condition specifies the initial configurations of the cell lattice, fields, a list of 
cells and their internal states related to auxiliary equations and any other information 
required to completely describe the simulation. 

III.A. Effective Energy 
The core of GGH simulations is the effective energy, which describes cell behaviors and 
interactions.  
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One of the most important effective-energy terms describes cell adhesion. If cells did not 
stick to each other and to extracellular materials, complex life would not exist (86). 
Adhesion provides a mechanism for building complex structures, as well as for holding 
them together once they have formed. The many families of adhesion molecules (CAMs, 
cadherins, etc.) allow embryos to control the relative adhesivities of their various cell 
types to each other and to the noncellular ECM surrounding them, and thus to define 
complex architectures in terms of the cell configurations which minimize the adhesion 
energy. 

To represent variations in energy due to adhesion between cells of different types, we 
define a boundary energy that depends on ( ( ), ( ))J      , the boundary energy per unit 
area between two cells ( ,   ) of given types ( ( ), ( )     ) at a link (the interface 
between two neighboring pixels):  

            
neighbors

boundary
,

, 1 ,
i j

H J i j i j       
  

,    (1) 

where the sum is over all neighboring pairs of lattice sites 

i  and 


j  (note that the 

neighbor range may be greater than one), and the boundary-energy coefficients are 
symmetric, 

         , ,J J         .       (2) 

In addition to boundary energy, most simulations include multiple constraints on cell 
behavior. The use of constraints to describe behaviors comes from the physics of classical 
mechanics. In the GGH context we write constraint energies in a general elastic form: 

 2constraintH value target_value  .        (3)  

The constraint energy is zero if value = target_value  (the constraint is satisfied) and 
grows as value diverges from target_value . The constraint is elastic because the exponent 
of 2 effectively creates an ideal spring pushing on the cells and driving them to satisfy the 
constraint.   is the spring constant (a positive real number), which determines the 
constraint strength. Smaller values of  allow the pattern to deviate more from the 
equilibrium condition (i.e., the condition satisfying the constraint). Because the constraint 
energy decreases smoothly to a minimum when the constraint is satisfied, the energy-
minimizing dynamics used in the GGH automatically drives any configuration towards 
one that satisfies the constraint. However, because of the stochastic simulation method, 
the cell lattice need not satisfy the constraint exactly at any given time, resulting in 
random fluctuations. In addition, multiple constraints may conflict, leading to 
configurations which only partially satisfy some constraints. 

Because biological cells have a given volume at any time, most GGH simulations employ 
a volume constraint, which restricts volume variations of generalized cells from their 
target volumes: 

      2vol vol tH v V


     ,       (4) 
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where for cell  ,  vol   denotes the inverse compressibility of the cell,     is the 

number of pixels in the cell (its volume), and  tV   is the cell’s target volume. This 

constraint defines   t2 ( )P V       as the pressure inside the cell. A cell with 

tV   has a positive internal pressure, while a cell with tV   has a negative internal 

pressure. 

Since many cells have nearly fixed amounts of cell membrane, we often use a surface- 
area constraint of form: 

      2surf surf tH s S


     ,       (5) 

where  s   is the surface area of cell  , tS  is its target surface area, and  surf   is its 

inverse membrane compressibility.1 

Adding the boundary energy and volume constraint terms together (equations (1) and (4)
), we obtain the basic GGH effective energy: 

            

      
neighbors

GGH
,

2

vol t

, 1 δ ,

.

i j

H J i j i j

v V


     

   

 

 





 

  

    (6) 

III.B. Dynamics 
A GGH simulation consists of many attempts to copy cell indices between neighboring 
pixels. In CompuCell3D the default dynamical algorithm is modified Metropolis 
dynamics. During each index-copy attempt, we select a target pixel, i


, randomly from 

the cell lattice, and then randomly select one of its neighboring pixels, i


, as a source 
pixel. If they belong to the same generalized cell (i.e., if ( ) ( )i i  

 
) we do not need 

copy index. Otherwise the cell containing the source pixel ( )i 


attempts to occupy the 
target pixel. Consequently, a successful index copy increases the volume of the source 
cell and decreases the volume of the target cell by one pixel.  

                                                 
1 Because of lattice discretization and the option of defining long range neighborhoods, 
the surface area of a cell scales in a non-Euclidian, lattice-dependent  manner with cell 

volume, i.e.,      1/3 2/3
4 3s v v  see (61) on bubble growth . 
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Figure 2. GGH representation of an index-copy attempt for two cells on a 2D square 
lattice – The “white” pixel (source) attempts to replace the “grey” pixel (target). The 
probability of accepting the index copy is given by equation (7). 

 In the modified Metropolis algorithm we evaluate the change in the total effective energy 
due to the attempted index copy and accept the index-copy attempt with probability: 

       mexp / : 0;  1: 0P i i = H T H > H      
 

,    (7) 

where mT  is a parameter representing the effective cell motility (we can think of mT  as the 

amplitude of cell-membrane fluctuations). Equation (7) is the Boltzmann acceptance 
function. Users can define other acceptance functions in CompuCell3D. The conversion 
between MCS and experimental time depends on the average values of m/H T . MCS 

and experimental time are proportional in biologically-meaningful situations (87-90). 

III.C. Algorithmic Implementation of Effective-Energy Calculations 
Consider an effective energy consisting of boundary-energy and volume-constraint terms 
as in equation (6). After choosing the source ( i


) and destination ( i


) pixels (the cell 

index of the source will overwrite the target pixel if the index copy is accepted), we 
calculate the change in the effective energy that would result from the copy. We evaluate 
the change in the boundary energy and volume constraint as follows. First we visit the 
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target pixel’s neighbors ( i


). If the neighbor pixel belongs to a different generalized cell 

from the target pixel, i.e., when    i i  
 

 (see equation (1)), we decrease H by 

      J i , i    
 

. If the neighbor belongs to a cell different from the source pixel (

i


) we increase H by       J τ σ i ,τ σ i 
 

.  

The change in volume-constraint energy is evaluated according to:  

             
             

               

new old
vol vol vol

2 2

vol t t

2 2

vol t t

vol t t

1 1

1 2 1 2 ,

H H H

v i V i v i V i

v i V i v i V i

v i V i v i V i

    

    

    

   

        
       
         

   

   

   

  (8) 

where   v i 


 and   v i


 denote the volumes of the generalized cells containing the 

source and target pixels, respectively.  

In this example, we could calculate the change in the effective energy locally, i.e., by 
visiting the neighbors of the target of the index copy. Most effective energies are quasi-
local, allowing calculations of H similar to those presented above. The locality of the 
effective energy is crucial to the utility of the GGH approach. If we had to calculate the 
effective energy for the entire cell lattice for each index-copy attempt, the algorithm 
would be prohibitively slow.  
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Figure 3. Calculating changes in the boundary energy and the volume-constraint energy 
on a nearest-neighbor square lattice. 

For longer-range interactions we use the appropriate list of neighbors, as shown in Figure 
4 and Table 1. Longer-range interactions are less anisotropic but result in slower 
simulations. 

 

Figure 4. Locations of nth-nearest neighbors on a 2D square lattice and a 2D hexagonal 
lattice. 

 2D Square Lattice 2D Hexagonal Lattice 

Neighbor 
Order 

Number of 
Neighbors 

Euclidian 
Distance  

Number of 
Neighbors 

Euclidian 
Distance  

1 4 1 6 3/2  

2 4 2  6 3/6  
3 4 2 6 3/8  

4 8 5  12 3/14  

Table 1. Multiplicity and Euclidian distances of nth-nearest neighbors for 2D square and 
hexagonal lattices. The number of nth neighbors and their distances from the central pixel 
differ in a 3D lattice. CompuCell3D calculates distance between neighbors by setting the 
volume of a single pixel (whether in 2D or 3D) to 1. 

IV.	CompuCell3D	
One advantage of the GGH model over alternative techniques is its mathematical 
simplicity. We can implement fairly easily a computer program that initializes the cell 
lattice and fields, performs index copies and displays the results. In the 15 years since the 
GGH model was developed, researchers have written numerous programs to run GGH 
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simulations. Because all GGH implementations share the same logical structure and 
perform similar tasks, much of this coding effort has gone into rewriting code already 
developed by someone else. This redundancy leads to significant research overhead and 
unnecessary duplication of effort and makes model reproduction, sharing and validation 
needlessly cumbersome. 

To overcome these problems, we developed CompuCell3D as a framework for GGH 
simulations (91, 92). Unlike specialized research code, CompuCell3D is a simulation 
environment that allows researchers to rapidly build and run shareable GGH-based 
simulations. It greatly reduces the need to develop custom code and its adherence to 
open-source standards ensures that any such code is shareable. 

CompuCell3D supports non-programmers by providing visualization tools, an eXtensible 
Markup Language (XML) interface for defining simulations, and the ability to extend the 
framework through specialized modules. The C++ computational kernel of 
CompuCell3D is also accessible using the open-source scripting language Python, 
allowing users to create complex simulations without programming in lower-level 
languages such as C or C++. Unlike typical research code, changing a simulation does 
not require recompiling CompuCell3D. 

Users define simulations using CompuCell3D XML (CC3DML) configuration files and/or 
Python scripts. CompuCell3D reads and parses the CC3DML configuration file and uses 
it to define the basic simulation structure, then initializes appropriate Python services (if 
they are specified) and finally executes the underlying simulation algorithm.  

CompuCell3D is modular: each module carries out a defined task. CompuCell3D 
terminology calls modules associated with index copies or index-copy attempts plugins. 
Some plugins calculate changes in effective energy, while others (lattice monitors) react 
to accepted index copies, e.g., by updating generalized cells’ surface areas, volumes or 
lists of neighbors. Plugins may depend on other plugins. For example, the Volume 
plugin (which calculates the volume-energy constraint in equation (4)) depends on 
VolumeTracker (a lattice monitor), which, as its name suggests, tracks changes in 
generalized cells’ volumes. When implicit plugin dependencies exist, CompuCell3D 
automatically loads and initializes dependent plugins. In addition to plugins, 
CompuCell3D defines modules called steppables which run either repeatedly after a 
defined intervals of Monte Carlo Steps or once at the beginning or end of the simulation. 
Steppables typically define initial conditions, alter cell states, update fields or output 
intermediate results. 

Figure 5 shows the relations among index-copy attempts, Monte Carlo Steps, steppables 
and plugins. 
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Figure 5. Flow chart of the GGH algorithm as implemented in CompuCell3D. 

CompuCell3D includes a Graphical User Interface (GUI) and visualization tool, 
CompuCell Player (also referred to as Player). From Player the user opens a CC3DML 
configuration file and/or Python file and hits the “Play” button to run the simulation. 
Player allows users to define multiple 2D or 3D visualizations of generalized cells, fields 
or various vector plots while the simulation is running and save them automatically for 
post-processing. 

V.	Building	CC3DML‐Based	Simulations	Using	CompuCell3D	
To show how to build simulations in CompuCell3D, the reminder of this chapter provides 
a series of examples of gradually increasing complexity. For each example we provide a 
brief explanation of the physical and/or biological background of the simulation and 
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listings of the CC3DML configuration file and Python scripts, followed by a detailed 
explanation of their syntax and algorithms. We can specify many simulations using only 
a simple CC3DML configuration file. We begin with three examples using only 
CC3DML to define simulations. 

V.A A Short Introduction to XML 
XML is a text-based data-description language, which allows standardized 
representations of data. XML syntax consists of lists of elements, each either contained 
between opening (<Tag>) and closing (</Tag>) tags:2 
<Tag Attribute1="text1">ElementText</Tag> 

or of form: 

<Tag Attribute1="attribute_text1" Attribute2="attribute_text2"/> 

We will denote the <Tag>…</Tag> syntax as a <Tag> tag pair. The opening tag of an 
XML element may contain additional attributes characterizing the element. The content 
of the XML element (ElementText in the above example) and the values of its 
attributes (text1, attribute_text1, attribute_text2) are strings of 
characters. Computer programs that read XML may interpret these strings as other data 
types such as integers, Booleans or floating point numbers. XML elements may be 
nested. The simple example below defines an element Cell with subelements 
(represented as nested XML elements) Nucleus and Membrane assigning the element 
Nucleus an attribute Size set to "10" and the element Membrane an attribute Area 
set to "20.5", and setting the value of the Membrane element to Expanding: 

<Cell>  
 <Nucleus Size="10"/> 
 <Membrane Area="20.5">Expanding</Membrane> 
</Cell> 

 

Although XML parsers ignore indentation, all the listings presented in this chapter are 
block-indented for better readability. 

V.B Grain-Growth Simulation 
One of the simplest CompuCell3D simulations mimics crystalline grain growth or 
annealing. Most simple metals are composed of microcrystals, or grains, each of which 
has a particular crystalline-lattice orientation. The atoms at the surfaces of these grains 
have a higher energy than those in the bulk because of their missing neighbors. We can 
characterize this excess energy as a boundary energy. Atoms in convex regions of a 
grain's surface have a higher energy than those in concave regions, in particular than 
those in the concave face of an adjoining grain, because they have more missing 
neighbors. For this reason, an atom at a convex curved boundary can reduce its energy by 
“hopping” across the grain boundary to the concave side (62). The movement of atoms 

                                                 
2 In the text, we denote XML, CC3DML and Python code using the Courier font. In 
listings presenting syntax, user-supplied variables are given in italics. Broken-out 
listings are boxed. Punctuation at the end of boxes is implicit. 
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moves the grain boundaries, lowering the net configuration energy through annealing or 
coarsening, with the net size of grains growing because of grain disappearance. Boundary 
motion may require thermal activation because atoms in the space between grains may 
have higher energy than atoms in grains. The effective energy driving grain growth is 
simply the boundary energy in equation (1). 

In CompuCell3D, we can represent grains as generalized cells. CC3DML Listing 1 
defines our grain-growth simulation. 

<CompuCell3D> 
 <Potts> 
  <Dimensions x=100" y="100" z="1"/> 
  <Steps>10000</Steps> 
  <Temperature>5</Temperature> 
  <Boundary_y>Periodic</Boundary_y> 
  <Boundary_x>Periodic</Boundary_x> 
  <NeighborOrder>3</NeighborOrder> 
 </Potts> 
       
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Grain" TypeId="1"/>   
 </Plugin> 
   
 <Plugin Name="Contact"> 
  <Energy Type1="Medium" Type2="Grain">0</Energy>       
  <Energy Type1="Grain" Type2="Grain">5</Energy> 
  <Energy Type1="Medium" Type2="Medium">0</Energy> 
  <NeighborOrder>3</NeighborOrder> 
 </Plugin> 
    
 <Steppable Type="UniformInitializer"> 
  <Region> 
   <BoxMin x="0" y="0" z="0"/> 
   <BoxMax x="100" y="100" z="1"/> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <Types>Grain</Types>     
  </Region> 
 </Steppable> 
 
</CompuCell3D> 

Listing 1. CC3DML configuration file for 2D grain-growth simulation.  

Each CC3DML configuration file begins with the <CompuCell3D> tag and ends with 
the </CompuCell3D> tag. A CC3DML configuration file contains three sections in the 
following sequence: the lattice section (contained within the <Potts> tag pair), the 
plugins section, and the steppables section. The lattice section defines global parameters 
for the simulation: cell-lattice and field-lattice dimensions (specified using the syntax 
<Dimensions x="x_dim" y="y_dim" z="z_dim"/>), the number of Monte 
Carlo Steps to run (defined within the <Steps> tag pair) the effective cell motility 
(defined within the <Temperature> tag pair) and boundary conditions. The default 
boundary conditions are no-flux. However, in this simulation, we have changed them to 
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be periodic along the x and y axes by assigning the value Periodic to the 
<Boundary_x> and <Boundary_y> tag pairs. The value set by the 
<NeighborOrder> tag pair defines the range over which source pixels are selected for 
index-copy attempts (see Figure 4 and Table 1). 

The plugins section lists the plugins the simulation will use. The syntax for all plugins 
which require parameter specification is: 

<Plugin Name="PluginName"> 
 <ParameterSpecification/> 
</Plugin> 
 

The CellType plugin uses the parameter syntax 

<CellType TypeName="Name" TypeId="IntegerNumber"/>  

to map verbose generalized-cell-type names to numeric cell TypeIds for all generalized-
cell types. It does not participate directly in index copies, but is used by other plugins for 
cell-type-to-cell-index mapping. Even though the grain-growth simulation fills the entire 
cell lattice with cells of type Grain, the current implementation of CompuCell3D 
requires that all simulations define the Medium cell type with TypeId 0. Medium is a 
special cell type with unconstrained volume and surface area that fills all cell-lattice 
pixels unoccupied by cells of other types.3 

The Contact plugin calculates changes in the boundary energy defined in equation (1) 
for each index-copy attempt. The parameter syntax for the Contact plugin is: 

<Energy Type1="TypeName1" Type2="TypeName1">EnergyValue</Energy>  

where TypeName1 and TypeName2 are the names of the cell types and 
EnergyValue is the boundary-energy coefficient,  ,J TypeName1 TypeName2 , 

between cells of TypeName1 and TypeName2 (see equation (1)). The 
<NeighborOrder> tag pair specifies the interaction range of the boundary energy. 
The default value of this parameter is 1. 

The steppables section includes only the UniformInitializer steppable. All 
steppables have the following syntax: 

<Steppable Type="SteppableName" Frequency="FrequencyMCS"> 
   <ParameterSpecification/> 
</Steppable> 

The Frequency attribute is optional and by default is 1 MCS. 

CompuCell3D simulations require specification of initial condition. The simplest way to 
define the initial cell lattice is to use the built-in initializer steppables, which construct 
simple regions filled with generalized cells.  

The UniformInitializer steppable in the grain-growth simulation defines one or 
more rectangular (parallelepiped in 3D) regions filled with generalized cells of user 
selectable types and sizes. We enclose each region definition within a <Region> tag 

                                                 
3 We highlight in yellow sections or text describing CompuCell3D behaviors which may 
be confusing or lead to hard-to-track errors. 
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pair. We use the <BoxMin> and <BoxMax> tags to describe the boundaries of the 
region, The <Width> tag pair defines the size of the square (cubical in 3D) generalized 
cells and the <Gap> tag pair creates space between neighboring cells. The <Types> 
tag pair lists the types of generalized cells. The grain-growth simulation uses only one 
cell type, Grain, but we can also initialize cells using types randomly chosen from the 
list, as in Listing 2. 

<Steppable Type="UniformInitializer"> 
   <Region> 
      <BoxMin x="10" y="10" z="0"/> 
      <BoxMax x="90" y="90" z="1"/> 
      <Gap>0</Gap> 
      <Width>5</Width> 
      <Types>Condensing,NonCondensing</Types> 
   </Region> 
</Steppable> 

Listing 2. CC3DML code excerpt using the UniformInitializer steppable to 
initialize a rectangular region filled with 5 x 5 pixel generalized cells with randomly-
assigned cell types (either Condensing or NonCondensing). 

The coordinate values in BoxMax element must be one more than the coordinates of the 
corresponding corner of the region to be filled. So to fill a square of side 10 beginning 
with pixel location (5,5) we use the following region-boundary specification: 

 <BoxMin x="5" y="5" z="0"/> 
 <BoxMax x="16" y="16" z="1"/> 

Listing the same type multiple times results in a proportionally higher fraction of 
generalized cells of that type. For example,  

<Types>Condensing,Condensing,NonCondensing</Types>  

will allocate approximately 2/3 of the generalized cells to type Condensing and 1/3 to 
type NonCondensing. UniformInitializer allows specification of multiple 
regions. Each region is independent and can have its own cell sizes, types and cell 
spacing. If the regions overlap, later-specified regions overwrite earlier-specified ones. If 
region specification does not cover the entire lattice, uninitialized pixels have type 
Medium. 

Figure 6 shows sample output generated by the grain-growth simulation. 
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Figure 6. Snapshots of the cell-lattice configuration for the grain-growth simulation on a 
100 x 100 pixel 3rd-neighbor square lattice, as specified in Listing 1. Boundary conditions 
are periodic in both directions. 

One advantage of GGH simulations compared to FE simulations is that going from 2D to 
3D is easy. To run a 3D grain-growth simulation on a 100 x 100 x 100 lattice we only 
need to make the following replacements in Listing 1: 

<Dimensions x="100" y="100" z="1"/>   
<Dimensions x="100" y="100" z="100"/> 

and,  

<BoxMax x="100" y="100" z="1"/>  <BoxMax x="100" y="100" z="100"/> 
 
Grain growth simulations are particularly sensitive to lattice anisotropy, so running them 
on lower-anisotropy lattices is desirable. Longer-range lattices are less anisotropic but 
cause simulations to run slower. Fortunately a hexagonal lattice of a given range is less 
anisotropic than a square lattice of the same range. To run the grain-growth simulation on 
a hexagonal lattice, we add <LatticeType>Hexagonal</LatticeType> to the 
lattice section in Listing 1 and change the two occurrences of:  

<NeighborOrder>3</NeighborOrder>  <NeighborOrder>1</NeighborOrder> 

 

Figure 7 shows snapshots for this simulation.  

 

Figure 7. Snapshots of the cell-lattice configuration for the grain-growth simulation on a 
100 x 100 pixel 1st -neighbor hexagonal lattice as specified in Listing 1 with substitutions 
described in the text. The x and y length units in an hexagonal lattice differ, resulting in 
differing x and y dimensions for a cell lattice with an equal number of pixels in the x and 
y directions.  

One inconvenience of the current implementation of CompuCell3D is that it does not 
automatically rescale parameter values when interaction range, lattice dimensionality or 
lattice type change. When changing these attributes, users must recalculate parameters to 
keep the underlying physics of the simulation the same.  

CompuCell3D dramatically reduces the amount of code necessary to build and run a 
simulation. The grain-growth simulation took about 25 lines of CC3DML instead of 1000 
lines of C, C++ or Fortran.  
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V.C Cell-Sorting Simulation 
Cell sorting is an experimentally-observed phenomenon in which cells with different 
adhesivities are randomly mixed and reaggregated. They can spontaneously sort to 
reestablish coherent homogenous domains (93, 94). Sorting is a key mechanism in 
embryonic development. 

The grain-growth simulation used only one type of generalized cell. Simulating sorting of 
two types of biological cell in an aggregate floating in solution is slightly more complex. 
Listing 3 shows a simple cell-sorting simulation. It is similar to Listing 1 with a few 
additional modules (shown in bold). The effective energy is that in equation (6). 

<CompuCell3D> 
 <Potts> 
  <Dimensions x="100" y="100" z="1"/> 
  <Steps>10000</Steps> 
  <Temperature>10</Temperature> 
  <NeighborOrder>2</NeighborOrder>  
 </Potts> 
 
 <Plugin Name="Volume"> 
  <TargetVolume>25</TargetVolume> 
  <LambdaVolume>2.0</LambdaVolume> 
 </Plugin> 
 
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Condensing" TypeId="1"/> 
  <CellType TypeName="NonCondensing" TypeId="2"/> 
 </Plugin> 
 
 <Plugin Name="Contact"> 
  <Energy Type1="Medium" Type2="Medium">0</Energy> 
  <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
  <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
  <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
  <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
  <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
  <NeighborOrder>2</NeighborOrder> 
 </Plugin> 
 
 <Steppable Type="BlobInitializer"> 
  <Region> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <Radius>40</Radius> 
   <Center x="50" y="50" z="0"/> 
   <Types>Condensing,NonCondensing</Types> 
  </Region> 
 </Steppable> 
 
</CompuCell3D> 

Listing 3. CC3DML configuration file simulating cell sorting between Condensing 
and NonCondensing cell types. Highlighted text indicates modules absent in Listing 1. 
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Notice how little modification of the grain-growth CC3DML configuration file this 
simulation requires. 

The main change from Listing 1 to the lattice section is that we omit the boundary 
condition specification and use default no-flux boundary conditions. 

In the CellType plugin we introduce the two cell types, Condensing and 
NonCondensing, in place of Grain. In addition we do not the fill lattice completely 
with Condensing and NonCondensing cells so the interactions with Medium 
become important. The boundary-energy matrix in the Contact plugin thus requires 
entries for the additional cell-type pairs. The hierarchy of boundary energies listed results 
in cell sorting.  

We also add the Volume plugin, which calculates the volume-constraint energy as given 
in equation (4). In this plugin the <TargetVolume> tag pair sets target volume t 25V   

for both Condensing cells and NonCondensing and the <LambdaVolume> tag 
pair sets the constraint strength vol 2.0   for both cell types. We will see later how to 

define volume-constraint parameters for each cell type or each cell individually. 

In the cell-sorting simulation we initialize the cell lattice using the BlobInitializer 
steppable which specifies circular (or spherical in 3D) regions filled with square (or 
cubical in 3D) cells of user-defined size and types. The syntax is very similar to that for 
UniformInitializer. 

Looking in detail at the syntax of BlobInitializer in Listing 3, the <Radius> tag 
pair defines the radius of a circular (or spherical) domain of cells in pixels. The 
<Center> tag, with syntax <Center x="x_position" y="y_position" 
z="z_position"/>, defines the coordinates of the center of the domain. The 
remaining tags are the same as for UniformInitializer. As with 
UniformInitializer, we can define multiple regions. We can use both 
UniformInitializer and BlobInitializer in the same simulation. In the case 
of overlap, later-specified regions overwrite earlier ones.  

We show snapshots of the cell-sorting simulation in Figure 8. The less cohesive 
NonCondensing cells engulf the more cohesive Condensing cells, which cluster 
and form a single central domain. By changing the boundary energies we can produce 
other cell-sorting patterns (95, 96). 
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Figure 8. Snapshots of the cell-lattice configurations for the cell-sorting simulation in 
Listing 3. The boundary-energy hierarchy drives NonCondensing (light grey) cells to 
surround Condensing (dark grey) cells. The white background denotes surrounding 
Medium. 

V.D Bacterium-and-Macrophage Simulation 
In the two simulations we have presented so far, the cellular pattern develops without 
fields. Often, however, biological patterning mechanisms require us to introduce and 
evolve chemical fields and to have cells’ behaviors depend on the fields. To illustrate the 
use of fields, we model the in vitro behavior of bacteria and macrophages in blood. In the 
famous experimental movie taken in the 1950s by David Rogers at Vanderbilt University, 
the macrophage appears to chase the bacterium, which seems to run away from the 
macrophage. We can model both behaviors using cell secretion of diffusible chemical 
signals and movement of the cells in response to the chemical (chemotaxis): the 
bacterium secretes a signal (a chemoattractant) that attracts the macrophage and the 
macrophage secretes a signal (a chemorepellant) which repels the bacterium (97).  

Listing 4 shows the CC3DML configuration file for the bacterium-and-macrophage 
simulation.  

<CompuCell3D> 
 <Potts> 
  <Dimensions x="100" y="100" z="1"/> 
  <Steps>100000</Steps> 
  <Temperature>20</Temperature> 
  <LatticeType>Hexagonal</LatticeType> 
 </Potts> 
 
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Bacterium" TypeId="1" /> 
  <CellType TypeName="Macrophage" TypeId="2"/>     
  <CellType TypeName="Red" TypeId="3"/>     
  <CellType TypeName="Wall" TypeId="4" Freeze=""/>     
 </Plugin> 
 
 <Plugin Name="VolumeFlex"> 
  <VolumeEnergyParameters CellType="Macrophage" TargetVolume="150" 
      LambdaVolume="15"/> 
  <VolumeEnergyParameters CellType="Bacterium" TargetVolume="10"  
     LambdaVolume="60"/> 
  <VolumeEnergyParameters CellType="Red" TargetVolume="100"  
     LambdaVolume="30"/> 
 </Plugin> 
 
 <Plugin Name="SurfaceFlex"> 
  <SurfaceEnergyParameters CellType="Macrophage" TargetSurface="50"  
     LambdaSurface="30"/> 
  <SurfaceEnergyParameters CellType="Bacterium" TargetSurface="10"  
     LambdaSurface="4"/> 
  <SurfaceEnergyParameters CellType="Red" TargetSurface="40"  
     LambdaSurface="0"/> 
 </Plugin> 
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 <Plugin Name="Contact"> 
  <Energy Type1="Medium" Type2="Medium">0</Energy> 
  <Energy Type1="Macrophage" Type2="Macrophage">150</Energy> 
  <Energy Type1="Macrophage" Type2="Medium">8</Energy> 
  <Energy Type1="Bacterium" Type2="Bacterium">150</Energy> 
  <Energy Type1="Bacterium" Type2="Macrophage">15</Energy> 
  <Energy Type1="Bacterium" Type2="Medium">8</Energy> 
  <Energy Type1="Wall" Type2="Wall">0</Energy> 
  <Energy Type1="Wall" Type2="Medium">0</Energy> 
  <Energy Type1="Wall" Type2="Bacterium">150</Energy> 
  <Energy Type1="Wall" Type2="Macrophage">150</Energy> 
  <Energy Type1="Wall" Type2="Red">150</Energy> 
  <Energy Type1="Red" Type2="Red">150</Energy> 
  <Energy Type1="Red" Type2="Medium">30</Energy> 
  <Energy Type1="Red" Type2="Bacterium">150</Energy> 
  <Energy Type1="Red" Type2="Macrophage">150</Energy> 
  <NeighborOrder>2</NeighborOrder> 
 </Plugin> 
 
 <Plugin Name="Chemotaxis"> 
  <ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR"> 
   <ChemotaxisByType Type="Macrophage" Lambda="1"/> 
  </ChemicalField> 
 
  <ChemicalField Source="FlexibleDiffusionSolverFE" Name="REP"> 
   <ChemotaxisByType Type="Bacterium" Lambda="-0.1"/> 
  </ChemicalField> 
 </Plugin> 
 
 <Steppable Type="FlexibleDiffusionSolverFE"> 
  <DiffusionField> 
   <DiffusionData> 
    <FieldName>ATTR</FieldName> 
    <DiffusionConstant>0.10</DiffusionConstant> 
    <DecayConstant>0.00005</DecayConstant> 
    <DoNotDiffuseTo>Wall</DoNotDiffuseTo>  
    <DoNotDiffuseTo>Red</DoNotDiffuseTo>  
   </DiffusionData> 
    <SecretionData> 
     <Secretion Type="Bacterium">200</Secretion> 
    </SecretionData> 
   </DiffusionField> 
     
   <DiffusionField> 
    <DiffusionData> 
    <FieldName>REP</FieldName> 
    <DiffusionConstant>0.10</DiffusionConstant> 
    <DecayConstant>0.001</DecayConstant> 
    <DoNotDiffuseTo>Wall</DoNotDiffuseTo>  
    <DoNotDiffuseTo>Red</DoNotDiffuseTo>  
   </DiffusionData> 
   <SecretionData> 
    <Secretion Type="Macrophage">200</Secretion> 
   </SecretionData> 
  </DiffusionField> 
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 </Steppable> 
 
 <Steppable Type="PIFInitializer"> 
  <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName> 
 </Steppable> 
  
</CompuCell3D> 

Listing 4. CC3DML configuration file for the bacterium-and-macrophage simulation. 
 

The simulation has five generalized-cell types: Medium, Bacterium, Macrophage, 
Red blood cells and a surrounding Wall. It also has two diffusible fields, representing a 
chemoattractant, ATTR, and a chemorepellent, REP. Because the default boundary-
energy between any generalized-cell type and the edge of the cell lattice is zero, we 
define a surrounding wall to prevent cells from sticking to the cell-lattice boundary. As in 
our previous simulations, we assign cell types using the CellType plugin. Note the new 
syntax in the line specifying the cell type making up the walls: 

<CellType TypeName="Wall" TypeId="4" Freeze=""/>   

The Freeze="" attribute excludes generalized cells of type Wall from participating in 
index copies, which makes the walls immobile. 

We replace the Volume plugin with VolumeFlex and add the plugin SurfaceFlex. 
These plugins allow independent assignment of target values and constraint strengths in 
the volume-constraint and surface-constraint energies (equations (4) and (5)). These 
plugins require a line for each generalized-cell type, specifying the type name and the 
target volume (or target surface area), and vol  (or surf ) for that generalized-cell type, 

e.g.: 

<VolumeEnergyParameters CellType="Name" TargetVolume="Value" 
LambdaVolume="Value "/> 

 

We implement the actual bacterium-macrophage “chasing” mechanism using the 
Chemotaxis plugin, which specifies how a generalized cell of a given type responds to 
a field. The Chemotaxis plugin biases a cell’s motion up or down a field gradient by 
changing the calculated effective-energy change used in the acceptance function, 

equation (7). For a field  c i


: 

    chem chem ,H c i c i    
 

        (9) 

where  c i


 is the chemical field at the index-copy target pixel,  c i


 the field at the 

index-copy source pixel, and chem  the strength and direction of chemotaxis. If chem 0   

and    c i c i
 

, then chemH  is negative, increasing the probability of accepting the 

index copy in equation (7). The net effect is that the cell moves up the field gradient with 

a velocity chem~ c 


. If   0 is negative, the opposite occurs, and the cell will move 

down the field gradient. Plugins with more sophisticated chemH  calculations (e.g., 
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including response saturation) are available within CompuCell3D (see the CompuCell3D 
User Guide).  

 

 

 

Figure 9. Connecting a field to GGH dynamics using a chemotaxis-energy term. The 
difference in the value of the field c  at the source, i


, and target, i


, pixels changes the 

H of the index-copy attempt. Here    c i c i
 

 and 0  , so chem 0H  , increasing 

the probability of accepting the index-copy attempt in equation (7). 

In the Chemotaxis plugin we must identify the names of the fields, where the field 
information is stored, the list of the generalized-cell types that will respond to the fields, 
and the strength and direction of the response (Lambda = chem ). The information for 

each field is specified using the syntax: 

<ChemicalField Source="where field is stored" Name="field name"> 
      <ChemotaxisByType Type="cell_type1" Lambda="lambda1"/>    
      <ChemotaxisByType Type="cell_type2" Lambda="lambda1"/>    
</ChemicalField> 

In our current example, the first field, named ATTR, is stored in 
FlexibleDiffusionSolverFE. Macrophage cells are attracted to ATTR with 

chem 1  . None of the other cell types responds to ATTR. Similarly, Bacterium cells 

are repelled by REP with chem 0.1   .  

Keep in mind that fields are not created within the Chemotaxis plugin, which only 
specifies how different cell types respond to the fields. We define and store the fields 
elsewhere. Here, we use the FlexibeDiffusionSolverFE steppable as the source 
of our fields. The FlexibleDiffusionSolverFE steppable is the main 
CompuCell3D tool for defining diffusing fields, which evolve according to the diffusion 
equation: 

           2
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where  c i


 is the field concentration and  D i


,  k i


 and  s i


 denote the diffusion 

constant (in m2/s), decay constant (in s-1) and secretion rates (in concentration/s) of the 

field, respectively.  D i


,  k i


, and s(

i ) may vary with position and cell-lattice 

configuration. 

As in the Chemotaxis plugin, we may define the behaviors of multiple fields, 
enclosing each one within <DiffusionField> tag pairs. For each field defined 
within a <DiffusionData> tag pair, users provide values for the name of the field 
(using the <FieldName> tag pair), the diffusion constant (using the 
<DiffusionConstant> tag pair) , and the decay constant (using the 
<DiffusionConstant> tag pair). Forward-Euler methods are numerically unstable 
for large diffusion constants, limiting the maximum nominal diffusion constant allowed 
in CompuCell3D simulations. However, by increasing the PDE-solver calling frequency, 
which reduces the effective time step, CompuCell3D can simulate arbitrarily large 
diffusion constants. For more information, see the CompuCell3D User Guide. 

Each optional <DoNotDiffuseTo> tag pair, with syntax: 

<DoNotDiffuseTo>cell_type</DoNotDiffuseTo> 

prevents the field from diffusing into field-lattice pixels where the corresponding cell-

lattice pixel, 

i , is occupied by a cell,  i


, of the specified type. In our case, chemical 

fields do not diffuse into the pixels occupied by Wall or Red cells. The optional 
<SecretionData> tag pair defines a subsection which identifies cells types that 
secrete or absorb the field and the rates of secretion: 

<SecretionData>  
 <Secretion Type="cell_type1">real_rate1</Secretion> 
 <Secretion Type="cell_type2">real_rate2</Secretion> 
<SecretionData>  

A negative rate simulates absorption. In the bacterium and macrophage simulation, 
Bacterium cells secrete ATTR and Macrophage cells secrete REP.  

We load the initial configuration for the bacterium-and-macrophage simulation using the 
PIFInitializer steppable. Many simulations require initial generalized-cell 
configurations that we cannot easily construct from primitive regions filled with cells 
using BlobInitializer and UniformInitializer. To allow maximum 
flexibility, CompuCell3D can read the initial cell-lattice configuration from Pixel 
Initialization Files (PIFs). A PIF is a text file that allows users to assign multiple 
rectangular (parallelepiped in 3D) pixel regions or single pixels to particular cells. 

Each line in a PIF has the syntax: 

Cell_id Cell_type x_low x_high y_low y_high z_low z_high 

where Cell_id is a unique cell index. A PIF may have multiple, possibly non-adjacent, 
lines starting with the same Cell_id; all lines with the same Cell_id define pixels of 
the same generalized cell. The values x_low, x_high, y_low, y_high, z_low and 
z_high define rectangles (parallelepipeds in 3D) of pixels belonging to the cell. In the 
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case of overlapping pixels, a later line overwrites pixels defined by earlier lines. The 
following line describes a 6 x 6-pixel square cell with cell index 0 and type Amoeba: 

0 Amoeba 10 15 10 15 0 0   
If we save this line to the file 'amoebae.pif', we can load it into a simulation using the 
following syntax: 

<Steppable Type="PIFInitializer"> 
    <PIFName>amoebae.pif</PIFName> 
 </Steppable> 

 

Listing 5 illustrates how to construct arbitrary shapes using a PIF. Here we define two 
cells with indices 0 and 1, and cell types Amoeba and Bacterium, respectively. The 
main body of each cell is a 6 x 6 square to which we attach additional pixels. 

 

0 Amoeba 10 15 10 15 0 0 
1 Bacterium 25 30 25 30 0 0 
0 Amoeba 16 16 15 15 0 0 
1 Bacterium 25 27 31 35 0 0 

Listing 5. Simple PIF initializing two cells, one each of type Bacterium and Amoeba.  
 
All lines with the same cell index (first column) define a single cell.  
Figure 10 shows the initial cell-lattice configuration specified in Listing 5: 

 

Figure 10. Initial configuration of the cell lattice based on the PIF in Listing 5. 

In practice, because constructing complex PIFs by hand is cumbersome, we generally use 
custom-written scripts to generate the file directly, or convert images stored in graphical 
formats (e.g., gif, jpeg, png) from experiments or other programs.  

Listing 6 shows the PIF for the bacterium-and-macrophage simulation.  
 
0 Red 10 20 10 20 0 0 
1 Red 10 20 40 50 0 0 
2 Red 10 20 70 80 0 0 
3 Red 40 50 0 10 0 0 
4 Red 40 50 30 40 0 0 
5 Red 40 50 60 70 0 0 
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6 Red 40 50 90 95 0 0 
7 Red 70 80 10 20 0 0 
8 Red 70 80 40 50 0 0 
9 Red 70 80 70 80 0 0 
10 Wall 0 99 0 1 0 0 
10 Wall 98 99 0 99 0 0 
10 Wall 0 99 98 99 0 0 
10 Wall 0 1 0 99 0 0 
11 Bacterium 5 5 5 5 0 0 
12 Macrophage 35 35 35 35 0 0  
13 Bacterium 65 65 65 65 0 0 
14 Bacterium 65 65 5 5 0 0 
15 Bacterium 5 5 65 65 0 0 
16 Macrophage 75 75 95 95 0 0  
17 Red 24 28 10 20 0 0 
18 Red 24 28 40 50 0 0 
19 Red 24 28 70 80 0 0 
20 Red 40 50 14 20 0 0 
21 Red 40 50 44 50 0 0 
22 Red 40 50 74 80 0 0 
23 Red 54 59 90 95 0 0 
24 Red 70 80 24 28 0 0 
25 Red 70 80 54 59 0 0 
26 Red 70 80 84 90 0 0 
27 Macrophage 10 10 95 95 0 0 

Listing 6. PIF defining the initial cell-lattice configuration for the bacterium-and-
macrophage simulation. The file is stored as 'bacterium_macrophage_2D_wall_v3.pif'. 
 

In Listing 4 we read the cell lattice configuration from the file 
'bacterium_macrophage_2D_wall_v3.pif' using the lines: 

<Steppable Type="PIFInitializer"> 
  <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName> 
 </Steppable> 

 

Figure 11 shows snapshots of the bacterium-and-macrophage simulation. By adjusting 
the properties and number of bacteria, macrophages and red blood cells and the diffusion 
properties of the chemical fields, we can build a surprisingly good reproduction of the 
experiment.  
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Figure 11. Snapshots of the bacterium-and-macrophage simulation from Listing 4 and 
the PIF in Listing 6 saved in the file 'bacterium_macrophage_2D_wall_v3.pif'. The upper 
row shows the cell-lattice configuration with the Macrophages in grey, Bacteria in 
white, red blood cells in dark grey and Medium in blue. Middle row shows the 
concentration of the chemoattractant ATTR secreted by the Bacteria. The bottom row 
shows the concentration of the chemorepellant REPL secreted by the Macrophages. 
The bars at the bottom of the field images show the concentration scales (blue, low 
concentration, red, high concentration). 

VI.	Python	Scripting	
CC3DML is convenient for building simple simulations such as those we presented 
above. To describe more complex simulations, CompuCell3D allows users to write 
specialized, shareable modules in C/C++ (through the CompuCell3D Application 
Programming Interface, or CC3D API) or Python (through a Python-scripting interface). 
C and C++ modules have the advantage that they run at native speed. However, 
developing them requires knowledge of both C/C++ and the CC3D API, and their 
integration with CompuCell3D requires recompilation of the source code. Python module 
development is less complicated, since Python has simpler syntax than C/C++ and users 
can modify and extend a library of Python-module templates included with 
CompuCell3D. Moreover, Python modules do not require recompilation. 

t=200 MCS t=500 MCS t=800 MCS t=900 MCS t=1100 MCS
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 Tasks performed by CompuCell3D modules either relate to index-copy attempts 
(plugins) or run either once, at the beginning or end of a simulation, or once every several 
MCS (steppables). Tasks run every index-copy attempt, like effective-energy-term 
calculations, are the most frequently-called tasks in a GGH simulation and writing them 
in Python may slow simulations. However, steppables and lattice monitors are good 
candidates for Python implementation and cause negligible performance degradation. 
Python implementations are suitable for most cell-parameter adjustments that depend on 
the state of the simulation, e.g., simulating cell growth in response to a chemical, cell-
type differentiation and changes in cell-cell adhesion. 

VI.A A Short Introduction to Python  
Python is an object-oriented scripting language with all the syntactic constructs present in 
any modern programming language. Python supports popular flow-control statements 
such as if-elif-else conditional instructions and for and while loops. Unlike 
C/C++, Python does not use ';' to end lines or '{' and '}' to define code blocks. Instead, 
Python relies on indentation to define blocks of code. if statements, for or while 
loops and their subsections are created by a ':' and increasing the level of indentation. 
The end of a block is indicated by a decrease in the level of indentation. Python uses the 
'=' operator for assignments and '==' for checking equality between objects. For 
example, in the following code: 
b=2 
if b==2: 
   a=10 
   for c in range(0,a): 
    b=a+c 

print b 

we indent the body of the if statement and the body of the inner for loop. The for 
loop is executed inside the if statement. a=0 assigns the variable a a value of 10, while 
b==2 is true if b has a value of 2. The for loop assigns the variable c values 0 through 
a-1 and executes instructions inside the loop body. 
As an object-oriented language, Python supports classes, inheritance and polymorphism. 
Accessing members of objects uses the '.' operator. For example, to access the real part 
of a complex number, we use the following code: 
a=complex(2,3) 
a=1.5+0.5j 
print a.real 

Here, real is a member of the Python class complex, which represents complex 
numbers. If the object has composite subobjects, we use the '.' operator recursively: 

object.subobject.member_of_subobject  

 
Users may define Python objects without declaring their type. A single data structure 
such as a list or dictionary can store objects of multiple types. Python provides automatic 
memory management, which frees users from remembering to deallocate memory for 
objects that are no longer used.  
 
Long source code lines can be carried over to the following line using the '\' character: 
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very_long_variable_name = \ 
very_long_variable_name * very_important_constant 

 
Note that double underscore '__' has a reserved meaning in Python and should not be 
confused with a single underscore '_'. 
 
We will present additional Python features in the subsequent sections and explain step-
by-step some basic concepts of Python programming (for more on Python, see Learning 
Python, by Mark Lutz (98)). For more information on Python scripting in CompuCell3D, 
see our Python Tutorials and CompuCell3D User Guide (available from the 
CompuCell3D website, www.compucell3d.org). 

VI.B Building Python-Based CompuCell3D Simulations  
Python scripting allows users to augment their CC3DML configuration files with Python 
scripts or to code their entire simulations in Python (in which case the Python script looks 
very similar to the CC3DML script it replaces). Listing 7 shows the standard block of 
template code for running a Python script in conjunction with a CC3DML configuration 
file. 

import sys 
from os import environ 
from os import getcwd 
import string 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
import CompuCellSetup 
 
sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
 
#Create extra player fields here or add attributes 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 
 
#Add Python steppables here 
steppableRegistry=CompuCellSetup.getSteppableRegistry() 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 

Listing 7. Basic Python template to run a CompuCell3D simulation through a Python 
interpreter. Later examples will be based on this script. 

The import sys line provides access to standard functions and variables needed to 
manipulate the Python runtime environment. The next two lines,  

from os import environ 
from os import getcwd  

import environ and getcwd housekeeping functions into the current namespace (i.e., 
current script) and are included in all our Python programs. In the next three lines,  

import string 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
import CompuCellSetup 

we import the string module, which contains convenience functions for performing 
operations on strings of characters, set the search path for Python modules and import the 
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CompuCellSetup module, which provides a set of convenience functions that simplify 
initialization of CompuCell3D simulations. 

Next, we create and initialize the core CompuCell3D modules: 

sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 

 

We then create a steppable registry (a Python container that stores steppables, i.e., a list 
of all steppables that the Python code can access) and pass it to the function that runs the 
simulation: 

steppableRegistry=CompuCellSetup.getSteppableRegistry() 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 
 

In the next section, we extend this template to build a simple simulation.  

VI.C Cell-Type-Oscillator Simulation 
Suppose that we would like to add a caricature of oscillatory gene expression to our cell-
sorting simulation (Listing 3) so that cells exchange types every 100 MCS. We will 
implement the changes of cell types using a Python steppable, since it occurs at intervals 
of 100 MCS.  

Listing 8 shows the changes to the Python template in Listing 7 that are necessary to 
create the desired type switching (changes are shown in bold). 

import sys 
from os import environ 
from os import getcwd 
import string 
 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
 
import CompuCellSetup 
sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
 
from PySteppables import * 
class TypeSwitcherSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=100): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 
       
   def step(self,mcs): 
      for cell in self.cellList: 
         if cell.type==1: 
            cell.type=2 
         elif (cell.type==2): 
            cell.type=1 
         else: 
            print "Unknown type. In cellsort simulation there should\ 
            only be two types 1 and 2" 
 



-34- 

#Create extra player fields here or add attributes 
 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 
 
#Add Python steppables here 
steppableRegistry=CompuCellSetup.getSteppableRegistry() 
 
typeSwitcherSteppable=TypeSwitcherSteppable(sim,100); 
steppableRegistry.registerSteppable(typeSwitcherSteppable) 
 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 

Listing 8. Python script expanding the template code in Listing 7 into a simple 
TypeSwitcherSteppable steppable. The code illustrates dynamic modification of 
cell parameters using a Python script. Lines added to Listing 7 are shown in bold. 

 

A CompuCell3D steppable is a class (a type of object) that holds the parameters and 
functions necessary for carrying out a task. Every steppable defines at least 4 functions: 
__init__(self, _simulator, _frequency), start(self), 
step(self, mcs) and finish(self). 

CompuCell3D calls the start(self) function once at the beginning of the simulation 
before any index-copy attempts. It calls the step(self, mcs) function periodically 
after every _frequency MCS. It calls the finish(self) function once at the end of 
the simulation. Listing 8 does not have explicit start(self) or finish(self) 
functions. Instead, the class definition : 

class TypeSwitcherSteppable(SteppablePy):    
causes the TypeSwitcherSteppable to inherit components of the SteppablePy 
class. SteppablePy contains default definitions of the start(self), 
step(self,mcs) and finish(self) functions. Inheritance reduces the length of 
the user-written Python code and ensures that the TypeSwitcherSteppable object 
has all needed components. The line: 

from PySteppables import *  

makes the content of 'PySteppables.py' file (or module) available in the current 
namespace. The PySteppables module includes the SteppablePy base class. 

The __init__ function is a constructor that accepts user-defined parameters and 
initializes a steppable object. Consider the __init__ function of the 
TypeSwitcherSteppable: 

def __init__(self,_simulator,_frequency=100): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 

In the def line, we pass the necessary parameters: self (which is used in Python to 
access class variables from within the class), _simulator (the main CompuCell3D 
kernel object which runs the simulation), and _frequency (which tells 
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steppableRegistry how often to run the steppable, here, every 100 MCS). Next we 
call the constructor for the inheritance class, SteppablePy, as required by Python. The 
following statement: 

self.simulator=_simulator 

assigns to the class variable self.simulator a reference to _simulator object, 
passed from the main script. We can think about Python reference as a pointer variable 
that stores the address of the object but not a copy of the object itself. The last two lines 
construct a list of all generalized cells in the simulation, a cell inventory, which allows us 
to visit all the cells with a simple for loop to perform various tasks. The cell inventory is 
a dynamic structure, i.e., it updates automatically when cells are created or destroyed 
during a simulation. 

The section of the TypeSwitcherSteppable steppable which implements the cell-
type switching is found in the step(self, mcs) function: 

def step(self,mcs): 
      for cell in self.cellList: 
         if cell.type==1: 
            cell.type=2 
         elif (cell.type==2): 
            cell.type=1 
         else: 
            print "Unknown type" 

Here we use the cell inventory to iterate over all cells in the simulation and reassign their 
cell types between cell.type 1 and cell.type 2. If we encounter a cell.type 
that is neither 1 nor 2 (which we should not), we print an error message. 

Once we have created a steppable (i.e., created an object of class 
TypeSwitcherSteppable) we must register it using registerSteppable 
function from steppableRegistry object: 

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100); 
steppableRegistry.registerSteppable(typeSwitcherSteppable) 

CompuCell3D will not run unregistered steppables. As we will see, much of the script is 
not specific to this example. We will recycle it with slight changes in later examples. 

Figure 12 shows snapshots of the cell-type-oscillator simulation. 

 

 

 

t=90 MCS t=110 MCS t=1490 MCS t=1510 MCS 
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Figure 12. Results of the Python cell-type-oscillator simulation using the 
TypeSwitcherSteppable steppable implemented in Listing 8 in conjunction with 
the CC3DML cell-sorting simulation in Listing 3. Cells exchange types and 
corresponding adhesivities and colors every 100 MCS; i.e., between t=90 MCS and t=110 
MCS and between t=1490 MCS and t=1510 MCS. 

We mentioned earlier that users can run simulations without a CC3DML configuration 
file. Listing 9 shows the cell-type-oscillator simulation written entirely in Python, with 
changes to Listing 8 shown in bold. 

 

def configureSimulation(sim): 
   import CompuCell 
   import CompuCellSetup 
    
   ppd=CompuCell.PottsParseData() 
   ppd.Steps(20000) 
   ppd.Temperature(5) 
   ppd.NeighborOrder(2) 
   ppd.Dimensions(CompuCell.Dim3D(100,100,1)) 
  
   ctpd=CompuCell.CellTypeParseData() 
   ctpd.CellType("Medium",0) 
   ctpd.CellType("Condensing",1) 
   ctpd.CellType("NonCondensing",2) 
    
   cpd=CompuCell.ContactParseData() 
   cpd.Energy("Medium","Medium",0) 
   cpd.Energy("NonCondensing","NonCondensing",16) 
   cpd.Energy("Condensing","Condensing",2) 
   cpd.Energy("NonCondensing","Condensing",11)  
   cpd.Energy("NonCondensing","Medium",16) 
   cpd.Energy("Condensing","Medium",16) 
    
   vpd=CompuCell.VolumeParseData() 
   vpd.LambdaVolume(1.0) 
   vpd.TargetVolume(25.0) 
       
   bipd=CompuCell.BlobInitializerParseData() 
   region=bipd.Region() 
   region.Center(CompuCell.Point3D(50,50,0)) 
   region.Radius(40) 
   region.Types("Condensing") 
   region.Types("NonCondensing") 
   region.Width(5) 
    
   CompuCellSetup.registerPotts(sim,ppd) 
   CompuCellSetup.registerPlugin(sim,ctpd) 
   CompuCellSetup.registerPlugin(sim,cpd) 
   CompuCellSetup.registerPlugin(sim,vpd) 
       
   CompuCellSetup.registerSteppable(sim,bipd) 
    
import sys 
from os import environ 
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from os import getcwd 
import string 
 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
 
import CompuCellSetup 
sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
 
configureSimulation(sim) 
 
from PySteppables import * 
class TypeSwitcherSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=100): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 
       
   def step(self,mcs): 
      for cell in self.cellList: 
         if cell.type==1: 
            cell.type=2 
         elif (cell.type==2): 
            cell.type=1 
         else: 
            print "Unknown type. In cellsort simulation there should 
only be two types 1 and 2" 
 
#Create extra player fields here or add attributes 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 
 
#Add Python steppables here 
steppableRegistry=CompuCellSetup.getSteppableRegistry() 
 
typeSwitcherSteppable=TypeSwitcherSteppable(sim,100); 
steppableRegistry.registerSteppable(typeSwitcherSteppable) 
 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 
 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 

Listing 9. Stand-alone Python cell-type-oscillator script containing an initial section that 
replaces the CC3DML configuration file from Listing 3. Lines added to Listing 8 are 
shown in bold. 
 
The configureSimulation function replaces the CC3DML file from Listing 3. 
After importing CompuCell and CompuCellSetup, we have access to functions and 
modules that provide all the functionality necessary to code a simulation in Python. The 
general syntax for the opening lines of each block is: 

snpd=CompuCell.SectionNameParseData()  

where SectionName refers to the name of the section in a CC3DML configuration file 
and snpd is the name of the object of type SectionNameParseData. The rest of the 
block usually follows the syntax: 
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snpd.TagName(values)    

where TagName corresponds to the name of the tag pair used to assign a value to a 
parameter in a CC3DML file. For values within subsections, the syntax is: 

snpd.SubsectionName().TagName(values)  

To input dimensions, we use the syntax: 

snpd.TagName(CompuCell.Dim3D(x_dim,y_dim,z_dim)) 

where x_dim, y_dim, and z_dim are the x, y and z dimensions. To input a set of (x,y,z) 
coordinates, we use the syntax: 

snpd.TagName(CompuCell.Point3D(x_coord,y_coord,z_coord)) 

where x_coord, y_coord, and z_coord are the x, y, and z coordinates. 

In the first block (PottsParseData), we input the cell-lattice parameter values using 
the syntax: 

ppd.ParameterName(value) 

where ParameterName matches a parameter name used in the CC3DML lattice 
section.  

Next we define the cell types using the syntax: 

ctpd.CellType("cell_type",cell_id) 

The next section assigns boundary energies between the cell types: 

cpd.Energy("cell_type_1","cell_type_2",contact_energy)  

We specify the rest of the parameter values in a similar fashion, following the general 
syntax described above. 

The examples in Listing 8 and Listing 9 define the TypeSwitcherSteppable class 
within the main Python script. However, separating extension modules from the main 
script and using an import statement to refer to modules stored in external files is more 
practical. Using separate files ensures that each module can be used in multiple 
simulations without duplicating source code, and makes scripts more readable and 
editable. We will follow this convention in our remaining examples. 

VI.D Two-Dimensional Foam-Flow Simulation 
CompuCell3D can simulate simple physical experiments with foams. Indeed, GGH 
techniques grew out of foam-simulation techniques (73). Our next example shows how to 
use CC3DML and Python scripts to simulate quasi-two-dimensional foam flow. 

The experimental apparatus (Figure 13) consists of a channel created by two parallel 
rectangular glass plates separated by 5 mm, with the gap between their long sides sealed 
and that between their short sides open. A foam generator injects small, uniform size 
bubbles at one short end, pushing older bubbles towards the open end of the channel, 
creating a foam flow. The top glass plate has a hole through which we inject air. Bubbles 
passing under this point grow because of the air injected into them, forming characteristic 
patterns (Figure 14) (99).  
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Figure 13. Schematic of experiment for studying quasi-2D foam flow. 

 

 

Figure 14. Detail of processed experimental image of flowing quasi-2D bubbles. Image 
size is 15 cm x 15 cm. 

Generalized cells will represent bubbles in this simulation. To simulate this experiment in 
CompuCell3D we need to write Python steppables that 1) create bubbles at one end of the 
channel, 2) inject air into the bubble which includes a given location (the identity of this 
bubble will change in time due to the flow), 3) remove bubbles at the open end of the 
channel. We will store the source code in a file called 'foamairSteppables.py'. We will 
also need a main Python script to call these steppables appropriately. 

We simulate bubble injection by creating generalized cells (bubbles) along the lattice 
edge corresponding to the left end of the channel (small-x values of the cell lattice). We 
simulate air injection into a bubble at the injection point, by identifying the bubble 
currently at the injection point and increasing its target volume at a fixed rate. Removing 
a bubble from the simulation simply requires assigning it a target volume of zero once it 
comes close to the right end of the channel (large-x values of the cell lattice). 
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We first define a CC3DML configuration file for the foam-flow simulation (Listing 10). 

<CompuCell3D> 
 <Potts> 
  <Dimensions x="200" y="50" z="1"/> 
  <Steps>10000</Steps> 
  <Temperature>5</Temperature> 
  <LatticeType>Hexagonal</LatticeType> 
 </Potts> 
 
 <Plugin Name="VolumeLocalFlex"/> 
 
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Foam"   TypeId="1"/> 
 </Plugin> 
 
 <Plugin Name="Contact"> 
  <Energy Type1="Medium" Type2="Medium">5</Energy> 
  <Energy Type1="Foam"   Type2="Foam">5</Energy> 
  <Energy Type1="Foam"   Type2="Medium">5</Energy> 
  <NeighborOrder>3</NeighborOrder> 
 </Plugin> 
 
 <Plugin Name="CenterOfMass"/> 
 
</CompuCell3D> 

Listing 10. CC3DML configuration file for the foam-flow simulation. This file initializes 
needed plugins but all of the interesting work is done in Python. 
 

The CC3DML configuration file is simple: it initializes the VolumeLocalFlex, 
CellType, Contact and CenterOfMass plugins. We do not use a cell-lattice-
initializer steppable, because all bubbles are created as the simulation runs. We use 
VolumeLocalFlex because individual bubbles will change their target volumes 
during the simulation. We also include the CenterOfMass plugin to track the changing 
centroids of each bubble. The CenterOfMass plugin in CompuCell3D actually 
calculates Cx


, the centroid of the generalized cell multiplied by volume of the cell:  
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so the actual centroid of the bubble is: 
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The ability to track a generalized-cell’s centroid is useful if we need to pick a single 
reference point in the cell. In this example we will remove bubbles whose centroids have 
x-coordinate greater than a cutoff value. 

We will implement the Python script in four sections: 1) a main script (Listing 11), which 
runs every MCS and calls the steppables to (2) create bubbles at the left end of the cell 
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lattice (BubbleNucleator, Listing 12), (3) enlarge the target volume of the bubble at 
the injector site (AirInjector, Listing 13), and (4) set the target volume of bubbles at 
the right end of the cell lattice to zero (BubbleCellRemover, Listing 14). We store 
classes (2-4) in a separate file called 'foamairSteppables.py'. 

import sys 
from os import environ 
import string 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
    
import CompuCellSetup 
 
sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
 
#Create extra player fields here 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 
 
#Add Python steppables here 
steppableRegistry=CompuCellSetup.getSteppableRegistry() 
 
from foamairSteppables import BubbleNucleator 
bubbleNucleator=BubbleNucleator(sim,20) 
bubbleNucleator.setNumberOfNewBubbles(1) 
bubbleNucleator.setInitialTargetVolume(25) 
bubbleNucleator.setInitialLambdaVolume(2.0) 
bubbleNucleator.setInitialCellType(1) 
steppableRegistry.registerSteppable(bubbleNucleator) 
 
from foamairSteppables import AirInjector 
airInjector=AirInjector(sim,40) 
airInjector.setVolumeIncrement(25) 
airInjector.setInjectionPoint(50,25,0) 
steppableRegistry.registerSteppable(airInjector) 
 
from foamairSteppables import BubbleCellRemover 
bubbleCellRemover=BubbleCellRemover(sim) 
bubbleCellRemover.setCutoffValue(170) 
steppableRegistry.registerSteppable(bubbleCellRemover) 
  
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 

Listing 11. Main Python Script for foam-flow simulation. Changes to the template 
(Listing 7) are shown in bold. 
 
The main script in Listing 11 builds on the template Python code in Listing 7; we show 
changes in bold. The line: 

from foamairSteppables import BubbleNucleator  

tells Python to look for the BubbleNucleator class in the file named 
'foamairSteppables.py'.  

bubbleNucleator=BubbleNucleator(sim, 20)  

creates the steppable BubbleNucleator that will run every 20 MCS. The next few 
lines in this section pass the number of bubbles to create, which in our case is one: 
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bubbleNucleator.setNumberOfNewBubbles(1) 

the initial Vt  for the new bubble, which is 25 pixels:  

bubbleNucleator.setInitialTargetVolume(25) 

the initial vol  for the bubble: 

bubbleNucleator.setInitialLambdaVolume(2.0) 

and the bubble’s type.id:  

bubbleNucleator.setInitialCellType(1) 

Finally, we register the steppable: 

steppableRegistry.registerSteppable(bubbleNucleator) 

 
The next group of lines repeats the process for the AirInjector steppable, reading it 
from the file 'foamairSteppables.py':  
from foamairSteppables import AirInjector 

AirInjector is run every 40 MCS:  
airInjector=AirInjector(sim, 40) 

and increases Vt  by 25: 
airInjector.setVolumeIncrement(25) 

for the bubble occupying the pixel at the point (50, 25, 0) on the cell lattice:  
airInjector.setInjectionPoint(50,25,0) 

As before, the final line registers the steppable:  
steppableRegistry.registerSteppable(airInjector) 
 
The final new section reads the BubbleCellRemover steppable from the file 
'foamairSteppables.py': 
from foamairSteppables import BubbleCellRemover 

and invokes the steppable, telling it to run every MCS; note that we have omitted the 
number after sim: 
bubbleCellRemover=BubbleCellRemover(sim) 

Next we set 170 as the x-coordinate at which we will destroy bubbles: 
bubbleCellRemover.setCutoffValue(170) 

and, finally, register BubbleCellRemover  
steppableRegistry.registerSteppable(bubbleCellRemover)  

 

We must also write Python code to define the three steppables BubbleNucleator, 
AirInjector, and BubbleCellRemover and save them in the file 
'foamairSteppables.py'. 

Listing 12 shows the code for the BubbleNucleator steppable. 

from CompuCell import Point3D 
from random import randint 
 
class BubbleNucleator(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
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      self.simulator=_simulator 
 
   def start(self): 
      self.Potts=self.simulator.getPotts() 
      self.dim=self.Potts.getCellFieldG().getDim() 
 
   def setNumberOfNewBubbles(self,_numNewBubbles): 
         self.numNewBubbles=int(_numNewBubbles) 
 
   def setInitialTargetVolume(self,_initTargetVolume): 
      self.initTargetVolume=_initTargetVolume 
 
   def setInitialLambdaVolume(self,_initLambdaVolume): 
      self.initLambdaVolume=_initLambdaVolume 
 
   def setInitialCellType(self,_initCellType): 
      self.initCellType=_initCellType 
 
   def createNewCell(self,pt): 
      print "Nucleated bubble at ",pt 
      cell=self.Potts.createCellG(pt) 
      cell.targetVolume=self.initTargetVolume 
      cell.type=self.initCellType 
      cell.lambdaVolume=self.initLambdaVolume 
 
   def nucleateBubble(self): 
      pt=Point3D(0,0,0) 
      pt.y=randint(0,self.dim.y-1) 
      pt.x=3 
      self.createNewCell(pt) 
 
   def step(self,mcs): 
      for i in xrange(self.numNewBubbles): 
         self.nucleateBubble() 

Listing 12. Python code for the BubbleNucleator steppable, saved in the file 
'foamairSteppables.py'. This module creates bubbles at points with random y coordinates 
and x coordinate of 3.  
 

The first two lines import necessary modules, where the line: 

from CompuCell import Point3D  

allows us to access points on the simulation cell lattice, and the line:  

from random import randint  

allows us to generate random integers. 

In the constructor of the BubbleNucleator steppable class we assign to the variable 
self.simulator a reference to the simulator object from the CompuCell3D 
kernel. In the start(self) function, we assign a reference to the Potts object from 
the CompuCell3D kernel to the variable self.Potts: 

self.Potts=self.simulator.getPotts() 

and assign the dimensions of the cell lattice to self.dim: 
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self.dim=self.Potts.getCellFieldG().getDim()  

In addition to the four essential steppable member functions (__init__(self, 
_simulator, _frequency), start(self), step(self, mcs) and 
finish(self)), BubbleNucleator includes several functions, some of which set 
parameters and some of which perform necessary tasks. The functions 
setNumberOfNewBubbles, setInitialTargetVolume and 
setInitialLambdaVolume accept the values passed from the main Python script in 
Listing 11.  

The CreateNewCell function requires that we pass the coordinates of the point, pt, 
at which to create a new bubble: 

def CreateNewCell (self,pt): 

Then we use a built-in CompuCell3D function to add a new bubble at that location: 

cell=self.Potts.createCellG(pt) 

assigning the new cell a target volume tV targetVolume : 

cell.targetVolume=self.initTargetVolume 

type, type  : 

cell.type=self.initCellType 

and compressibility vol lambdaVolume  :  

cell.lambdaVolume=initLambdaVolume 

based on the values passed to the BubbleNucleator steppable from the main script. 

The first three lines of the nucleateBubble function create a reference to a point on 
the cell lattice (pt=Point3D(0,0,0)), assign it a random y-coordinate between 0 and 
y_dim-1:  

pt.y=randint(0,self.dim.y-1) 

and an x-coordinate of 3:  

pt.x=3 

The line calls the createNewCell function and passes it the point (pt) at which to 
create the new bubble:  

self.createNewCell(pt) 

Finally, the step(self,mcs) function calls the nucleateBubble function 
self.numNewBubbles times per MCS. 

Listing 13 shows the code for the AirInjector steppable. 

class AirInjector(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.Potts=self.simulator.getPotts() 
      self.cellField=self.Potts.getCellFieldG() 
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   def start(self): pass 
 
   def setInjectionPoint(self,_x,_y,_z): 
      self.injectionPoint=CompuCell.Point3D(int(_x),int(_y),int(_z)) 
 
   def setVolumeIncrement(self,_increment): 
      self.volumeIncrement=_increment 
    
   def step(self,mcs): 
      if mcs <5000: 
         return 
      cell=self.cellField.get(self.injectionPoint) 
      if cell: 
         cell.targetVolume+=self.volumeIncrement 
 

Listing 13. Python code for the AirInjector steppable which simulates air injection 
into the bubble currently occupying the cell-lattice pixel at location (x,y,z). Air injection 
begins after 5000 MCS to allow the channel to partially fill with bubbles. The steppable 
is saved in file 'foamairSteppables.py'. 
 

The first three lines of the __init__(self,_simulator,_frequency) function 
are identical to the same lines in the BubbleNucleator steppable (Listing 12). The 
final line of the function:  

self.cellField=self.Potts.getCellFieldG() 

loads the cell-lattice parameters. The start(self) function in this steppable does not 
do anything: 

def start(self): pass 

The next two functions read the injectionPoint and volumeIncrement passed 
to the AirInjector steppable by the main Python script (Listing 11). The step 
function uses these values to identify the bubble at the injection site, 
self.injectionPoint:  

cell=self.cellField.get(self.injectionPoint) 

and then increment that bubble’s target volume tV  by self.volumeIncrement: 

if cell: 
   cell.targetVolume+=self.volumeIncrement 
  
Note the syntax:  

if cell: 

which we use to test whether a cell is Medium or not. Medium in CompuCell3D is 
assigned a NULL pointer, which, in Python, becomes a None object. Python evaluates the 
None object as False and other objects (in our case, bubbles) as True, so the task is 
only carried out on bubbles, not Medium. 

In the first two lines of the step(self,mcs) function, we tell the function not to 
perform its task until 5000 MCS have elapsed: 
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if mcs <5000: 
   return 

The 5000 MCS delay allows the simulation to establish a uniform flow of small bubbles 
throughout a large portion of the cell lattice. 

Finally, we define the BubbleCellRemover steppable (Listing 14). 

 

class BubbleCellRemover(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 
 
   def start(self): 
      self.Potts=self.simulator.getPotts() 
      self.dim=self.Potts.getCellFieldG().getDim() 
 
   def setCutoffValue(self,_cutoffValue): 
      self.cutoffValue=_cutoffValue 
 
   def step(self,mcs): 
      for cell in self.cellList: 
         if cell: 
            if int(cell.xCM/float(cell.volume))>self.cutoffValue: 
               cell.targetVolume=0 
               cell.lambdaVolume=10000 

Listing 14. Python code for the BubbleCellRemover steppable. This module 
removes cells once the x-coordinates of their centroids   cutoffValue by setting 
their target volumes to zero and increasing their vol  to 10000. Like the other steppables 

in the foam-flow simulation, we save it in the file 'foamairSteppables.py'. 
 

At each MCS we scan the cell inventory looking for cells whose centroid has an x-
coordinate close to the right end of the lattice and remove these cells from the simulation 
by setting their target volumes to zero and increasing vol  to 10000. 

The first two lines of the __init__ (self,_simulator,_frequency) function 
are identical to the corresponding lines in the BubbleNucleator and AirInjector 
steppables (Listing 12 and Listing 13). In the third line of the function, we gain access to 
the generalized-cell inventory: 

self.inventory=self.simulator.getPotts().getCellInventory() 

and in the fourth line we make a list containing all of the generalized cells in the 
simulation: 

self.cellList=CellList(self.inventory) 

The start(self) function is identical to that of the BubbleNucleator steppable 
(Listing 12), and performs the same function. 

The next function: 
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setCutoffValue(self,_cutoffValue) 

reads the cutoffValue for the x-coordinate that we passed to 
BubbleCellRemover from the main Python script (Listing 11). Finally, the 
step(self, mcs) function iterates through the cell inventory. We first check to 
make sure that the cell is not Medium: 

if cell: 

For each non-Medium cell we test whether the x-coordinate of the cell’s centroid is 
greater than the cutoffValue:  

if int(cell.xCM/float(cell.volume))>self.cutoffValue: 

 and, if it is, set that cell’s targetVolume, tV , to zero:  

cell.targetVolume=0 

and its vol 10000  :  

cell.lambdaVolume=10000 

Running the CC3DML file from Listing 10 and the main Python script from Listing 11 
(which loads the steppables in Listing 12, Listing 13 and Listing 14 from the file 
'foamairSteppables.py') produces the snapshots shown in Figure 15. 
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Figure 15. Results of the foam-flow simulation on a 2D 3rd-neighbor hexagonal lattice. 
Simulation code is given in Listing 10,Listing 11, Listing 12, Listing 13 and Listing 14. 

VI.E. Diffusing-Field-Based Cell-Growth Simulation 
One of the most frequent uses of Python scripting in CompuCell3D simulations is to 
modify cell behavior based on local field concentrations. To demonstrate this use, we 
incorporate stem-cell-like behavior into the cell-sorting simulation from Listing 1. This 
extension requires including relatively sophisticated interactions between cells and 
diffusing chemical, FGF (100). 
We simulate a situation where NonCondensing cells secrete FGF, which diffuses 
freely through the cell lattice and obeys: 
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where  FGF  denotes the FGF concentration and Condensing cells respond to the 

field by growing at a constant rate proportional to the FGF concentration at their 
centroids: 


dVt ()

dt
 0.01[FGF](


x  ).    (14) 

When they reach a threshold volume, the Condensing cells undergo mitosis. One of 
the resulting daughter cells remains a Condensing cell, while the other daughter cell 
has an equal probability of becoming either another Condensing cell or a 
DifferentiatedCondensing cell. DifferentiatedCondensing cells do not 
divide. 

Each generalized cell in CompuCell3D has a default list of attributes, e.g. type, volume, 
surface (area), target volume, etc.. However, CompuCell3D allows users to add cell 
attributes during execution of simulations. E.g., in the current simulation, we will record 
data on each cell division in a list attached to each cell. Generalized cell attributes can be 
added using either C++ or Python. However, attributes added using Python are not 
accessible from C++ modules.  

As in the foam-flow simulation, we divide the necessary simulation tasks among different 
Python modules (or classes) which we save in a file 'cellsort_2D_field_modules.py' and 
call from the main Python script. We reuse elements of the CC3DML files we presented 
earlier to construct the CC3DML configuration file, presented in Listing 15. 

 
<CompuCell3D> 
 <Potts> 
   <Dimensions x="200" y="200" z="1"/> 
   <Steps>10000</Steps> 
   <Temperature>10</Temperature> 
   <NeighborOrder>2</NeighborOrder> 
 </Potts> 
 
 <Plugin Name="VolumeLocalFlex"/> 
 
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Condensing" TypeId="1"/> 
  <CellType TypeName="NonCondensing" TypeId="2"/> 
  <CellType TypeName="CondensingDifferentiated" TypeId="3"/> 
 </Plugin> 
 
 <Plugin Name="Contact"> 
  <Energy Type1="Medium" Type2="Medium">0</Energy> 
  <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
  <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
  <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
  <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
  <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
  <Energy Type1="CondensingDifferentiated"   
      Type2="CondensingDifferentiated">2</Energy> 
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  <Energy Type1="CondensingDifferentiated" 
      Type2="Condensing">2</Energy> 
  <Energy Type1="CondensingDifferentiated" 
      Type2="NonCondensing">11</Energy> 
  <Energy Type1="CondensingDifferentiated" Type2="Medium">16</Energy> 
  <NeighborOrder>2</NeighborOrder> 
 </Plugin> 
 
 <Plugin Name="CenterOfMass"/> 
  
 <Steppable Type="FlexibleDiffusionSolverFE"> 
  <DiffusionField> 
   <DiffusionData> 
    <FieldName>FGF</FieldName> 
    <DiffusionConstant>0.10</DiffusionConstant> 
    <DecayConstant>0.00005</DecayConstant> 
   </DiffusionData> 
   <SecretionData> 
    <Secretion Type="NonCondensing">0.05</Secretion> 
   </SecretionData> 
  </DiffusionField>   
 </Steppable> 
   
 <Steppable Type="BlobInitializer"> 
  <Region> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <Radius>40</Radius> 
   <Center x="100" y="100" z="0"/> 
   <Types>Condensing,NonCondensing</Types>    
  </Region> 
 </Steppable> 
 
</CompuCell3D> 
 

Listing 15. CC3DML code for the diffusing-field-based cell-growth simulation. 
 
The CC3DML code is a slightly extended version of the cell-sorting code in Listing 3 
plus the FlexibleDiffusionSolverFE discussed in the bacterium-and-
macrophage simulation (see Listing 4). The initial cell-lattice does not contain any 
CondensingDifferentiated cells. These cells appear only as the result of mitosis. 
We use the VolumeLocalFlex plugin to allow the target volume to vary individually 
for each cell, allowing cell growth as discussed in the foam-flow simulation. We manage 
the volume-constraint parameters using a Python script. The CenterOfMass plugin 
provides a reference point in each cell at which we measure the FGF concentration. We 
then adjust the cell's target volume accordingly. 

To build this simulation in CompuCell3D we need to write several Python routines. We 
need: 1) A steppable, VolumeConstraintSteppable to initialize the volume-
constraint parameters for each cell and to simulate cell growth by periodically increasing 
Condensing cells’ target volumes in proportion to the FGF concentration at their 
centroids. 2) A plugin, CellsortMitosis, that runs the CompuCell3D mitosis 
algorithm when any cell reaches a threshold volume and then adjusts the parameters of 
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the resulting parent and daughter cells. This plugin also appends information about the 
time and type of cell division to a list attached to each cell. 3) A steppable, 
MitosisDataPrinterSteppable, that prints the cell-division information from 
the lists attached to each cell. 4) A class, MitosisData, which 
MitosisDataPrinterSteppable uses to extract and format the data it prints. 5) A 
main Python script to call the steppables and the CellsortMitosis plugin 
appropriately. We store the source code for routines 1)-4) in a separate file called 
'cellsort_2D_field_modules.py'.  

Listing 16 shows the main Python script for the diffusing-field-based cell-growth 
simulation, with changes to the template (Listing 7) shown in bold.  
 
import sys 
from os import environ 
from os import getcwd 
import string 
 
sys.path.append(environ["PYTHON_MODULE_PATH"]) 
 
import CompuCellSetup 
 
sim,simthread = CompuCellSetup.getCoreSimulationObjects() 
 
#add additional attributes 
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim) 
 
CompuCellSetup.initializeSimulationObjects(sim,simthread) 
 
#notice importing CompuCell to main script has to be 
#done after call to getCoreSimulationObjects() 
import CompuCell 
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim) 
stepperRegistry=CompuCellSetup.getStepperRegistry(sim) 
 
from cellsort_2D_field_modules import CellsortMitosis 
cellsortMitosis=CellsortMitosis(sim,changeWatcherRegistry,\ 
stepperRegistry) 
cellsortMitosis.setDoublingVolume(50) 
 
#Add Python steppables here 
steppableRegistry=CompuCellSetup.getSteppableRegistry() 
 
from cellsort_2D_field_modules import VolumeConstraintSteppable 
volumeConstraint=VolumeConstraintSteppable(sim) 
steppableRegistry.registerSteppable(volumeConstraint) 
 
from cellsort_2D_field_modules import MitosisDataPrinterSteppable 
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim) 
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable) 
 
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry) 

Listing 16. Main Python script for the diffusing-field-based cell-growth simulation. 
Changes to the template code (Listing 7) shown in bold. 
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The first change to the template code (Listing 7) is: 
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim) 

which instructs the CompuCell3D kernel to attach a Python-defined list to each cell when 
it creates it. This list serves as a generic container which can store any set of Python 
objects and hence any set of generalized-cell properties. In the current simulation, we use 
the list to store objects of the class MitosisData, which records the Monte Carlo Step 
at which each cell division involving the current cell or its parent, happened, as well as, 
the cell index and cell type of the parent and daughter cells.  
 
Because one of our Python modules is a lattice monitor, rather than a steppable, we need 
to create stepperRegistry and changeWatcherRegistry objects, which store 
the two types of lattice monitors: 
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim) 
stepperRegistry=CompuCellSetup.getStepperRegistry(sim) 

The CellsortMitosis plugin is a lattice monitor because it acts in response to 
certain index-copy events; it is invoked whenever a cell's volume reaches the threshold 
volume for mitosis. The following lines create the CellsortMitosis lattice monitor 
and register it with the stepperRegistry and changeWatcherRegistry: 
from cellsort_2D_field_modules import CellsortMitosis 
cellsortMitosis = CellsortMitosis(sim,changeWatcherRegistry,\ 
stepperRegistry) 

Because the base class inherited by CellsortMitosis, unlike our steppables, handles 
registration internally, we do not have to register CellsortMitosis explicitly. We 
can now set the threshold volume at which Condensing cells divide: 

cellsortMitosis.setDoublingVolume(50) 

 
Next we import the VolumeConstraintSteppable steppable, which initializes 
cells’ target volumes and compressibilities at the beginning of the simulation and also 
implements chemical-dependent cell growth for Condensing cells, and register it: 
from cellsort_2D_field_modules import VolumeConstraintSteppable 
volumeConstraint=VolumeConstraintSteppable(sim) 
steppableRegistry.registerSteppable(volumeConstraint)  
 

Finally, we import, create and register the MitosisDataPrinterSteppable 
steppable, which prints the content of MitosisData objects for cells that have divided:  

from cellsort_2D_field_modules import MitosisDataPrinterSteppable 
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim) 
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable) 

The number of MitosisData objects stored in each cell at any given Monte Carlo Step 
depends on cell type (NonCondensing cells do not divide, whereas Condensing 
cells can divide multiple times), and how often a given cell has divided.  

Moving on to the Python modules, we consider the VolumeConstraintSteppable 
steppable shown in Listing 17. 

class VolumeConstraintSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 



-53- 

      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 
       
   def start(self): 
      for cell in self.cellList: 
         cell.targetVolume=25 
         cell.lambdaVolume=2.0 
   def step(self,mcs): 
      field=CompuCell.getConcentrationField(self.simulator,"FGF") 
      comPt=CompuCell.Point3D() 
      for cell in self.cellList: 
         if cell.type==1: #Condensing cell 
            comPt.x=int(round(cell.xCM/float(cell.volume))) 
            comPt.y=int(round(cell.yCM/float(cell.volume))) 
            comPt.z=int(round(cell.zCM/float(cell.volume))) 
            concentration=field.get(comPt) # get concentration at comPt 
            # and increase cell's target volume 
            cell.targetVolume+=0.1*concentration  

Listing 17. Python code for the VolumeConstraintSteppable, saved in the file 
'cellsort_2D_field_modules.py', for the diffusing-field-based cell-growth simulation. The 
VolumeConstraintSteppable provides dynamic volume constraint parameters for 
each cell, which depend on the cell type and the chemical field concentration at the cell’s 
centroid. 
 

The __init__ constructor looks very similar to the one in Listing 14, with the 
difference that we pass _frequency=1 to update the cell volumes once per MCS. We 
also request the field-lattice dimensions and values from CompuCell3D: 

 self.dim=self.simulator.getPotts().getCellFieldG().getDim() 

and specify that we will work with a field named FGF:  

self.fieldName="FGF"  

The script contains two functions: one that initializes the cells’ volume-constraint 
parameters (start(self)) and one that updates them (step(self, mcs)). 

The start(self) function executes only once, at the beginning of the simulation. It 
iterates over each cell (for cell in self.cellList:) and assigns the initial 
cells’ targetVolume (Vt ( )  25 pixels) and lambdaVolume ( vol ( ) 2.0   ) 

parameters as the VolumeLocalFlex plugin requires. 

The first line of the step(self, mcs) function extracts a reference to the FGF 
concentration field defined using the FlexibleDiffusionSolverFE steppable in 
the CC3DML file (each field created in a CompuCell3D simulation is registered and 
accessible by both C++ and Python). The function then iterates over every cell in the 
simulation. If a cell is of cell.type 1 (Condensing – see the CC3DML 
configuration file, Listing 15), we calculate its centroid: 

centerOfMassPoint.x=int(round(cell.xCM/float(cell.volume))) 
centerOfMassPoint.y=int(round(cell.yCM/float(cell.volume))) 
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centerOfMassPoint.z=int(round(cell.zCM/float(cell.volume))) 

 and retrieve the FGF concentration at that point: 

concentration=field.get(centerOfMassPoint)  

We then increase the target volume of the cell by 0.01 times that concentration: 

cell.targetVolume+=0.01*concentration  
 

We must include the CenterOfMass plugin in the CC3DML code. Otherwise the 
centroid (cell.xCM, cell.yCM, cell.zCM) will have the default value (0,0,0).  
 
Listing 18 shows the code for the CellsortMitosis plugin. The plugin divides the 
mitotic cell into two cells and adjusts both cells' attributes. It also initializes and appends 
MitosisData objects to the original cell's (self.parentCell) and daughter cell's 
(self.childCell) attribute lists. 
 
from random import random 
from PyPluginsExamples import MitosisPyPluginBase 
class CellsortMitosis(MitosisPyPluginBase): 
   def __init__(self,_simulator,_changeWatcherRegistry,\ 
  _stepperRegistry): 
      MitosisPyPluginBase.__init__(self,_simulator,\ 
      _changeWatcherRegistry,_stepperRegistry) 
 
   def updateAttributes(self): 
      self.parentCell.targetVolume=self.parentCell.volume/2.0 
      self.childCell.targetVolume=self.parentCell.targetVolume 
      self.childCell.lambdaVolume=self.parentCell.lambdaVolume 
 
      if (random()<0.5): 
         self.childCell.type=self.parentCell.type 
      else: 
         self.childCell.type=3 
 
      ##record mitosis data in parent and daughter cells 
      mcs=self.simulator.getStep() 
      mitData=MitosisData(mcs,self.parentCell.id,self.parentCell.type,\ 
      self.childCell.id,self.childCell.type) 
 
      #get a reference to lists storing Mitosis data 
      parentCellList=CompuCell.getPyAttrib(self.parentCell) 
      childCellList=CompuCell.getPyAttrib(self.childCell) 
 
      parentCellList.append(mitData) 
      childCellList.append(mitData) 

Listing 18. Python code for the CellsortMitosis plugin for the diffusing-field-
based cell-growth simulation, saved in the file 'cellsort_2D_field_modules.py'. The 
plugin handles division of cells when they reach a threshold volume.  
 
The second line of Listing 18: 

from PyPluginsExamples import MitosisPyPluginBase 
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lets us access the CompuCell3D base class MitosisPyPluginBase. 

CellsortMitosis inherits the content of the MitosisPyPluginBase class. 
MitosisPyPluginBase internally accesses the CompuCell3D-provided Mitosis 
plugin, which is written in C++, and handles all the technicalities of plugin initialization 
behind the scenes. The MitosisPyPluginBase class provides a simple-to-use 
interface to this plugin. To create a customized version of MitosisPyPluginBase, 
CellsortMitosis, we must call the constructor of MitosisPyPluginBase from 
the CellsortMitosis constructor: 
MitosisPyPluginBase.__init__(self,_simulator,\ 
      _changeWatcherRegistry,_stepperRegistry) 

We also need to reimplement the function updateAttributes(self), which is 
called by MitosisPyPluginBase after mitosis takes place, to define the post-
division cells’ parameters. The objects self.childCell and self.parentCell 
that appear in the function are initialized and managed by MitosisPyPluginBase. 
In the current simulation, after division we set Vt  for the parent and daughter cells to half 
of the tV  of the parent just prior to cell division. vol. is left unchanged for the parent cell 

and the same value is assigned to the daughter cell:  
self.parentCell.targetVolume=self.parentCell.volume/2.0 
self.childCell.targetVolume=self.parentCell.targetVolume 
self.childCell.lambdaVolume=self.parentCell.lambdaVolume 

 
The cell type of one of the two daughter cells (childCell) is randomly chosen to be 
either Condensing (i.e., the same as the parent type) or 
CondensingDifferentiated, which we have defined to be cell.type 3 
(Listing 15): 

if (random()<0.5): 
         self.childCell.type=self.parentCell.type 
      else: 
         self.childCell.type=3 

The parent cell remains Condensing. We now add a description of this cell division to 
the lists attached to each cell. First we collect the data in a list called mitData: 
      mcs=self.simulator.getStep() 
      mitData=MitosisData(mcs,self.parentCell.id,self.parentCell.type,\ 
      self.childCell.id,self.childCell.type) 

then we access the lists attached to the two cells: 
      parentCellList=CompuCell.getPyAttrib(self.parentCell) 
      childCellList=CompuCell.getPyAttrib(self.childCell) 

and append the new mitosis data to these lists: 
      parentCellList.append(mitData) 
      childCellList.append(mitData)  

 
Listing 19 shows the Python code for the MitosisData class, which stores the data on 
the cell division that we append to the cells’ attribute lists after each cell division. 
 
class MitosisData: 
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   def __init__(self,_MCS,_parentId,_parentType,_offspringId,\ 
_offspringType): 
      self.MCS=_MCS 
      self.parentId=_parentId 
      self.parentType=_parentType 
      self.offspringId=_offspringId 
      self.offspringType=_offspringType 
   def __str__(self): 
      return "Mitosis time="+str(self.MCS)+"\ 
      parentId="+str(self.parentId)+"\ 
      offspringId="+str(self.offspringId) 

Listing 19. Python code for the MitosisData class for the diffusing-field-based cell-
growth simulation, saved in the file 'cellsort_2D_field_modules.py'. MitosisData 
objects store information about cell divisions involving the parent and daughter cells. 
 
In the constructor of MitosisData, we read in the time (in MCS) of the division, along 
with the parent and daughter cell indices and types. The __str__(self) convenience 
function returns an ASCII string representation of the time and cell indices only, to allow 
the Python print command to print out this information.  
 
Listing 20 shows the Python code for the MitosisDataPrinterSteppable 
steppable, which prints the mitosis data to the user's screen.  
 
class MitosisDataPrinterSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=100): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.cellList=CellList(self.inventory) 
       
   def step(self,mcs): 
      for cell in self.cellList: 
         mitDataList=CompuCell.getPyAttrib(cell) 
         if len(mitDataList) > 0: 
            print "MITOSIS DATA FOR CELL ID",cell.id 
            for mitData in mitDataList: 
               print mitData 

Listing 20. The Python code for the MitosisDataPrinter steppable for the 
diffusing-field-based cell-growth simulation, saved in the file 
'cellsort_2D_field_modules.py'. The steppable prints the cell-division history for dividing 
cells (see Figure 18). 
 
The constructor is identical to that for the VolumeConstraintSteppable steppable 
(Listing 17). Within the step(self,mcs) function, we iterate over each cell (for 
cell in self.cellList:) and access the Python list attached to the cell 
(mitDataList=CompuCell.getPyAttrib(cell)). If a given cell has 
undergone mitosis, then the list will have entries, and thus a nonzero length. If so, we 
print the MitosisData objects stored in the list: 
         if len(mitDataList) > 0: 
            print "MITOSIS DATA FOR CELL ID",cell.id 
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            for mitData in mitDataList: 
               print mitData 

 

Figure 16 and Figure 17 show snapshots of the diffusing-field-based cell-growth 
simulation. Figure 18 shows a sample screen output of the cell-division history. 

 

Figure 16. Snapshots of the diffusing-field-based cell-growth simulation obtained by 
running the CC3DML file in Listing 15 in conjunction with the Python file in Listing 16. 
As the simulation progresses, NonCondensing cells (light gray) secrete diffusing 
chemical, FGF,  which causes Condensing (dark gray) cells to proliferate. Some 
Condensing cells differentiate to CondensingDifferentiated (white) cells. 

 

Figure 17. Snapshots of FGF concentration in the diffusing-field-based cell-growth 
simulation obtained by running the CC3DML file in Listing 15 in conjunction with the 
Python files in Listing 16, Listing 17, Listing 18, Listing 19, Listing 20. The bars at the 
bottom of the field images show the concentration scales (blue, low concentration; red, 
high concentration). 

t=200 MCS t=600 MCS t=1200 MCS t=1800 MCS 

t=200 MCS t=600 MCS t=1200 MCS t=1800 MCS 
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Figure 18. Sample output from the MitosisDataPrinterSteppable steppable in Listing 20. 

The diffusing-field-based cell-growth simulation includes concepts that extend easily to 
simulate biological phenomena that involve diffusants, cell growth and mitosis, e.g., 
limb-bud development (58, 59), tumor growth (5-9) and Drosophila imaginal-disc 
development. 

VII.	Conclusion	
In most cases, building a complex CompuCell3D simulation requires writing Python 
modules, a main Python script and a CC3DML configuration file. While the effort to 
write this code can be substantial, it is much less than that required to develop custom 
simulations in lower-level languages. Working from the substantial base of Python 
templates provided by CompuCell3D further streamlines simulation development. Python 
programs are fairly short, so simulations can be published in journal articles, greatly 
facilitating simulation validation, reuse and adaptation. Finally, CompuCell3D’s modular 
structure allows new Python modules to be reused from simulation to simulation. The 
CompuCell3D website, www.compucell3d.org, allows users to archive their modules and 
make them accessible to other users.  

We hope the examples we have shown will convince readers to evaluate the suitability of 
GGH simulations using CompuCell3D for their research. 
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All the code examples presented in this chapter are available from www.compucell3d.org. 
They will be curated to ensure their correctness and compatibility with future versions of 
CompuCell3D. 
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IX.	XML	Syntax	of	CompuCell3D	modules	
 

IX.1. Potts Section 
The first section of the .xml file defines the global parameters of the lattice and the 
simulation. 
  
 <Potts> 
 <Dimensions x="101" y="101" z="1"/> 
 <Anneal>0</Anneal> 
 <Steps>1000</Steps> 
 <FluctuationAmplitude>5</ FluctuationAmplitude > 
 <Flip2DimRatio>1</Flip2DimRatio> 
 <Boundary_y>Periodic</Boundary_y> 
 <Boundary_x>Periodic</Boundary_x> 
 <NeighborOrder>2</NeighborOrder> 
 <DebugOutputFrequency>20</DebugOutputFrequency> 
 <RandomSeed>167473</RandomSeed> 
   <EnergyFunctionCalculator Type="Statistics"> 
      <OutputFileName Frequency="10">statData.txt</OutputFileName> 
       <OutputCoreFileNameSpinFlips Frequency="1" GatherResults="" 
     OutputAccepted="" OutputRejected="" OutputTotal=""> 
    statDataSingleFlip 
  </OutputCoreFileNameSpinFlips> 
   </EnergyFunctionCalculator> 
 </Potts> 
 
This section appears at the beginning of the configuration file. Line <Dimensions 
x="101" y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1, 
i.e., the lattice is two-dimensional and extends in the xy plane.  The basis of the lattice is 
0 in each direction, so the 101 lattice sites in the x and y directions have indices ranging 
from 0 to 100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts in 
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MCS. After executing this number of steps, CompuCell can run simulation at zero 
temperature for an additional period. In our case it will run for <Anneal>10</Anneal> 
extra steps.  FluctuationAmplitude parameter determines intrinsic fluctuation or motility 
of cell membrane. Fluctuation amplitude is a temperature parameter in classical GGH 
model formulation. We have decided tyo use FluctuationAmplitude term instead of 
temperature because using word “temperature” to describe intrinsic motility of cell 
membrane was quite confusing. 
 
In the above example, fluctuation amplitude applies to all cells in the simulation. To 
define fluctuation amplitude separately for each cell type we use the following syntax: 
<FluctuationAmplitude> 
      <FluctuationAmplitudeParameters CellType="Condensing"\ 
      FluctuationAmplitude="10"/> 
      <FluctuationAmplitudeParameters CellType="NonCondensing”\ 
      FluctuationAmplitude="5"/> 
</FluctuationAmplitude>  

 
When CompuCell3D encounters expanded definition of FluctuationAmplitude it will use 
it in place of a global definition –  
<FluctuationAmplitude>5</ FluctuationAmplitude > 
 
To complete the picture CompUCell3D allows users to set fluctuation amplitude 
individually for each cell. Using Python scripting we write: 
 
        for cell in self.cellList: 
            if cell.type==1: 
                cell.fluctAmpl=20 

 
When determining which value of fluctuation amplitude to use, CompuCell first checks if 
fluctAmpl is non-negative. If this is the case it will use this value as fluctuation 
amplitude. Otherwise it will check if users defined fluctuation amplitude for cell types 
using expanded XML definition and if so it will use those values as fluctuation 
amplitudes. Lastly it will resort to globally defined fluctuation amplitude (Temperature).  
Thus, it is perfectly fine to use FluctuationAmplitude XML tags and set fluctAmpl for 
certain cells. In such a case CompuCell3D will use fluctAmpl for cells for which users 
defined it and for all other cells it will use values defined in the XML.  
 
In GGH model, the fluctuation amplitude is determined taking into account fluctuation 
amplitude of “source” (expanding) cell and “destination” (being overwritten) cell. 
Currently CompuCell3D supports 3 type functions used to calculate resultant fluctuation 
amplitude (those functions take as argument fluctuation amplitude of “source” and 
“destination” cells and return fluctuation amplitude that is used in calculation of pixel-
copy acceptance). The 3 functions are Min, Max, and ArithmeticAverage and we can set 
them using the following option of the Potts section: 
 
<Potts> 
 <FluctuationAmplitudeFunctionName> 
 Min 
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 </FluctuationAmplitudeFunctionName> 
… 
</Potts> 

By default we use Min function. Notice that if you use global fluctuation amplitude 
definition (Temperature) it does not really matter which function you use. The 
differences arise when “source” and “destination” cells have different fluctuation 
amplitudes. 
The above concepts are best illustrated by the following example: 
 
<PythonScript>Demos/FluctuationAmplitude/FluctuationAmplitude.py\ 
</PythonScript> 
 <Potts> 
   <Dimensions x="100" y="100" z="1"/>    
   <Steps>10000</Steps> 
   <FluctuationAmplitude>5</FluctuationAmplitude>  
   <FluctuationAmplitudeFunctionName>ArithmeticAverage\ 
   </FluctuationAmplitudeFunctionName>    
   <NeighborOrder>2</NeighborOrder> 
 </Potts> 

Where in the XML section we define global fluctuation amplitude and we also use 
ArithmeticAverage function to determine resultant fluctuation amplitude for the pixel 
copy. 
 
In python script we will periodically set higher fluctuation amplitude for lattice quadrants 
so that when running the simulation we can see that cells belonging to different lattice 
quadrants have different membrane fluctuations: 
 
class FluctuationAmplitude(SteppableBasePy): 
    def __init__(self,_simulator,_frequency=1): 
        SteppableBasePy.__init__(self,_simulator,_frequency) 
 
        self.quarters=[[0,0,50,50],[0,50,50,100],\ 
        [50,50,100,100],[50,0,100,50]] 
 
        self.steppableCallCounter=0 
         
    def step(self, mcs):         
                 
        quarterIndex=self.steppableCallCounter % 4 
        quarter=self.quarters[quarterIndex] 
 
        for cell in self.cellList: 
             
            if cell.xCOM>=quarter[0] and cell.yCOM>=quarter[1] and\ 
   cell.xCOM<quarter[2] and cell.yCOM<quarter[3]: 
 
                cell.fluctAmpl=50                 
            else: 
 
               #this means CompuCell3D will use globally defined FluctuationAmplitude 
                cell.fluctAmpl=-1                  
 
        self.steppableCallCounter+=1 
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Assigning negative fluctuationAmplitude cell.fluctAmpl=-1 is interpreted by 
CompuCell3D as  a hint to use fluctuation amplitude defined in the XML. 
 
The below section describes Temperature and CellMotility tags which are beibng 
deprecated (however cor compatibility reasons we still support those): 
 

The first section of the .xml file defines the global parameters of the lattice and the 
simulation. 

  
 <Potts> 
 <Dimensions x="101" y="101" z="1"/> 
 <Anneal>0</Anneal> 
 <Steps>1000</Steps> 
 <Temperature>5</Temperature> 
 <Flip2DimRatio>1</Flip2DimRatio> 
 <Boundary_y>Periodic</Boundary_y> 
 <Boundary_x>Periodic</Boundary_x> 
 <NeighborOrder>2</NeighborOrder> 
 <DebugOutputFrequency>20</DebugOutputFrequency> 
 <RandomSeed>167473</RandomSeed> 
   <EnergyFunctionCalculator Type="Statistics"> 
      <OutputFileName Frequency="10">statData.txt</OutputFileName> 
       <OutputCoreFileNameSpinFlips Frequency="1" GatherResults="" 
     OutputAccepted="" OutputRejected="" OutputTotal=""> 
    statDataSingleFlip 
  </OutputCoreFileNameSpinFlips> 
   </EnergyFunctionCalculator> 
 </Potts> 
 

This section appears at the beginning of the configuration file. Line <Dimensions 
x="101" y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1, 
i.e., the lattice is two-dimensional and extends in the xy plane.  The basis of the lattice is 
0 in each direction, so the 101 lattice sites in the x and y directions have indices ranging 
from 0 to 100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts in 
MCS. After executing this number of steps, CompuCell can run simulation at zero 
temperature for an additional period. In our case it will run for <Anneal>10</Anneal> 
extra steps.  Setting the temperature is as easyas writing 
<Temperature>5</Temperature>.  

We can also set temperature (or in other words cell motility) individually for each cell 
type. The syntax to do this is following: 

 
   <CellMotility> 
      <MotilityParameters CellType="Condensing" Motility="10"/> 
      <MotilityParameters CellType="NonCondensing" Motility="5"/> 
   </CellMotility> 

 

You may use it in the Potts section in place of <Temperature> . 

Comment [MSOffice1]: We can also define 
temperature by cell type. Can we have different 
temperature for each cell?
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Now, as you remember from the discussion about the difference between spin-flip 
attempts and MCS we can specify how many spin flips should be attempted in every 
MCS. We specify this number indirectly by specifying the Flip2DimRatio - 
<Flip2DimRatio>1</Flip2DimRatio>, which tells CompuCell that it should make 1 x 
number of lattice sites attempts per MCS – in our case one MCS is 101x101x1 spin-flip 
attempts. To set 2.5x101x101x1 spin flip attempts per MCS you would write 
<Flip2DimRatio>2.5</Flip2DimRatio>.  
The next line specifies the neighbor order. The higher neighbor order the longer the 
Euclidian distance from a given pixel. In previous versions of CompuCell3D we have 
been using <FlipNeighborMaxDistance>   or <Depth> (in Contact energy plugins) flag 
to accomplish same task. Since now CompuCell3D supports two kinds of latices it would 
be inconvenient to change distances. It is much easier to think in terms n-th nearest 
neighbors. For the backwards compatibility we still support old flags but we discourage 
its use, especially that in  the future we might support more than just two lattice types. 
Using nearest neighbor interactions may cause artifacts due to lattice anisotropy. The 
longer the interaction range, the more isotropic the simulation and the slower it runs. In 
addition, if the interaction range is comparable to the cell size, you may generate 
unexpected effects, since non-adjacent cells will contact each other. 
On hex lattice those problems seem to be less seveare and there 1st or 2nd nearest neighbor 
usually are sufficient. 
The Potts section also contains tags called <Boundary_y> and <Boundary_x>.These tags 
impose boundary conditions on the lattice. In this case the x and y axes are periodic 
(<Boundary_x>Periodic</Boundary_x>) so that e.g. the pixel with x=0, y=1, z=1 will 
neighbor the pixel with x=100, y=1, z=1. If you do not specify boundary conditions 
CompuCell will assume them to be of type no-flux, i.e. lattice will not be extended. The 
conditions are independent in each direction, so you can specify any combination of 
boundary conditions you like. 
DebugOutputFrequency is used to tell CompuCell3D how often it should output text 
information about the status of the simulation. This tag is optional. 
RandomSeed is used to initialize random number generator. If you do not do this all 
simulations will use same sequence of random numbers. Something you may want to 
avoid in the real simulations but is very useful while debugging your models. 
EnergyFunctionCalculator is another option of Potts object that allows users to output 
statistical data from the simulation for further analysis. The OutputFileName tag is used 
to specify the name of the file to which CompuCell3D will write average changes in 
energies returned by each plugins with corresponding standard deviations for those MCS 
whose values are divisible by the Frequency argument. Here it will write these data every 
10 MCS. 
A second line with OutputCoreFileNameSpinFlips tag is used to tell CompuCell3D to 
output energy change for every plugin, every spin flip for MCS' divisible by the 
frequency. Option GatherResults=”” will ensure that there is only one file written for 
accepted (OutputAccepted), rejected (OutputRejected)and accepted and rejected 
(OutputTotal) spin flips. If you will not specify GatherResults CompuCell3D will 

Comment [MSOffice2]: in terms of nth nearest 
neighbors. 

Comment [MSOffice3]: is 
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output separate files for different MCS's and depending on the Frequency you may end 
up with many files in your directory.  
 
One option of the Potts section that we have not used here is the ability to customize 
acceptance function for Metropolis algorithm: 
 
<Offset>-0.1</Offset> 
<KBoltzman>1.2</KBoltzman> 

 
This ensures that spin flips attempts that increase the energy of the system are accepted 
with probability 

 /ΔE δ kTP = e  where  and k are specified by Offset  and  KBoltzman tags respectively. 
By default =0 and k=1. 
 
As an alternative to exponential acceptance function you may use a simplified version 
which is essentially 1 order expansion of the exponential: 

P=1−
E− δ

kT  

 
To be able to use this function all you need to do is to add the following line in the Pots 
section: 
 
<AcceptanceFunctionName>FirstOrderExpansion</AcceptanceFunctionName> 

IX.1.1 Lattice Type 

 
Early versions of CompuCell3D allowed users to use only square lattice. Most recent 
versions however, allow the simulation to be run on hexagonal lattice as well. 
To enable hexagonal lattice you need to put  
 
<LatticeType>Hexagonal</LatticeType> 

 
in the Potts section of the XML configuration file. 
 
There are few things to be aware of. When using hexagonal lattice. Obviously your pixels 
are hexagons (2D) or rhombic dodecahedrons (3D)  but what is more important is that 
surface or perimeter of the pixel (depending whether in 2D or 3D) is different than in the 
case of sqaure pixel. The way CompuCell3D hex lattice implementation was done was 
that the volume of the pixel was constrained to be 1 regardless of the lattice type. 
Second, there is one to one correspondence between pixels of the square lattice and pixels 
of the hex lattice. Consequently we can come up with transformation equations which 
give positions of hex pixels as a function of square lattice pixel position: 
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Based on the above facts one can work out how unit length and unit surface transform to 
the hex lattice. The conversion factors are given below: 
For the 2D case, assuming that each pixel has unit volume, we get: 

2
0.6204

3 3

2
1.075

3

hex unit

hex unit

S =

L =









 

 

where S hex− unit denotes length of the hexagon and Lhex−unit denotes a distance between 
centers of the hexagons.  Notice that unit surface in 2D is simply a length of the hexagon 
side and surface area of the hexagon with side 'a' is: 

23
6

4
S = a  

 
In 3D we can derive the corresponding unit quantities starting with the formulae for 
Volume and surface of rhombic dodecahedron (12 hedra) 
 

3

2

16
3

9

8 2

V = a

S = a

 

 
where 'a' denotes length of dodecahedron edge. 
Constraining the volume to be one we get  

9V3
16 3

a =  

 
and thus unit surface is given by: 
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28 2 9V3 0.445
12 12 16 3

unit hex

S
S = =   

and unit length by: 

2 2 9V32 2 1.122
3 3 16 3

unit hexL = a =   

IX.2. Plugins Section 
 
In this section we overview XML syntax for all the plugins available in CompuCell3D. 
Plugins are either energy functions, lattice monitors or store user assigned data that 
CompuCell3D uses internally to configure simulation before it is run. 
 

IX.2.1. CellType Plugin 
An example of the plugin that stores user assigned data that is used to configure 
simulation before it is run is a CellType Plugin. This plugin is responsible for defining 
cell types and storing cell type information. It is a basic plugin used by virtually every 
CompuCell simulation. The syntax is straight forward as can be seen in the example 
below: 
 
<Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
  <CellType TypeName="Fluid" TypeId="1"/> 
  <CellType TypeName="Wall" TypeId="2" Freeze=""/> 
</Plugin> 
 
Here we have defined three cell types that will be present in the simulation: 
Medium,Fluid,Wall. Notice that we assign a number – TypeId – to every cell type. It is 
strongly recommended that TypeId’s are consecutive positive integers (e.g. 0,1,2,3...). 
Medium is traditionally given TypeId=0 but this is not a requirement. However every 
CC3D simulation mut define CellType Plugin and include at least Medium specification. 
 
Notice that in the example above cell type “Wall” has extra attribute Freeze=””. This 
attribute tells CompuCell that cells of “frozen” type will not be altered by spin flips. 
Freezing certain cell types is a very useful technique in constructing different geometries 
for simulations or for restricting ways in which cells can move. In the example below we 
have frozen cell types wall to create tube geometry for fluid flow studies. 
 

IX.2.2. Simple Volume and Surface Constraints 
 
One of the most commonly used energy term in the GGH Hamiltonian is a term that 
restricts variation of single cell volume. Its simplest form can be coded as show below:  
 
 <Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
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   <LambdaVolume>2.0</LambdaVolume> 
 </Plugin> 
 
By analogy we may define a term which will put similar constraint regarding the surface 
of the cell: 
 
 <Plugin Name="Surface"> 
   <TargetSurface>20</TargetSurface> 
   <LambdaSurface>1.5</LambdaSurface> 
 </Plugin> 
 
These two plugins inform CompuCell that the Hamiltonian will have two additional 
terms associated with volume and surface conservation. That is when spin flip is 
attempted one cell will increase its volume and another cell will decrease. Thus overall 
energy of the system may or will change. Volume constraint essentially ensures that cells 
maintain the volume which close (this depends on thermal fluctuations) to target volume . 
The role of surface plugin is analogous to volume, that is to “preserve” surface. Note that 
surface plugin is commented out in the example above. 
 
Energy terms for volume and surface constraints have the form: 

2
argvolume volume cell t etE = λ (V V )  

 
2

argsurface surface cell t etE = λ (S S )  

 
Remark: 
Notice that flipping a single spin may cause surface change in more that two cells – 
this is especially true in 3D. 

IX.2.3.VolumeTracker and SurfaceTracker plugins 

 
These two plugins monitor lattice and update volume and surface of the cells once spin 
flip occurs. In most cases users will not call those plugins directly. They will be called 
automatically when either Volume (calls Volume Tracker) or Surface (calls Surface 
Tracker) or CenterOfMass (calls VolumeTracker) plugins are requested. However one 
should be aware that in some situations, for example when doing foam coarsening 
simulation as presented in the introduction, when neither Volume or Surface plugins are 
called, one may still want to track changes ion surface or volume of cells . In such 
situations one can explicitely invoke VolumeTracker or Surface Tracker plugin with the 
following syntax: 
 
<Plugin Name=”VolumeTracker”/> 
 
<Plugin Name=”SurfaceTracker”/> 

 

IX.2.4. VolumeFlex Plugin 
 



-68- 

VolumeFlex plugin is more sophisticated version of Volume Plugin. While Volume 
Plugin treats all cell types the same i.e. they all have the same target volume and lambda 
coefficient, VolumeFlex plugin allows you to assign different lambda and different target 
volume to different cell types. The syntax for this plugin is straightforward and 
essentially mimics the example below.  
 
<Plugin Name="VolumeFlex"> 
  <VolumeEnergyParameters CellType="Prestalk" TargetVolume="68" LambdaVolume="15"/> 
  <VolumeEnergyParameters CellType="Prespore" TargetVolume="69" LambdaVolume="12"/> 
  <VolumeEnergyParameters CellType="Autocycling" TargetVolume="80" LambdaVolume="10"/> 
  <VolumeEnergyParameters CellType="Ground" TargetVolume="0" LambdaVolume="0"/> 
  <VolumeEnergyParameters CellType="Wall" TargetVolume="0" LambdaVolume="0"/> 
</Plugin> 

 
Notice that in the example above cell types Wall and Ground have target volume and 
coefficient lambda set to 0 – very unusual. That's because in this particular those cells are 
were frozen so the parameters specified for these cells do not matter. In fact it is safe to 
remove specifications for these cell types, but just for the illustration purposes we left 
them.  
 
Using VolumeFlex Plugin you can effectively freeze certain cell types. All you need to 
do is to put very high lambda coefficient for the cell type you wish to freeze. You have to 
be careful though , because if initial volume of the cell of a given type is different from 
target volume for this cell type the cells will either shrink or expand to match target 
volume (this is out of control and you should avoid it), and only after this initial volume 
adjustment will they remain frozen . That is provided LambdaVolume is high enough. In 
any case, we do not recommend this way of freezing cells because it is difficult to use, 
and also not efficient in terms of speed of simulation run. 

IX.2.5. SurfaceFlex Plugin 
 
SurfaceFlex plugin is more sophisticated version of Surface Plugin. Everything that was 
said with respect to VolumeFlex plugin applies to SurfaceFlex. For syntax see example 
below: 
 
 <Plugin Name="SurfaceFlex"> 
 <SurfaceEnergyParameters CellType="Prestalk" TargetSurface="90" LambdaSurface="0.15"/> 
 <SurfaceEnergyParameters CellType="Prespore" TargetSurface="98" LambdaSurface="0.15"/> 
 <SurfaceEnergyParameters CellType="Autocycling" TargetSurface="92" LambdaSurface="0.1"/> 
 <SurfaceEnergyParameters CellType="Ground" TargetSurface="0" LambdaSurface="0"/> 
 <SurfaceEnergyParameters CellType="Wall" TargetSurface="0" LambdaSurface="0"/> 
 </Plugin> 

IX.2.6. VolumeLocalFlex Plugin 
 
VolumeLocalFlex Plugin is very similar to Volume plugin. You specify both lambda 
coefficient and target volume, but as opposed to Volume Plugin the energy is calculated 
using target volume and lambda volume that are specified individually for each cell. In 
the course of simulation you can change this target volume depending on e.g. 
concentration of FGF in the particular cell. This way you can specify which cells grow 
faster, which slower based on a state of the simulation. This plugin requires you to 
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develop a module (plugin or steppable) which will alter target volume for each cell. You 
can do it either in C++ or even better in Python.  
 
Example syntax: 
 
<Plugin Name="VolumeLocalFlex"/> 

 

IX.2.7. SurfaceLocalFlex Plugin 

 
This plugin is analogous to VolumeLocalFlex but operates on cell surface. 
 
Example syntax: 
 
<Plugin Name="SurfaceLocalFlex"/> 

 

IX.2.8. NeighborTracker Plugin 

 
This plugin, as its name suggests, tracks neighbors of every cell. In addition it calculates 
common contact area between cell and its neighbors. We consider a neighbor this cell 
that has at least one common pixel side with a given cell. This means that cells that touch 
each other either “by edge” or by “corner” are not considered neighbors. See the drawing 
below: 
 

5 5 5 4 4 

5 5 5 4 4 

5 5 4 4 4 

1 1 2 2 2 

1 1 2 2 2 

Figure 19. Cells 5,4,1 are considered neighbors as they have non-zero common surface 
area. Same applies to pair of cells 4 ,2 and to 1 and 2. However, cells 2 and 5 are not 
neighbors because they touch each other “by corner”. Notice that cell 5 has 8 pixels cell 4 
, 7 pixels, cell 1 4 pixels and cell 2 6 pixels. 
 
Example syntax: 
 
<Plugin Name="NeighborTracker"/> 

 
 
This plugin is used as a helper module by other plugins and steppables e.g. Elasticity and 
AdvectionDiffusionSolver use NeighborTracker plugin. 
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IX.2.9. Chemotaxis 
 
Chemotaxis plugin , as its name suggests is used to simulate chemotaxis of cells. For 
every spin flip this plugin calculates change of energy associated with pixel move. There 
are several methods to define a change in energy due to chemotaxis. By default we define 
a chemotaxis using the following formula: 
 

    chem neighborΔE = λ c x c x
 

 

where  

 neighborc x


,  c x


denote chemical concentration at the spin-flip-source and spin-flip-

destination pixel. respectively. 
 
We also support a slight modification of the above formula in the Chemotaxis plugin 
where  ΔE is non-zero only if the cell located at x


after the spin flip is non-medium. to 

enable such mode users need to include <Algorithm=”Regular”/> tag in the body of 
XML plugin. 
 
Let's look at the syntax by studying the example usage of the Chemotaxis plugin:  
 
<Plugin Name="Chemotaxis"> 
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF"> 
        <ChemotaxisByType Type="Amoeba" Lambda="300"/> 
        <ChemotaxisByType Type="Bacteria" Lambda="200"/> 
   </ChemicalField> 

 </Plugin> 
 
The body of the chemotaxis plugin description contains sections called ChemicalField. 
In this section you tell CompuCell3D which module contains chemical field that you 
wish to use for chemotaxis. In our case it is FlexibleDiffusionSolverFE. Next you 
need to specify the name of the field - FGF in our case. Next you specify lambda for each 
cell type so that cells of different type may respond differently to a given chemical. In 
particular types not listed will not respond to chemotaxis at all. Older versions of 
CompuCell3D allowed for different syntaxes as well. Despite the fact that those syntaxes 
are still supported for backward compatibility reasons, we discourage their use, because, 
they are somewhat confusing. 
 
Ocassionally you may want to use different formula for the chemotaxis than the one 
presented above. Current CompCell3D allows you to use the following definitions of 
change in chemotaxis energy (Saturation and SaturationLinear respectively ): 
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or 
 

 
  

 
  11

neighbor

chem

neighbor

c x c x
ΔE = λ

s c x +s c x +

 
 
  

 
  

 
where 's' denotes saturation constant. To use first of the above formulas all you need to do 
is to let CompuCell3D know the value of the saturation coefficient: 
 
<Plugin Name="Chemotaxis"> 
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF"> 
        <ChemotaxisByType Type="Amoeba" Lambda="0"/> 
        <ChemotaxisByType Type="Bacteria" Lambda="2000000" 
SaturationCoef="1"/> 
   </ChemicalField> 
 </Plugin> 

 
Notice that this only requires small change in line where you previously specified only 
lambda. 
 
 <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/> 

 
To use second of the above formulas use SaturationLinearCoef instead of 
SaturationCoef: 
 
<Plugin Name="Chemotaxis"> 
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF"> 
      <ChemotaxisByType Type="Amoeba" Lambda="0"/> 
     <ChemotaxisByType Type="Bacteria" Lambda="2000000" 
SaturationLinearCoef="1"/> 
   </ChemicalField> 
 </Plugin> 

 
Sometimes it is desirable to have chemotaxis between only certain types of cells and not 
between other pairs of types. To deal with this situation it is enough to augment 
ChemotaxisByType element with the following attribute: 
 
<ChemotaxisByType Type="Amoeba" Lambda="100 "ChemotactTowards="Medium" 
/> 

 
This will cause that the change in chemotaxis energy will be non-zero only for those spin 
flip attempts that will try to slip Amoeba and Medium pixels. 
 
The definitions of chemotaxis presented so far do not allow specification of chemotaxis 
parameters individually for each cell. To do this we will use Python scripting. We still 
need to specify in the XML which fields are important from chamotaxis stand point. Only 
fields listed in the XML will be used to calculate chemotaxis energy: 
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… 
<Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/> 
    <CellType TypeName="Bacterium" TypeId="1" /> 
    <CellType TypeName="Macrophage" TypeId="2"/> 
    <CellType TypeName="Wall" TypeId="3" Freeze=""/> 
 </Plugin> 
… 
<Plugin Name="Chemotaxis">     
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR"> 
    <ChemotaxisByType Type="Macrophage" Lambda="20"/>     
   </ChemicalField>  
 </Plugin> 
… 

In the above excerpt from the XML configuration file we see that cells of type 
Macrophage will chemotax in response to ATTR gradient. 
 
Using Python scripting we can modify chemotaxing properties of individual cells as 
follows: 
class ChemotaxisSteering(SteppableBasePy): 
    def __init__(self,_simulator,_frequency=100): 
        SteppableBasePy.__init__(self,_simulator,_frequency) 
         
         
    def start(self): 
         
        for cell in self.cellList: 
            if cell.type==2: 
                cd=self.chemotaxisPlugin.addChemotaxisData(cell,"ATTR") 
                cd.setLambda(20.0) 
 
                # cd.initializeChemotactTowardsVectorTypes("Bacterium,Medium") 
                cd.assignChemotactTowardsVectorTypes([0,1]) 
 
                break 
     
    def step(self,mcs):         
        for cell in self.cellList: 
            if cell.type==2: 
     
                cd=self.chemotaxisPlugin.getChemotaxisData(cell,"ATTR") 
                if cd: 
                    l=cd.getLambda()-3 
                    cd.setLambda(l) 
                break 

 
In the start function for first encountered cell of type Macrophage (type==2) we insert 
ChemotaxisData object (it determines chemotaxing properties) and initialize  parameter 
to 20. We also initialize vector of cell types towards which Macrophage cell will 
chemotax (it will chemotax towards Medium and Bacterium cells). Notice the break 
statement inside the if statement, inside the loop. It ensures that only first encountered 
Macrophage cell will have chemotaxing properties altered.   
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In the step function we decrease lambda chemotaxis  by 3 units every 100 MCS. In effect 
we turn a cell from chemotaxing up ATTR gradient to being chemorepelled.  
 
In the above example we have more than one macrophage but only one of them has 
altered chemotaxing properties. The other macrophages have chemotaxing properties set 
itn eh XML section. CompuCell3D first checks if local definitions of chemotaxis are 
available (i.e. for individual cells) and if so it uses those. Otherwise it will use definitions 
from from the XML. 
 
The ChemotaxisData structure has additional functions which allo to set chemotaxis 
formula used. For example we may type: 
    def start(self): 
         
        for cell in self.cellList: 
            if cell.type==2: 
                cd=self.chemotaxisPlugin.addChemotaxisData(cell,"ATTR") 
                cd.setLambda(20.0) 
                cd.setSaturationCoef(200.0) 
 
                # cd.initializeChemotactTowardsVectorTypes("Bacterium,Medium") 
                cd.assignChemotactTowardsVectorTypes([0,1]) 
 
                break 

 
 
to activate Saturation formula. To activate SaturationLinear formula we would use: 
 
 cd.setSaturationLinearCoef(2.0) 
 
CAUTION: when you use chemotaxis plugin you have to make sure that fields that you 
refer to and module that contains this fields are declared in the xml file. Otherwise you 
will most likely cause either program crash (which is not as bad as it sounds) or 
unpredicted behavior (much worse scenario, although unlikely as we made sure that in 
the case of undefined symbols, CompuCell3D exits) 

IX.2.10. ExternalPotential plugin 
 
Chemotaxis plugin is used to cause directional cell movement. Another way to achieve 
directional movement is to use ExternalPotential plugin. This plugin is responsible for 
imposing a directed pressure (or rather force) on cells. It is used mainly in fluid flow 
studies with periodic boundary conditions along these coordinates along which force acts. 
If NoFlux boundary conditions are set instead , the cells will be squeezed. 
 
This is the example usage of this plugin: 
 
 <Plugin Name="ExternalPotential"> 
    <Lambda x="-0.5" y="0.0" z="0.0"/> 
 </Plugin> 
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Lambda is a vector quantity and determines components of force along three axes. In this 
case we apply force along x.  
We can also apply external potential to specific cell types: 
 
<Plugin Name="ExternalPotential"> 
 <ExternalPotentialParameters CellType="Body1" x="-10" y="0" z="0"/> 
 <ExternalPotentialParameters CellType="Body2" x="0" y="0" z="0"/> 
 <ExternalPotentialParameters CellType="Body3" x="0" y="0" z="0"/> 
</Plugin> 

 
Where in ExternalPotentialParameters we specity which cell type is subject to 
external potential (Lambda is specified using x,y,z attributes). 
 
We can also apply external potential to individual cells. In that case, in the XML section 
we only need to specify: 
 
<Plugin Name="ExternalPotential"/> 

 
and in the Python file we change lambdaVecX, lambdaVecY, lambdaVecZ, which are 
properties of cell. For example in Python we could write: 
 
cell.lambdaVecX=-10  

Calculations done by ExternalPotential Plugin are by default based on direction of pixel 
copy (similarly as in chemotaxis plugin). One can however force CC3D to do 
calculations based on movement of center of mass of cell. To use algorithm based on 
center of mass movement we use the following XML syntax: 
 
<Plugin Name="ExternalPotential"> 
 <Algorithm>CenterOfMassBased</Algorithm> 
… 
</Plugin> 

Remark:Note that in the pixel-based algorithm the typical value of pixel displacement 
used in calculations is of the order of 1 (pixel) whereas typical displacement of center of 
mass of cell due to single pixel copy is of the order of 1/cell volume (pixels) – ~ 0.1 
pixel. This implies that to achieve compatible behavior of cells when using center of 
mass algorithm we need to multiply lambda’s by appropriate factor, typicall of the order 
of 10. 

IX.2.11. CellOrientation Plugin 
 
Similarly as ExternalPotential plugin this plugin gives preference to those pixel copies 
whose direction aligns with polarization vector (which is a property of each cell): 

cipiE

 ))((*))((  , 

where (i) denotes cell at site i,  p


 is polarization vector for cell at site i and c


pixel 
copy vector. Because two cell participate in the pixel copy process the net energy change 
is simply a sum of above expressions: one for growing cell and one for shrinking cell. To 
set lambda we have two options: use global setting in the XML: 
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<Plugin Name="CellOrientation"> 
    <LambdaCellOrientation>0.5</LambdaCellOrientation> 
 </Plugin> 
 
Or set  individually for each cell and manage values of  from Python. In this case we 
use the following XML syntax: 
 
<Plugin Name="CellOrientation"> 
    <LambdaFlex/> 
 </Plugin> 

 
or equivalently the shorter version: 
 
<Plugin Name="CellOrientation"/> 

 
If we manage  values in Python we would use the following syntax to acces and modify 
values of lambda: 
 
self.cellOrientationPlugin.getLambdaCellOrientation(cell) 

 
self.cellOrientationPlugin.setLambdaCellOrientation(cell,0.5) 

Calculations done by CellOrientation Plugin are by default based on direction of pixel 
copy (similarly as in chemotaxis plugin). One can however force CC3D to do 
calculations based on movement of center of mass of cell. To use algorithm based on 
center of mass movement we use the following XML syntax: 
 
<Plugin Name="CellOrientation"> 
 <Algorithm>CenterOfMassBased</Algorithm> 
… 
</Plugin> 

See remark in External potential description about rescaling of parameters when 
changing algorithm to Center Of Mass–based. 

IX.2.12. PolarizationVector Plugin 

 
PolarizationVector plugin is a simple plugin whose only task is to ensure that each cell in 
CompuCell3D simulation has as its attribute 3-component vector of floating point 
numbers. This plugin is normally used in together with CellOrientation but it also can be 
reused in other applications, assuming that we do not use CellOrientation plugin at the 
same time. The XML syntax is very simple: 
 
<Plugin Name="PolarizationVector"/> 

 
To access or modify polarization vector requires use of Python scripting. 
 
self.polarizationPlugin.getPolarizationVector(cell) 
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or to change values of the polarization vector: 
 
self.polarizationPlugin.getPolarizationVector(cell,0.1,0.2,0.3) 

 

IX.2.13. CenterOfMass Plugin 

 
This plugin monitors changes n the lattice and updates centroids of the cell: 
xCM=∑

i

xi , yCM=∑
i

yi , zCM=∑
i

zi where i denotes pixels belonging to a given 

cell. To obtain coordinates of a center of mass f a given cell you need to divide centroids 
by cell volume: 

XCM=
xCM

V
, Y CM=

yCM

V
, Z CM=

zCM

V  

 
This plugin is aware of boundary conditions and centroids are calculated properly 
regardless which boundary conditions are used. The XML syntax is very simple: 
 
<Plugin Name="CenterOfMass"/> 

IX.2.12. Contact Energy 
 
Energy calculations for the foam simulation are based on the boundary or contact energy 
between cells (or surface tension, if you prefer).  
Together with volume constraint contact energy is one of the most commonly used 
energy terms in the GGH Hamiltonian. In essence it describes how cells "stick" to each 
other. 
 
The explicit formula for the energy is: 

1adhesion σ(i) σ(j) σ(i),σ(j)
i, j,neighbors

E = J(τ ,τ )( δ ) , 

 

where i and j label two neighboring lattice sites ,σ 's denote cell Ids, τ 's denote cell types .  
In the case of foam simulation the total energy of the foam is simply the total boundary 
length times the surface tension (here defined to be 2J). 
 
Once again, in the above formula, you need to differentiate between cell types and cell 
Ids. This formula shows that cell types and cell Ids are not the same. The Contact plugin 
in the .xml file, defines the energy per unit area of contact between cells of different types 
( σ(i) σ(j)J(τ ,τ ) ) and the interaction range (NeighborOrder) of the contact: 
 
 <Plugin Name="Contact"> 
   <Energy Type1="Foam" Type2="Foam">3</Energy> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="Medium" Type2="Foam">0</Energy> 
   <NeighborOrder>2</NeighborOrder> 
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 </Plugin> 
 
In this case, the interaction range is 2, thus only up to second nearest neighbor pixels  
of a pixel undergoing a change or closer will be used to calculate contact energy change.  
Foam cells have contact energy per unit area of 3 and Foam and Medium as well as Medium 
and Medium have contact energy of 0 per unit area. 

IX.2.13. ContactLocalProduct Plugin 
 
This plugin calculates contact energy based on local (i.e. per cell) cadhering expression 
levels. This plugin has to be used in conjunction with a steppable that assigns cadherin 
expression levels to the cell. Such steppables are usually written in Python – see 
ContactLocalProductExample in Demos directory. 
 
We use the following formulas to calculate energy for this plugin: 
 

             offset σ i ,σ j
i, j neighbors

E = E k f N i ,N j if σ i σ j medium


    

 

        offset σ i ,σ j
i, j neighbors

E = E k if σ i σ j = medium


   

 

By default 0offsetE = .     f N i ,N j is a function of cadherins and can be either a simple 

product    N i N j , a product of squared expression levels    2 2
N i N j  or a 

    min N i ,N j . 

 
In the case of the second formula    offset σ i ,σ jE k plays the role of “regular” contact 

energy between cell and medium. 
 
The syntax of this plugin is as follows: 
 
 <Plugin Name="ContactLocalProduct"> 
  <ContactSpecificity Type1="Medium" Type2="Medium">0</ContactSpecificity> 
  <ContactSpecificity Type1="Medium" Type2="CadExpLevel1">-16</ContactSpecificity> 
  <ContactSpecificity Type1="Medium" Type2="CadExpLevel2">-16</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel1">-2</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel2">2.75</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel2" Type2="CadExpLevel2">-1</ContactSpecificity> 
  <ContactFunctionType>Quadratic</ContactFunctionType> 
  <EnergyOffset>0.0</EnergyOffset> 
  <NeighborOrder>2</NeighborOrder> 
 </Plugin> 

 
Users need to specify ContactSpecificity (    σ i ,σ jk ) between different cell types  

ContactFunctionType (by default it is set to Linear -    N i N j but other allowed key 

words are Quadratic -    2 2
N i N j  and Min -      min N i ,N j ). EnergyOffset  can 
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be set to user specified value using above syntax. NeighborOrder has the same meaning 
as for “regular” Contact plugin.  
 
Alternatively one can write customized function of the two cadherins and use it instead of 
the 3 choices given above. To do this, simply use the following syntax: 
  
<Plugin Name="ContactLocalProduct"> 
  <ContactSpecificity Type1="Medium" Type2="Medium">0</ContactSpecificity> 
  <ContactSpecificity Type1="Medium" Type2="CadExpLevel1">-16</ContactSpecificity> 
  <ContactSpecificity Type1="Medium" Type2="CadExpLevel2">-16</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel1">-2</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel2">2.75</ContactSpecificity> 
  <ContactSpecificity Type1="CadExpLevel2" Type2="CadExpLevel2">-1</ContactSpecificity> 
  <ContactFunctionType>Quadratic</ContactFunctionType> 
  <EnergyOffset>0.0</EnergyOffset> 
  <NeighborOrder>2</NeighborOrder> 
  <CustomFunction>  
    <Variable>J1</Variable> 
    <Variable>J2</Variable> 
    <Expression>sin(J1*J2)</Expression> 
  </CustomFunction> 
 </Plugin> 

 
Here we define variable names for cadherins in interacting cells (J1 denotes cadherin for 
one of the cells and cell2 denotes cadherin for another cell). Then in the Expression tag 
we give mathematical expression involving the two cadherin levels. The expression 
syntax has to follow syntax of the muParser - 
http://muparser.sourceforge.net/mup_features.html#idDef2. 

IX.2.14. AdhesionFlex Plugin 

Adhesion Flex is a generalization of ContactLocalProduct plugin. It allows setting 
individual adhesivity properties for each cell. Users can use either XML syntax or Python 
scripting to initialize adhesion molecule density for each cell. In addition, Medium can 
also carry its own adhesion molecules. We use the following formula to calculate Contact 
energy in AdhesionFlex plugin: 

 )(),(
, ,

1))(),(( ji
neighborsji nm

nmmn jNiNFkE 







  



 

 

where indexes i, j label pixels,     J σ i ,σ j denotes contact energy between cell types 

 σ i and  σ j , exactly as in “regular” contact plugin and indexes m,n label cadherins in 

cells composed f pixels i and j respectively. F denotes user-defined function of Nm and 
Nn. Altohugh this may look a bit complex, the basic idea is simple: each cell has certain 
number of cadherins on its surface. When cell touch each other the resultant energy is 
simpy a “product” - ))(),(( jNiNFk nmmn - of every cadherin from one cell with every 

cadherin from another cell.The XML syntax for this plugin is given below: 
 
  <Plugin Name="AdhesionFlex"> 
    <AdhesionMolecule Molecule="NCad"/> 
    <AdhesionMolecule Molecule="NCam"/> 
    <AdhesionMolecule Molecule="Int"/> 
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    <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCad" 
    Density="6.1"/> 
    <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCam" 
    Density="4.1"/> 
    <AdhesionMoleculeDensity CellType="Cell1" Molecule="Int" 
    Density="8.1"/> 
    <AdhesionMoleculeDensity CellType="Medium" Molecule="Int"  
    Density="3.1"/>     
    <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCad"  
    Density="2.1"/> 
    <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCam"  
    Density="3.1"/> 
    
    <BindingFormula Name="Binary"> 
    <Formula> min(Molecule1,Molecule2)</Formula>  
    <Variables> 
        <AdhesionInteractionMatrix> 
         <BindingParameter Molecule1="NCad" Molecule2="NCad" > 
         -1.0</BindingParameter> 
         <BindingParameter Molecule1="NCam" Molecule2="NCam"> 
         2.0</BindingParameter> 
         <BindingParameter Molecule1="NCad" Molecule2="NCam" > 
         -10.0</BindingParameter> 
         <BindingParameter Molecule1="Int" Molecule2="Int"   > 
         -10.0</BindingParameter> 
        </AdhesionInteractionMatrix> 
    </Variables> 
    </BindingFormula> 
     
    <NeighborOrder>2</NeighborOrder> 
</Plugin> 

 
kmn matrix is specified within the AdhesionInteractionMatrix tag – the elements are 
listed using BindingParameter tags. The AdhesionMoleculeDensity tag specifies initial 
concentration of adhesion molecules. Even if you are going to modify those from Python 
(in the start function of the steppable) you are still required to specify the names of 
adhesion molecules and associate them with appropriate cell types. Failure to do so may 
result in simulation crash or undefined behaviors. The user-defined function F is 
specified using Formula tag where the arguments of the function are called Molecule1 
and Molecule2. The syntax has to follow syntax of the muParser - 
http://muparser.sourceforge.net/mup_features.html#idDef2 . 
 
CompuCell3D example – Demos/AdhesionFlex - demonstrates how to manipulate 
concentration of adhesion molecules: 
 
self.adhesionFlexPlugin.getAdhesionMoleculeDensity(cell,"NCad") 

 
allows to access adhesion molecule concentration using  its name (as given in the XML 
above using AdhesionMoleculeDensity tag). 
 
self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex(cell,1) 
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allows to access adhesion molecule concentration using its index in the adhesion 
molecule density vector. The order of the adhesion molecule densities in the vector is the 
same as the order in which they were declared in the XML above - 
AdhesionMoleculeDensity tags. 
 
self.adhesionFlexPlugin.getAdhesionMoleculeDensityVector(cell) 

 
allows access to entire adhesion molecule density vector. 
 
Each of these functions has its corresponding function whith operates on Medium. In this 
case we do not give cell as first argument: 
 
self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensity(“Int”) 

 
self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityByIndex (0) 

 
self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityVector(cell) 

 
To change the value of the adhesion molecule density we use set functions: 
 
self.adhesionFlexPlugin.setAdhesionMoleculeDensity(cell,"NCad",0.1) 

 
self.adhesionFlexPlugin.setAdhesionMoleculeDensityByIndex(cell,1,1.02) 

 
self.adhesionFlexPlugin.setAdhesionMoleculeDensityVector(cell,\ 
[3.4,2.1,12.1]) 

 
Notice that in this las function we passed entire Python list as the argument. CC3D will 
check if the number of entries in this vector is the same as the number of entries in the 
currently used vector. If so the values from the passed vector will be copied, otherwise 
they will be ignored.  
 
IMPORTANT: during mitosis we create new cell (childCell) and the adhesion 
molecule vector of this cell will have no components. However in order for simulation to 
continue we have to initialize this vector with number of cadherins appropriate to 
childCell type. We know that setAdhesionMoleculeDensityVector is not appropriate 
for this task so we have to use: 
 
self.adhesionFlexPlugin.assignNewAdhesionMoleculeDensityVector(cell,\ 
[3.4,2.1,12.1]) 

 
which will ensure that the content of passed vector is copied entirely into cell’s vector 
(making size adjustments as necessry).  
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IMPORTANT: You have to make sure that the number of newly assigned adhesion 
molecules is exactly the same as the number of adhesion molecules declared for the 
cell of this particular type. 
 
All of get functions has corresponding set function which operates on Medium: 
 
self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensity("NCam",2.8) 

 
self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityByIndex(2,16.8) 

 
self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityVector(\ 
[1.4,3.1,18.1]) 

 
self.adhesionFlexPlugin.assignNewMediumAdhesionMoleculeDensityVector(\ 
[1.4,3.1,18.1])  

IX.2.15. ContactMultiCad Plugin 

 
ContactMultiCad plugin is a modified version of ContactLocalProduct plugin. In this 
case users can use several cadherins and describe how they translate into contact energy. 
The energy formula used by this plugin is given below: 

        offset mn m n
i, j neighbors m,n

E = E + J σ i ,σ j k N i N j


 
 

 
   

where indexes i, j label pixels,     J σ i ,σ j denotes contact energy between cell types 

 σ i and  σ j , exactly as in “regular” contact plugin and indexes m,n label cadherins in 

cells composed f pixels i and j respectively. 
 
The syntax for this plugin is as follows: 
 
 <Plugin Name="ContactMultiCad"> 
 
   <Energy Type1="Medium" Type2="CadExpLevel1">0</Energy> 
   <Energy Type1="Medium" Type2="CadExpLevel2">0</Energy> 
   <Energy Type1="CadExpLevel1" Type2="CadExpLevel1">0</Energy> 
   <Energy Type1="CadExpLevel1" Type2="CadExpLevel2">0</Energy> 
   <Energy Type1="CadExpLevel2" Type2="CadExpLevel2">0</Energy> 
 
   <SpecificityCadherin> 
    <Specificity Cadherin1="NCad1" Cadherin2="NCad1">-10</Specificity> 
    <Specificity Cadherin1="NCad0" Cadherin2="NCad0">-12</Specificity> 
    <Specificity Cadherin1="NCad1" Cadherin2="NCad0">-1</Specificity> 
   </SpecificityCadherin> 
 
   <EnergyOffset>0.0</EnergyOffset> 
   </NeighborOrder>2</NeighborOrder> 
 </Plugin> 
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Entries of the type <Energy Type1="Medium" Type2="CadExpLevel1">0</Energy> 
have the same meaning as in “regular” contact energy. Specificity parameters 
specification mnk are enclosed between tags <SpecificityCadherin> and 

<SpecificityCadherin>. The names  NCad0 and  Ncad1 are arbitrary. However the 
matrix mnk will be ordered according to lexographic order of Cadherin names. For that 

reason we recommend that you name cadherins in such a way that makes it easy what the 
order will be. As in the example above using NameNumber 
(e.g. NCad0, NCad1) makes it easy to figure out what the order will be (NCad0 will get 
index 0 and NCad1 will get index 1). This is important because cadherins will be set in 
Python and if you won't keep track of the ordering of the specificity you might wrongly 
assign cadherins in Python and get unexpected results. In the example the order of 
cadherins is clear based on the definition of cadherin specificity parameters. 

IX.2.15. MolecularContact 
This plugin is analogous to ContactLocalProduct and allows users to specify functional 
form of adhesion molecules interactions using Python syntax. It is in beta state and for 
this reason we are not discussing it in more detail and currently suggest to use Either 
AdhesionFlex or ContactLocal product plugins. 

IX.2.15. ContactCompartment 

This plugin is a generalization of the contact energy plugin for the case of compartmental 
cell models. 

    contactcompartment i i j j
i, j neighbors

E = J σ μ ,ν ,σ μ ,ν

  

 
where  i and j denote pixels ,  
denotes, as before, a cell type of a 
cell with  cluster id and  cell id. In 
compartmental cell models a cell is a 
collection of subcells. Each subcell 
has a unique id (cell id). In addition 
to that each subcell will have 
additional attribute, a cluster id that 
determines to which cluster of 
subcells a given subcell belongs. 
(think of a cluster as a cell with 
nonhomogenous cytoskeleton) The 
idea here is to have different contact 
energies between subcells belonging 
to the same cluster and different 
energies for cells belonging to 
different clusters. Technically 
subcells of a cluster are “regular” 
CompuCell3D cells. By giving them 
an extra attribute cluster id we can 

 
Figure 20. Two compartmental cells (cluster id =1 
and cluster id =2) Compartmentalized cell =1 
consists of subcells with cell id =1,2,3 and 
compartmentalized cell =2 consists of subcells with 
cell id =4,5,6 
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introduce a concept of compartmental cells. In our convention 0,0) denotes medium 
 
Introduction of cluster id and cell id are essential for the definition of

    i i j jJ σ μ ,ν ,σ μ ,ν .  

 

         
    

external
i i j j i i j j i i

internal
i i j j i i

J σ μ ,ν ,σ μ ,ν = J σ μ ,ν ,σ μ ,ν if μ μ

J σ μ ,ν ,σ μ ,ν if μ = μ

  

 
As you can see from above there are two hierarchies of contact energies – external and 
internal. The energies depend on cell types as in the case “regular” Contact plugin. Now, 
however, depending whether pixels for which we calculate contact energies belong to the 
same cluster or not we will use internal or external contact energies respectively. 
 

IX.2.16. LengthConstraint Plugin 
 
This plugin imposes elongation constraint on the cell. Effectively it “measures” a cell 
along its “axis of elongation” and ensures that cell length along the elongation axis is 
close to target length. For detailed description of this algorithm in 2D see Roeland Merks' 
paper “Cell elongation is a key to in silico replication of in vitro vasculogenesis and 
subsequent remodeling” Developmental Biology 289 (2006) 44-54). This plugin is 
usually used in conjunction with Connectivity Plugin or ConnectivityGlobal Plugin. The 
syntax is as follows: 
 
<Plugin Name="LengthConstraint"> 
 <LengthEnergyParameters CellType="Body1" TargetLength="30" LambdaLength="5"/> 
</Plugin> 

 
LambdaLength determines the degree of cell length oscillation around TargetLength 
parameter. The higher LambdaLength the less freedom a cell will have to deviate from 
TargetLength.  
In the 3D case we use the following syntax: 
 
<Plugin Name="LengthConstraint"> 
 <LengthEnergyParameters CellType="Body1" TargetLength="20" 
 MinorTargetLength="5" LambdaLength="100" /> 
</Plugin> 

Notice new attribute called MinorTargetLength. In 3D it is not sufficient to constrain 
the "length" of the cell you also need to constrain "width" of the cell along axis 
perpendicular to the major axis of the cell. This "width" is referred to as 
MinorTargetLength. 
 
 
The parameters are assigned using Python – see Demos\elongationFlexTest example. 
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To control length constraint individually for each cell we may use Python scripting to 
assign LambdaLength, TartgetLength and in 3D MinorTargetLength. In Python steppable 
we typically would write the following code: 
self.lengthConstraintPlugin.setLengthConstraintData(cell,10,20)  

which enables length constraint for cell cell with LambdaLength=10 and 
TargetLength=20. In 3D we may specify MinorTargetLength (we set it to 5) by adding 
4th parameter to the above call: 
self.lengthConstraintPlugin.setLengthConstraintData(cell,10,20,5)  

 
If we use CC3DML specification of length constraint for certain cell types and in Python 
we set this constraint individually for a single cell then the local definition of the 
constraint has priority over definitions for the cell type. 
 
If, in the simulation, we will be setting length constraint for only few individual cells then 
it is best to manipulate the constraint parameters from the Python script. In this case in 
the CC3DML we only have to declare that we will use length constraint plugin and we 
may skip the definition by-type definitions: 
<Plugin Name="LengthConstraint"/> 

 
 
Remark: When using target length plugins (either global , as shown here, or local as we 
will show in the subsequent subsection) it is important to use connectivity constraint. 
This constrain will check if a given pixel copy can break cell connectivity. If so, it will 
add large energy penalty (defined by a user) to change of energy effectively prohibiting 
such pixel copy. In the case of 2D on square lattice checking cell connectivity can be 
done locally and thus is very fast. Unfortunately on hex lattice and in 3D on either lattice 
we don’t have an algorithm of performing such check locally and therefore we do it 
globally using breadth first search algorithm and comparing volumes of cells calculated 
this way with actual volume of the cell. If they agree we conclude that cell connectivity is 
preserved. However the computational cost of running such algorithm, can be quite high. 
Therefore if one does need extremely elongated cells (it is when connectivity algorithm 
has to do a lot of work) one may neglect connectivity constraint and use Length constrain 
only. For slight cells elongations the connectivity should be preserved however, 
occasionally cells may fragment.  

IX.2.17. Connectivity Plugins 
The basic Connectivity plugin works only in 2D and only on square lattice and is used 
to ensure that cells are connected or in other words to prevent separation of the cell into 
pieces. The detailed algorithm for this plugin is described in Roeland Merks' paper “Cell 
elongation is a key to in-silico replication of in vitro vasculogenesis and subsequent 
remodeling” Developmental Biology 289 (2006) 44-54).  There was one modification of 
the algorithm as compared to the paper. Namely, to ensure proper connectivity we had to 
reject all spin flips that resulted in more that two collisions. (see the paper for detailed 
explanation what this means).  
The syntax of the plugin is straightforward: 
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 <Plugin Name="Connectivity"> 
   <Penalty>100000</Penalty> 
 </Plugin> 

 
Penalty denotes energy that will be added to overall change of energy if attempted spin 
flip would violate connectivity constraints. If the penalty is positive and much larger than 
the absolute value of other energy changes in the simulation this has the effect of 
preventing a spin flip from occurring. 
A more general type of connectivity constraint is implemented in ConnectivityGlobal 
plugin. In this case we calculate volume of a cell using breadth first search algorithm and 
compare it with actual volume of the cell. If they agree we conclude that cell connectivity 
is preserved. This plugin works both in 2D and 3D and on either type of lattice. However 
the computational cost of running such algorithm, can be quite high so it is best to limit 
this plugin to cell types for which connectivity of cell is really essential: 
 
<Plugin Name="ConnectivityGlobal"> 
   <Penalty Type="Body1">1000000000</Penalty> 
</Plugin> 

 
In certain types of simulation it may happen that at some point cells change cell types. If 
a cell that was not subject to connectivity constraint, changes type to the cell that is 
constrained by global connectivity and this cell is fragmented before type change this 
situation normally would result in simulation freeze. However CompuCell3D, first before 
applying constraint it will check if the cell is fragmented. If it is, there is no constraint. 
Global connectivity constraint is only applied when cell is non-fragmented. The 
numerical value of Penalty in the XML syntax above does not really matter as long as it 
is greater than 0. CompuCell3D guarantees that cells for which penalty is greater than 0 
will remain connected.  
 
 
Quite often in the simulation we don't need to impose connectivity constraint on all cells 
or on all cells of given type. Usually only select cell types or select cells are elongated 
and therefore need connectivity constraint. In such a case we use ConnectivityLocalFlex 
plugin and assign connectivity constraints to particular cells in Python 
 
In XML we only declare: 
   
<Plugin Name="ConnectivityLocalFlex"/> 
 
In Python we manipulate/access connectivity parameters for individual cells using the 
following syntax: 
 
self.connectivityLocalFlexPlugin.setConnectivityStrength(cell,20.7) 
 
self.connectivityLocalFlexPlugin.getConnectivityStrength(cell) 

 
See also example in Demos\elongationLocalFlexTest. 
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ConnectivityLocalFlex plugin works only in 2D and on a square lattice.   We may also 
use ConnectivityGlobal plugin to set connectivity constraint individually for each cell. 
Analogously, as in the case of ConnectivityLocalFlex , in the CC3DML we declare 
<Plugin Name="ConnectivityGlobal"/> 

and in  Python we manipulate/access connectivity parameters for individual cells using 
the following syntax: 
self.connectivityGlobalPlugin.setConnectivityStrength(cell,10000000) 

 
self.connectivityGlobalPlugin.getConnectivityStrength(cell) 

 

IX.2.18. Mitosis Plugin 

 
Mitosis plugin carries out cell division into two cells once the parent cell reaches critical 
volume (DoublingVolume). The two cells after mitosis will have approximately the same 
volume although it cannot be guaranteed in general case if the parent cell is fragmented. 
One major problem with Mitosis plugin is that after mitosis the attributes of the offspring 
cell  might not be  initialized properly. By default cell type of the offspring cell will be 
the same as cell type of parent and they will also share target volume. All other 
parameters for the new cell remain uninitialized.  
Remark: For this reason we stringly recommend using Mitosis plugin through Python 
interface as there users can quite easily customize what happens to parent and offspring 
cells after mitosis. An example of the use of Mitosis plugin through Python scripting is 
provided in CompuCell3D’s Python Scripting Manual.  The syntax of the “standard” 
mitosis plugin is the following: 
 
<Plugin Name="Mitosis"> 
    <DoublingVolume>50</DoublingVolume> 
</Plugin> 
 

Every time a cell reaches DoublingVolume it will undergo the mitosis and the offspring 
cell will inherit type and target volume of the parent. If this simple behavior is 
unsatisfactory consider use Python scripting to implement proper mitotic divisions of 
cells. 

IX.2.19. Secretion Plugin 
In earlier version os of CC3D secretion was part of PDE solvers. We still support this 
mode of model description however, starting in 3.5.0 we developed separate plugin 
which handles secretion only. Via secretion plugin we can simulate cell ular secretion of 
various chemicals. The secretion plugin allows users to specify various secretion modes 
in the XML file - XML syntax is practically identical to the SecretionData syntax of PDE 
solvers. In addition to this Secretion plugin allows users to maniupulate secretion 
properties of individual cells from Python level.  To account for possibility of PDE solver 
being called multiple times during each MCS, the Secretion plugin can be called multiple 
times in each MCS as well. We leave it up to user the rescaling of secretion constants 
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when using multiple secretion calls in each MCS. Note:Secretion for individual cells 
invoked via Python will be called only once per MCS.  
 
Typical XML xyntax for Secretion plugin is presented below: 
 
<Plugin Name="Secretion"> 
 <Field Name="ATTR" ExtraTimesPerMC=”2”> 
  <Secretion Type="Bacterium">200</Secretion> 
  <SecretionOnContact Type="Medium" SecreteOnContactWith="B">300</SecretionOnContact>             
  <ConstantConcentration Type="Bacterium">500</ConstantConcentration>  
 </Field> 
</Plugin>  

 
By default ExtraTimesPerMC is set to 0 - meaning no extra calls to Secretion plugin per 
MCS. 
 
Typical use of secretion from Python is dempnstrated best in the example below: 
 
class SecretionSteppable(SecretionBasePy): 
    def __init__(self,_simulator,_frequency=1): 
        SecretionBasePy.__init__(self,_simulator, _frequency) 
         
    def step(self,mcs): 
        attrSecretor=self.getFieldSecretor("ATTR") 
        for cell in self.cellList: 
            if cell.type==3: 
                attrSecretor.secreteInsideCell(cell,300) 
                attrSecretor.secreteInsideCellAtBoundary(cell,300) 
                attrSecretor.secreteOutsideCellAtBoundary(cell,500) 
                attrSecretor.secreteInsideCellAtCOM(cell,300) 

Remark: Instead of using SteppableBasePy class we are using SecretionBasePy class. 
The reason for this is that in order for secretion plugin with secretion modes accessible 
from Python to behave exactly as previous versions of PDE solvers (where secretion was 
done first followed by “diffusion” step) we have to ensure that secretion steppable 
implemented in Python is called before each Monte Carlo Step, which implies that it will 
be also called before “diffusing” function of the PDE solvers. SecretionBasePy sets 
extra flag which ensures that steppable which inherits from SecretionBasePy is called 
before MCS (and before all “regular’ Python steppables). There is no magic to 
SecretionBasePy - if you still want to use SteppableBasePy as a base class for 
secretion (or for that matter SteppablePy) do so, but remember that you need to set flag: 
 
self.runBeforeMCS=1  
 
to ensure that your new stoppable will run before each MCS. See example below for 
alternative implementation of SecretionSteppable using SteppableBasePy as a base 
class: 
 
class SecretionSteppable(SteppableBasePy): 
    def __init__(self,_simulator,_frequency=1): 
        SteppableBasePy.__init__(self,_simulator, _frequency) 
        self.runBeforeMCS=1 
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    def step(self,mcs): 
        attrSecretor=self.getFieldSecretor("ATTR") 
        for cell in self.cellList: 
            if cell.type==3: 
                attrSecretor.secreteInsideCell(cell,300) 
                attrSecretor.secreteInsideCellAtBoundary(cell,300) 
                attrSecretor.secreteOutsideCellAtBoundary(cell,500) 
                attrSecretor.secreteInsideCellAtCOM(cell,300) 

 
The secretion of individual cells is handled through Field Secretor objects. Field Secretor 
concenpt is quite convenient because the amoun of Python coding is quite small. To 
secrete chemical (this is now done for individual cell) we first create field secretor object, 
attrSecretor=self.getFieldSecretor("ATTR"), which allows us to secrete into field 
called ATTR.  
Remark: Make sure that fields into which you will be secreting chemicals exist. They 
are usually fields defined in PDE solvers. When using secretion plugin you do not need to 
specify SecretionData section for the PDE solvers 
Then we pick a cell and using field secretor we simulate secretion of chemical ATTR by 
a cell: 
 
attrSecretor.secreteInsideCell(cell,300) 
 
Currently we support 4 secretion modes for individual cells: 

1. secreteInsideCell – this is equivalent to secretion in every pixel belonging to a 
cell 

2. secreteInsideCellAtBoundary – secretion takes place in the pixels belonging 
to the cell boundary  

3. secreteInsideCellAtBoundary – secretion takes place in pixels which are 
outide the cell but in contact with cell boundary pixels 

4. secreteInsideCellAtCOM – secretion at the center of mass of the cell 
 
As you may infer from above modes 1, 2 and 3 require tracking of pixels belonging to 
cell and pixels belonging to cell boundary. If you are not using modes 1-3 you may 
disable pipxel tracking by including  
<DisablePixelTracker/> and/or <DisableBoundaryPixelTracker/> tags – as shown 
in the example below: 
<Plugin Name="Secretion"> 
  
 <DisablePixelTracker/> 
 <DisableBoundaryPixelTracker/> 
 
 <Field Name="ATTR" ExtraTimesPerMC=”2”> 
  <Secretion Type="Bacterium">200</Secretion> 
  <SecretionOnContact Type="Medium" SecreteOnContactWith="B">300</SecretionOnContact>             
  <ConstantConcentration Type="Bacterium">500</ConstantConcentration>  
 </Field> 
</Plugin>  

 

IX.2.20. PDESolverCaller Plugin 
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PDE solvers in CompuCell3D are implemented as steppables . This means that by default 
they are called every MCS. In many cases this is insufficient. For example if diffusion 
constant is large, then explicit finite difference method will become unstable and the 
numerical solution will have no sense. To fix this problem one could call PDE solver 
many times during single MCS. This is precisely the task taken care of by 
PDESolverCaller plugin. The syntax is straightforward: 
 
<Plugin Name="PDESolverCaller"> 
 <CallPDE PDESolverName="FlexibleDiffusionSolverFE"ExtraTimesPerMC="8"/> 
</Plugin> 

 
All you need to do is to give the name of the steppable that implements a given PDE 
solver and pass let CompCell3D know how many extra times per MCS this solver is to be 
called (here FlexibleDiffusionSolverFE was 8 extra  times per MCS). 
 

IX.2.21. Elasticity Plugin and ElasticityTracker Plugin 
 
This plugin is responsible for handling the following energy term: 

 2

ij ij ij
i, j cellneighbors

E = λ l L


  

where ijl is a distance between center of masses of cells i and j and ijL is a target length 

corresponding to ijl . 

The syntax of this plugin is the following  
 
 <Plugin Name="ElasticityEnergy"> 
    <LambdaElasticity>200.0</LambdaElasticity> 
    <TargetLengthElasticity>6</TargetLengthElasticity> 
 </Plugin> 
 

In this case ijλ and ijL are the same for all participating cells types. 

By adding extra attribute <Local/> to the above plugin: 
 
 <Plugin Name="ElasticityEnergy"> 
    <Local/> 
    <LambdaElasticity>200.0</LambdaElasticity> 
    <TargetLengthElasticity>6</TargetLengthElasticity> 
 </Plugin> 
 

we tell CompuCell3D to use ijλ and ijL defined on per pair of cells basis. The 

initialization of ijλ and ijL usually takes place in Python script and users must make sure 

that ij jil = l and ij jiλ = λ or else one can get unexpected results. We provide example 

python and xml files that demo the use of plasticity plugin. 
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Users have to specify which cell types participate in the plasticity calculations. This is 
done by including ElasticityTracker plugin before Elasticity plugin in the xml file. The 
syntax is very clear: 
 
 <Plugin Name="ElasticityTracker"> 
    <IncludeType>Body1</IncludeType> 
    <IncludeType>Body2</IncludeType> 
    <IncludeType>Body3</IncludeType> 
 </Plugin> 
 

All is required is a list of participating cell types. Here cells of type Body1, Body2 and 
Body3 will be taken into account for elasticity energy calculation purposes. 
The way in which CompuCell3D determines which cells are to be included in the 
elasticity energy calculations is by examining which cells are in contact with each other 
before simulation begins.  
If the types of cells touching each other are listed in the list of IncudeTypes of 
ElasticityTracker then such cells are being taken into account when calculating elastic 
constraint. Cells which initially are not touching will not participate in calculations even 
if their type is included in the list of “ElasticityTracker”. However, in some cases it is 
desirable to add elasticity pair even for cells that do not touch each other or do it once 
simulation has started. To do this ElasticityTracker plugin defines two function : 
 
assignElasticityPair(_cell1 , _cell2)  

 
removeElasticityPair(_cell1 , _cell2) 

 
where _cell1 and _cell2 denote pointers to cell objects.  
These functions add or remove two cell links to or from elastic constraint. Typically they 
are called from Python level. 
 

IX.2.22. FocalPointPlasticity Plugin 
Similarly as Elasticity plugin, FocalPointPlasticity pust constrains the distance between 
cells’ center of masses. The main difference is that the list of “focal point plasticity 
neighbors” can change as the simulation goes and user specifies the maximum number of 
“focal point plasticity neighbors” a given cell can have. Let’s look at relatively simple 
XML syntax of FocalPointPlasticityPlugin (see Demos/FocalPointPlasticity example  
and we will show more complex examples later): 
 
 
  <Plugin Name="FocalPointPlasticity">   
     <Parameters Type1="Condensing" Type2="NonCondensing"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance> 
       <MaxNumberOfJunctions>2</MaxNumberOfJunctions>                
    </Parameters>   
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    <Parameters Type1="Condensing" Type2="Condensing"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance>  
       <MaxNumberOfJunctions>2</MaxNumberOfJunctions>         
    </Parameters> 
 <NeighborOrder>1</NeighborOrder>    
 </Plugin> 

 
Parameters section describes properties of links between cells. MaxNumberOfJunctions, 
ActivationEnergy, MaxDistance and NeighborOrder are responsible for establishing 
connections between cells. CC3D constantly monitors pixel copies and during pixel copy 
between two neighboring cells/subcells it checks if those cells are already participating in 
focal point plasticity constraint. If they are not, CC3D will check if connection can be 
made (e.g. Condensing cells can have up to two connections with Condensing cells and 
up to 2 connections with NonCondensing cells – see first line of Parameters section and  
MaxNumberOfJunctions tag). The NeighborOrder parameter determines the pixel 
vicinity of the pixel that is about to be overwritten which CC3D will scan in search of the 
new link between cells. NeighborOrder 1 (which is default value if you do not specify 
this parameter) means that only nearest pixel neighbors will be visited. The 
ActivationEnergy parameter is added to overall energy in order to increase the odds of 
pixel copy which would lead to new connection. 
 
Once cells are linked the energy calculation is carried out in a very similar way as for the 
Elasticity plugin: 
 

 2

ij ij ij
i, j cellneighbors

E = λ l L


  

where ijl is a distance between center of masses of cells i and j and ijL is a target length 

corresponding to ijl . 

ij and Lij between different cell types are determined using Lambda and TargetDistance 
tags. The MaxDistance determines the distance between cells’ center of masses when the 
link between those cells break. When the link breaks, then in order for the two cells to 
reconnect they would need to come in contact (in order to reconnect). However it is 
usually more likely that there will be other cells in the vicinity of separated cells so it is 
more likely to establish new link than restore broken one. 
The above example was one of the simplest examples of use of FocalPointPlasticity. A 
more complicated one involves compartmental cells. In this case each cell has separate 
“internal” list of links between cells belonging to the same cluster and another list 
between cells belonging to different clusters. The energy contributions from  both lists 
are summed up and everything that we have said when discussing example above applies 
to compartmental cells. Sample syntax of the FocalPointPlasticity plugin which includes 
compartmental cells is shown below. We use InternalParameters tag/section to 
describe links between cells of the same cluster (see Demos/FocalPointPlasticity 
example): 
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  <Plugin Name="FocalPointPlasticity"> 
   
    <Parameters Type1="Top" Type2="Top"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance> 
       <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>        
    </Parameters>   
 
    <Parameters Type1="Bottom" Type2="Bottom"> 
       <Lambda>10.0</Lambda>        
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance> 
       <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>               
    </Parameters> 
  
    <InternalParameters Type1="Top" Type2="Center"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance> 
       <MaxNumberOfJunctions>1</MaxNumberOfJunctions>         
    </InternalParameters>  
 
    <InternalParameters Type1="Bottom" Type2="Center"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance>        
       <MaxNumberOfJunctions>1</MaxNumberOfJunctions> 
    </InternalParameters>  
     
    <NeighborOrder>1</NeighborOrder> 
     
 </Plugin> 

 
Sometimes it is necessary to modify link parameters individually for every cell pair. In 
this case we would manipulate FocalPointPlasticity links using Python scripting. 
Example Demos/FocalPointPlasticityCompartments demonstrates exactly this situation. 
Still, you need to include XML section as the one shown above for compartmental cells, 
because we need to tell CC3D how to link cells. The only notable difference is that in the 
XML we have to include <Local/> tag to signal that we will set link parameters (Lambda, 
TaretDistance, MaxDistance) individually for each cell pair: 
 
  <Plugin Name="FocalPointPlasticity"> 
   <Local/>   
    <Parameters Type1="Top" Type2="Top"> 
       <Lambda>10.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
       <TargetDistance>7</TargetDistance> 
       <MaxDistance>20.0</MaxDistance> 
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       <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>        
    </Parameters>   
…….. 
</Plugin> 

 
Python steppable where we manipulate cell-cell focal point plasticity link properties is 
shown below: 
 
class FocalPointPlasticityCompartmentsParams(SteppablePy): 
    def __init__(self,_simulator,_frequency=10): 
        SteppablePy.__init__(self,_frequency) 
        self.simulator=_simulator 
        self.focalPointPlasticityPlugin=CompuCell.\ 
        getFocalPointPlasticityPlugin() 
        self.inventory=self.simulator.getPotts().\ 
        getCellInventory() 
        self.cellList=CellList(self.inventory) 
 
    def step(self,mcs): 
        for cell in self.cellList:                 
            for fppd in InternalFocalPointPlasticityDataList\ 
            (self.focalPointPlasticityPlugin,cell): 
                self.focalPointPlasticityPlugin.\ 
                setInternalFocalPointPlasticityParameters\ 
                (cell,fppd.neighborAddress,0.0,0.0,0.0) 

 
The syntax to change focal point plasticity parameters (or as here internal parameters) is 
as follows: 
setFocalPointPlasticityParameters(cell1, cell2, lambda,\ 
targetDistance, maxDistance) 

 
setInternalFocalPointPlasticityParameters(cell1, cell2, lambda,\ 
targetDistance, maxDistance) 

 
Similarly to inspect current values of the focal point plasticity parameters we would use 
the following Python construct: 
 
for cell in self.cellList: 
    for fppd in InternalFocalPointPlasticityDataList\ 
    (self.focalPointPlasticityPlugin,cell): 
        print "fppd.neighborId",fppd.neighborAddress.id 
        " lambda=",fppd.lambdaDistance 

 
For non-internal parameters we simply use FocalPointPlasticityDataList instead of 
InternalFocalPointPlasticityDataList . 
 
Examples Demos/FocalPointPlasticity… show in relatively simple way how to use 
FocalPointPlasticity plugin. Those examples also contain useful comments.  
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When using FocalPointPlasticity Plugin from mitosis module one might need to break or 
create focal point plasticity links. To do so FocalPointPlasticity Plugin provides 4 
convenience functions which can be invoked from the Python level: 
 
deleteFocalPointPlasticityLink(cell1,cell2) 
 
deleteInternalFocalPointPlasticityLink(cell1,cell2) 
 
createFocalPointPlasticityLink(\ 
cell1,cell2,lambda,targetDistance,maxDistance) 
 
createInternalFocalPointPlasticityLink(\ 
cell1,cell2,lambda,targetDistance,maxDistance) 
 
 

IX.2.23.Curvature Plugin 
This plugin implements energy term for compartmental cells. It is based on “A New 
Mechanism for Collective Migration in Myxococcus xanthus”, J. Starruß, Th. Bley, L. 
Søgaard-Andersen and A. Deutsch, Journal of Statistical Physics, DOI: 10.1007/s10955-
007-9298-9, (2007). For a “long” compartmental cell composed of many subcells it 
imposes constraint on curvature of cells. The syntax is slightly complex: 
 
   <Plugin Name="Curvature"> 
   
    <InternalParameters Type1="Top" Type2="Center"> 
       <Lambda>100.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
    </InternalParameters>  
 
    <InternalParameters Type1="Center" Type2="Center"> 
       <Lambda>100.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
    </InternalParameters>  
     
     
    <InternalParameters Type1="Bottom" Type2="Center"> 
       <Lambda>100.0</Lambda> 
       <ActivationEnergy>-50.0</ActivationEnergy>        
    </InternalParameters>  
 
     <InternalTypeSpecificParameters> 
        <Parameters TypeName="Top" MaxNumberOfJunctions="1"  
        NeighborOrder="1"/> 
        <Parameters TypeName="Center" MaxNumberOfJunctions="2"  
        NeighborOrder="1"/> 
        <Parameters TypeName="Bottom" MaxNumberOfJunctions="1"  
        NeighborOrder="1"/> 
    </InternalTypeSpecificParameters>  
 
     
 </Plugin> 
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The InternalTypeSpecificParameter tells Curvature Plugin how many neighbors a 
cell of given type will have. In this case, numbers which make sense are 1 and 2. The 
middle segment will have 2 connection and head and tail segments will have only one 
connection with neighboring segmens (subcells). The connections are established 
dymamically. The way it happens is that during simulation CC3D constantly monitors 
pixel copies and during pixel copy between two neighboring cells/subcells it checks if 
those cells are already “connected” using curvature constraint. If they are not, CC3D will 
check if connection can be made (e.g. Center cells can have up to two connections and 
Top and Bottom only one connection). Usually establishing connections takes place at the 
beginning if the simulation and often happens within first Monte Carlo Step (depending 
on actual initial configuration, of course, but if segments touch each other connections 
are established almost immediately). The ActivationEnergy parameter is added to 
overall energy in order to increase the odds of pixel copy which would lead to new 
connection. Lambda tag/parameter determines “the strength” of curvature constraint. The 
higher the Lambda the more “stiff” cells will be i.e. they will tend to align along straight 
line. 

IX.2.24.PlayerSettings Plugin 
 
This plugin allows users to specify or configure Player settings directly from XML, 
without s single click. Some users might prefer this way of setting configuring Player. In 
addition to this if users want to run two different simulations at the  same time on the 
same machine but with different , say, cell colors, then doing it with “regular” Player 
configuration file might be tricky. The solution is to use PlayerSetting Plugin. The syntax 
of this plugin is as follows: 
 
 
 
<Plugin Name="PlayerSettings"> 
    <Project2D XZProj="50"/> 
    <Concentration LegendEnable="true" NumberOfLegendBoxes="3"/> 
    <VisualControl ScreenshotFrequency="200" ScreenUpdateFrequency="10" 
    NoOutput="true" ClosePlayerAfterSimulationDone="true" /> 
    <Border BorderColor="red" BorderOn="false"/> 
    <TypesInvisibleIn3D Types="0,2,4,5"/> 
     <Cell Type="1" Color="red"/> 
    <Cell Type="2" Color="yellow"/>  
    <!-- Note: SaveSettings flag is unimportant for the new Player 
    because whenever settings are changed from XML script  
    they are written by default to disk 
    This seems to be default behavior of most modern applications.  
    We may implement this feature later 
    <Settings SaveSettings="false"/> 
    --> 
</Plugin> 

 
As can be seen from above syntax all the keywords correspond to an action in the Player. 
Project2D sets up the values of the projection on the Player steering bar. Here we set the 
player to start 2D display in the xz projection with y coordinate set to 50. Borders and Comment [MSOffice16]: Not clear?
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contours properties are handled using Border and Contour elements. Specifying cell 
colors is done using Cell element. VisualControl element allows users to specify zoom 
factor and screen update and screenshot frequencies. Notice, screen update frequency 
migh not work properly when using Python script. In this case CompuCell will use 
whatever screen update frequency was stored in the config file (by default 1). We may 
also change things such as screen update frequency or screenshot frequency and choose 
whether or not to close the player after the simulation. 
To start Player in the 3D view instead of adding <Project2D> tag we add <View3D> 
section: 
 
<View3D> 
 <CameraClippingRange Max="388.363853764" Min="182.272762471"/> 
 <CameraFocalPoint x="50.0" y="50.0" z="0.75"/> 
 <CameraPosition x="150.062764552" y="-88.9777652942" z="213.639720537"/> 
 <CameraViewUp x="0.112255891114" y="0.855400655565" z="0.505656339196"/>   
</View3D> 

 
The camera settings stored here position 3D camera. The best way to get those settings is 
to run a simulation, add 2D screenshot using camera button, switch to 3D and position 
camera (using mouse) however you like and subsequently add another screenshot using 
camera button, save screenshot descrition file (File->Save Screenshot 
Description…) and open up in text editor newly saved screenshot description file (with 
.sdfml extension) and copy camera setting from there into PlayerSettings <View3D> 
section. An example of using Player settings is shown in 
Demos\cellsort_2D\cellsort_2D_PlayerSettings.xml. 
Although the set of allowed changes of player settings is fairly small at the moment we 
believe that the options that users have right now are quite sufficient for configuring the 
Player from the XML or python level. We will continue adding new options though. 

IX.2.25.BoundaryPixelTracker Plugin 
This plugin allows storing list of boundary pixels for each cell. The syntax is as follows: 
 
<Plugin Name="BoundaryPixelTracker"> 
    <NeighborOrder>1</NeighborOrder> 
 </Plugin> 

 
This plugin is also used  by other plugins as a helper module. 

IX.2.26. GlobalBoundaryPixelTracker 
 
This plugin tracks  boundary pixels of all the cells including medium It is used in a 
Boundary Walker algorithm where instead of blindly picking pixel copy candidate we 
pick it from the set of pixels comprising  boundaries of  non frozen cells.  In situations 
when lattice is large and there are not that many cells it makes sense to use 
BoundaryWalker algorithm to limit number of "wrong" pixel picks when perfming pixel 
copy attempts. Take a look at the following example: 
<Potts> 
   <Dimensions x="100" y="100" z="1"/> 



-97- 

   <Anneal>10</Anneal> 
   <Steps>10000</Steps> 
   <Temperature>5</Temperature> 
   <Flip2DimRatio>1</Flip2DimRatio> 
   <NeighborOrder>2</NeighborOrder> 
   <MetropolisAlgorithm>BoundaryWalker</MetropolisAlgorithm> 
   <Boundary_x>Periodic</Boundary_x> 
 </Potts> 
 
 <Plugin Name="GlobalBoundaryPixelTracker"> 
    <NeighborOrder>2</NeighborOrder> 
 </Plugin> 

 
Here we are using BoundaryWalker algorithm (Potts section) and subsequently we list 
GlobalBoundaryTracker plugin where we set neighbor order to match that in the Potts 
section. The neighbor order determines how "thick" the overall boundary of cells will be. 
The higher this number the more pixels will belong to the boundary. 

IX.2.27. PixelTracker Plugin 
This plugin allows storing list of all pixels belonging to a given cell. The syntax is as 
follows: 
 
<Plugin Name="PixelTracker"/> 

 
This plugin is also used by other plugins (e.g. Mitosis) as a helper module. 

IX.2.28. MomentOfInertia plugin 
This plugin updates tensor of inertia for every cell. Internally it uses parallel axis theorem 
to calculate most up-to-date tensor of inertia. It can be called directly: 
 
<Plugin Name="MomentOfInertia"/> 

 
However, most commonly it is called indirectly by other plugins like Elongation plugin. 
 
MomentOfInertia plugin gives users access (via Python scripting) to current lengths of 
cell’s semiaxes. Examples in Demos/MomentOfInertia demonstrate how to get lengths 
of semiaxes: 
 
axes=self.momentOfInertiaPlugin.getSemiaxes(cell) 

 
axes is a 3-component vector with 0th element being length of minor axis, 1st – length of 
median axis (which is set to 0 in 2D) and 2nd element indicating the length of major 
semiaxis. 
  
Important: Because calculating lengths of semiaxes involves quite a few of floating 
point operations it may happen (usually on hexagonal lattice) that for cells composed of 
1, 2, or 3 pixels one moment the square of one of the semiaxes may end up being slightly 
negative leadind to NaN (not a number)length. This is due to roundoff error and whenever 
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CC3D detects very small absolute value of square of the length of semiaxes (10-6) it sets 
length of this semiaxes to 0.0 regardless whether the squared value is positive or 
negative. However it is a good practice to test whether the length of semiaxis is sane by 
doing simple if (here we show how to test for a NaN) 
 
jf length!=length: 
 print “length is NaN”: 
else: 
 print “length is a proper floating point number”  

 

IX.2.29. SimpleClock plugin 
This plugin adds an integer as a cell attribute: 
 
<Plugin Name="SimpleClock"/> 
 

IX.2.30. ConvergentExtension plugin 

This is very specialized plugin which currently is in Tier 2 plugins in terms of support. IT 
implements energy term described in “Simulating Convergent Extension by Way of 
Anisotropic Differemtial Adhesion,” Zajac M, Jones GL, and Glazier JA, Journal of 
Theoretical Biology 222 (2), 2003. 
 
CC3D’s ConvergentExtension plugin is a somewhat simplified version of  energy term 
described in the paper.  
 
This plugin uses the following syntax: 
 
  <Plugin Name="ConvergentExtension"> 
   <Alpha Type="Condensing" >0.99</Alpha> 
   <Alpha Type="NonCondensing" >0.99</Alpha>    
   <NeighborOrder>2</NeighborOrder> 
 </Plugin> 

 
The Alpha tag represents numerical value of  parameter from the paper. 
 

IX.3. Steppable Section 
Steppables are CompuCell modules that are called every Monte Carlo Step (MCS). More 
precisely, they are called after all the spin attempts in a given MCS have been carried out. 
Steppables may have various functions like for example solving PDE's, checking if 
critical concentration threshold have been met, updating target volume or target surface 
given the concentration of come growth factor, initializing cell field, writing numerical 
results to a file etc. In summary Steppables perform all functions that need to be done 
every MCS. In the reminder of this section we will present steppables currently available 
in the CompuCell and describe their usage. 
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IX.3.1 UniformInitializer Steppable 

 
This steppable lays out pattern of cells on the lattice. It allows users to specify rectangular 
regions of field with square (or cube in 3D) cells of user defined types (or random types). 
Cells can be touching each other or can be separated by a gap. 
 
The syntax of the plugin is as follows: 
 
 <Steppable Type="UniformInitializer"> 
   <Region> 
     <BoxMin x="35" y="0" z="30"/> 
       <BoxMax x="135" y="1" z="430"/> 
       <Gap>0</Gap> 
       <Width>5</Width> 
      <Types>psm</Types> 
   </Region> 
</Steppable> 
 
Above we have defined a 2D rectangular box filled with 5x5 cells touching each other 
(Gap=0) and having type psm. Notice that if you want to initialize 2D box in xz plane as 
above then y_min and y_max have to be 0 and 1 respectively. 
 
Users can include as many regions as they want. The regions can overlap each other. 
Simply cells that are overwritten will either disappear or be truncated. 
 
Additionally users can initialize region with random cell types chosen from provided list 
of cell types: 
 
 <Steppable Type="UniformInitializer"> 
   <Region> 
     <BoxMin x="35" y="0" z="30"/> 
     <BoxMax x="135" y="1" z="430"/> 
     <Gap>0</Gap> 
     <Width>5</Width> 
     <Types>psm,ncad,ncam</Types> 
   </Region> 
</Steppable> 

 
When user specifies more than one cell type between <Types> tags (notice, the types 
have to be separated with ',' and there should be no spaces) then cells for this region will 
be initialized with types chosen randomly from the provided list (here the choices would 
be psm, ncad, ncam). 
Remark: If one of the type names is repeated inside <Types> element this type will get 
greater weighting means probability of assigning this type to a cell will be greater. So for 
example <Types>psm,ncad,ncam,ncam,ncam</Types> ncam will  assigned to a cell 
with probability 3/5 and psm and ncad with probability 1/5. 
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IX.3.2. BlobInitializer Steppable 

This steppable is used to lay out circular blob of cells on the lattice. This plugin does not 
have yet the flexibility of UniformInitializer but this will change in the future release. 
Original syntax of this plugin looks as follows: 
 
 <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit> 
   <Radius>40</Radius> 
 </Steppable> 
 
The blob is centered in the middle of th lattice and has radius given by <Radius> 
parameter  all cells are initially squares (or cubes in 3D) - <Width> determines the length 
of the cube or square side and <Gap> determines space between squares or cubes. 
<CellSortInit> tag and value yes is used to initialize cells randomly with type id being 
either 1 or 2. Otherwise all cells will have type id 1. This can be easily modified in 
Python .  
The most recent syntax for this plugin gives users additional flexibility in initializing cell 
field using BlobFieldInitializer: 
 
<Steppable Type="BlobInitializer"> 
   <Region> 
     <Gap>0</Gap> 
     <Width>5</Width> 
     <Radius>40</Radius> 
     <Center x="100" y="100" z="0"/> 
     <Types>Condensing,NonCondensing</Types>    
   </Region> 
</Steppable Type="BlobInitializer"> 

 
Similarly as for the UniformFieldInitializer users can define many regions each of which 
is a blob of a particular center point , radius and list of cell types that will be assigned to 
cells forming the blob. 

IX.3.3. PIF Initializer 
To initialize the configuration of the simulation lattice you can can write your own lattice 
initialization file. Our experience suggests that you will probably have to write your own 
initialization files rather than relying on built-in initializers. The reason is simple: the 
built-in initializers implement very simple cell layouts, and if you want to study more 
complicated cell arrangements, the built-in initializers will not be very helpful. Therefore 
we encourage you to learn how to prepare lattice initialization files. Again, file definition 
is not complicated and we will explain every step. The lattice initialization file tells 
CompuCell3D how to lay out assign the simulation lattice pixels to cells.  
 
The Potts Initial File (PIF) is a simple file format that we created for easy specification 
of initial cell positions. The PIF consists of multiple lines of the following format: 
 
cell# celltype x1 x2 y1 y2 z1 z2  
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Where cell# is the unique integer index of a cell, celltype is a string representing the 
cell's initial type, and x1 and x2 specify a range of x-coordinates contained in the cell 
(similarly y1 and y2 specify a range of y-coordinates and z1 and z2 specify a range of z-
coordinates). Thus each line assigns a rectangular volume to a cell. If a cell is not 
perfectly rectangular, multiple lines can be used to build up the cell out of rectangular 
sub-volumes (just by reusing the cell# and celltype). 
 
A PIF can be provided to CompuCell3D by including the steppable object PIFInitializer. 
 
Let's look at a PIF example for foams: 
 
0 Medium 0 101 0 101 0 0  
1 Foam 13 25 0 5 0 0  
2 Foam 25 39 0 5 0 0  
3 Foam 39 46 0 5 0 0  
4 Foam 46 57 0 5 0 0  
5 Foam 57 65 0 5 0 0  
6 Foam 65 76 0 5 0 0  
7 Foam 76 89 0 5 0 0  
 

These lines define a background of Medium which fills the whole lattice and is then 
overwritten by seven rectangular cells of type Foam numbered 1 through 7. Notice that 
these cells lie in the xy plane (z1=0 z2=0 implies that cells have thickness =1) so this 
example is a two-dimensional initialization.  
 
You can write the PIF file manually, but using a script or program that will write PIF file 
for you in the language of your choice (Perl, Python, Matlab, Mathematica, C, C++, Java 
or any other programming language) will save a great deal of typing. You may also use 
tools like PIFTracer which allow you to "paint" the lattice by tracing regions of the 
experimental pictures. 
 
Notice, that for compartmental cell model the format of the PIF file is different: 
 
Include Clusters 
cluster # cell# celltype x1 x2 y1 y2 z1 z2  

 
For example: 
 
Include Clusters 
1 1 Side1 23 25 47 56 10 14 
1 2 Center 26 30 50 54 10 14 
1 3 Side2 31 33 47 56 10 14 
1 4 Top 26 30 55 59 10 14 
1 5 Bottom 26 30 45 49 10 14 
2 6 Side1 35 37 47 56 10 14 
2 7 Center 38 42 50 54 10 14 
2 8 Side2 43 45 47 56 10 14 
2 9 Top 38 42 55 59 10 14 
2 10 Bottom 38 42 45 49 10 14 
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IX.3.4. PIFDumper Steppable 

This steppable does opposite to PIFIitializer – it writes PIF file of current lattice 
configuration. The syntax similar to the syntax of PIFInitializer: 
 
<Steppable Type="PIFDumper" Frequency=”100”> 
  <PIFName>line</PIFName> 
</Steppable> 

 
Notice that we used Frequency attribute of steppable to ensure that PIF files are written 
every 100 MCS. Without it they would be written every MCS. The file names will have 
the following format: 
 
PIFName.MCS.pif 

 
In our case they would be line.0.pif, line.100.pif, line.200.pif etc... 
 
This plugin is actually quite useful. For example, if we want to start simulation from a 
more configuration of cells (not rectangular cells as this is the case when we use Uniform 
or Blob initializers). In such a case we would run a simulation with a PIFDumper 
included and once the cell configuration reaches desired shape we would stop and use 
PIF file corresponding to this state. Once we have PIF initial configuration we may run 
many simulation starting from the same, realistic initial condition. 

IX.3.5. Mitosis Steppabe. 
This steppable is described in great detail in Python tutorial but because of its importance 
we are including a copy of that description here. 
In developmental simulations we often need to simulate cells which grow and divide. In 
earlier versions of CompuCell3D we had to write quite complicated plugin to do that 
which was quite cumbersome and unintuitive (see example 9). The only advantage of the 
plugin was that exactly after the pixel copy which had triggered mitosis condition 
CompuCell3D called cell division function immediately. This guaranteed that any cell 
which was supposed divide at any instance in the simulation, actually did. However, 
because state of the simulation is normally observed after completion of full a Monte 
Carlo Step, and not in the middle of MCS it makes actually more sense to implement 
Mitosis as a steppable. Let us examine the simplest simulation which involves mitosis. 
We start with a single cell and grow it. When cell reaches critical (doubling) volume it 
undergoes Mitosis. We check if the cell has reached doubling volume at the end of each 
MCS. The folder containing this simulation is 
examples_PythonTutorial/steppableBasedMitosis. The mitosis algorithm is implemented 
in examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py 

File: 
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py 

from PySteppables import * 
from PySteppablesExamples import MitosisSteppableBase 
import CompuCell 
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import sys 
 
class VolumeParamSteppable(SteppablePy): 
    def __init__(self,_simulator,_frequency=1): 
        SteppablePy.__init__(self,_frequency) 
        self.simulator=_simulator 
        self.inventory=self.simulator.getPotts().getCellInventory() 
        self.cellList=CellList(self.inventory) 
 
    def start(self): 
        for cell in self.cellList: 
            cell.targetVolume=25 
            cell.lambdaVolume=2.0 

 
    def step(self,mcs): 
        for cell in self.cellList: 
            cell.targetVolume+=1 
 
class MitosisSteppable(MitosisSteppableBase): 
    def __init__(self,_simulator,_frequency=1): 
        MitosisSteppableBase.__init__(self,_simulator, _frequency) 
 
    def step(self,mcs): 
        cells_to_divide=[] 

 
        for cell in self.cellList: 
            if cell.volume>50: # mitosis condition 
                cells_to_divide.append(cell) 
 
        for cell in cells_to_divide: 
            self.divideCellRandomOrientation(cell) 
    def updateAttributes(self): 
 
        parentCell=self.mitosisSteppable.parentCell 
        childCell=self.mitosisSteppable.childCell  
        childCell.targetVolume=parentCell.targetVolume 
        childCell.lambdaVolume=parentCell.lambdaVolume 
        if parentCell.type==1: 
            childCell.type=2 
        else: 
            childCell.type=1 
 

 
Two steppables: VolumeParamSteppable and MitosisSteppable are the essence of the 
above simulation. The first steppable initializes volume constraint for all the cells present 
at T=0 MCS (only one cell) and then every 10 MCS (see the frequency with which 
VolumeParamSteppable in initialized to run - 
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosis.py) it increases 
target volume of cells, effectively causing cells to grow.  
The second steppable checks every 10 MCS (we can, of course, run it every MCS) if cell 
has reached doubling volume of 50. If so such cell is added to the list cells_to_divide 
which subsequently is iterated and all the cells in it divide.  
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Remark: It is important to divide cells outside the loop where we iterate over entire cell 
inventory. If we keep dividing cells in this loop we are adding elements to the list over 
which we iterate over and this might have unwanted side effects. The solution is to use 
use list of cells to divide as we did in the example. 
Notice that we call self.divideCellRandomOrientation(cell) function to divide 
cells. Other modes of division are available as well and they are shown in 
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py as 
commented line with appropriate explanation.  
Notice MitosisSteppable inherits MitosisSteppableBase class (defined in 
PySteppablesExamples.py).It is is the base class which ensures that after we call any of 
the cell dividing function (e.g. divideCellRandomOrientation) CompuCell3D will 
automatically call updatAttributes function as well. updateAttributes function is very 
important and we must call it in order to ensure integrity and sanity of the simulation. 
During mitosis new cell is created (accessed in Python as childCell – defined in 
MitosisSteppableBase - self.mitosisSteppable.childCell) and as such this cell is 
uninitialized. It does have default attributes of a cell such as volume, surface (if we 
decide to use surface constraint or SurfaceTracker plugin) but all other parameters of 
such cell are set to default values. In our simulation we have been setting targetVolume 
and lambdaVolume individually for each cell. After mitosis childCell will need those 
parameters to be set as well. To make things more interesting, in our simulation we 
decided to change type of cell to be different than type of parent cell. In more complex 
simulations where cells have more attributes which are used in the simulation, we have to 
make sure that in the updateAttributes function childCell and its attributes get 
properly initialized. It is also very common practice to change attributes of parentCell 
after mitosis as well to account for the fact that parentCell is not the original 
parentCell from before the mitosis.  
Important: If you specify orientation vector for the mitosis the actual division will take 
place along the line/plane perpendicular to this vector. 
Important: the name of the function where we update attributes after mitosis has to be 
exactly updateAtttributes. If it is called differently CC3D will not call it 
automatically. We can of course call such function by hand, immediately we do the 
mitosis but this is not very elegant solution. 
 
Now we will discuss how to use PDE solvers in ComuCell3D. Most of the PDE solvers 
solve PDE with diffusive terms. Let's take a look at them 

IX.3.5. AdvectionDiffusionSolver. 

 
This steppable solves advection diffusion equation on a cell field as opposed to grid. Of 
course, the inaccuracies are bigger than in the case of PDE being solved on the grid but 
on the other hand solving the PDE on a cell field means that we associate cocentration 
with a given cell (not just with a lattice point). This means that as cells move so does the 
concentration. In other words we get advection for free. The mathematical treatment of 
this kind of approximation was spelled out in  Phys. Rev. E 72, 041909 (2005) paper by 
D.Dan et al. 
The equation solved by this steppable is of the type: 
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2c

= D c+kc+ v c+ secretion
t


 




 

where c  denotes concentration , D is diffusion constant, k  decay constant, v


is velocity 
field. 
In addition to just solving advection-diffusion equation this module allows users to 
specify secretion rates of the cells as well as different secretion modes. More about it in a 
moment. First let's see how one uses AdvectionDiffusionSolver: 
 
This is example syntax: 
 
<Steppable Type="AdvectionDiffusionSolverFE"> 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>FGF</FieldName> 
      <DiffusionConstant>0.05</DiffusionConstant> 
      <DecayConstant>0.003</DecayConstant> 
      
<ConcentrationFileName>flowFieldConcentration2D.txt</ConcentrationFileName> 
      <DoNotDiffuseTo>Wall</DoNotDiffuseTo> 
    </DiffusionData> 
    <SecretionData> 
      <Secretion Type="Fluid">0.5</Secretion>  
      <SecretionOnContact Type="Fluid"  
      <SecreteOnContactWith="Wall">0.3</SecretionOnContact>  
    </SecretionData> 
 
  </DiffusionField> 
</Steppable> 

 
Inside AdvectionDiffusionSolver you need to define sections that describe a field on 
which the steppable is to operate. In our case we declare just one diffusion field. Inside 
the diffusion field we specify sections describing diffusion and secretion. Let's take a 
look at DiffusionData section first: 
 
<DiffusionData> 
  <FieldName>FGF</FieldName> 
  <DiffusionConstant>0.05</DiffusionConstant> 
  <DecayConstant>0.003</DecayConstant> 
  <ConcentrationFileName>flowFieldConcentration2D.txt</ConcentrationFileName> 
  <DoNotDiffuseTo>Wall</DoNotDiffuseTo> 
</DiffusionData> 

 
We give a name (FGF) to the diffusion field – this is required as we will refer to this field 
in other modules. Next we specify diffusion constant and decay constant.  
 
Caution: We use Forward Euler Method to solve these equations. This is not a stable 
method for solving diffusion equation and we do not perform stability checks. If you 
enter too high diffusion constant for example you may end up with unstable (wrong) 
solution. Always test your parameters to make sure you are not in the unstable region. 
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ConcentrationFileName is an optional tag and lets you specify a text file that contains 
values of concentration for every pixel. The value of concentratio of the last pixel read 
for a given cell becomes an overall value of concentration for a cell. That is if cell has, 
say 8 pixels, and you specify different concentration at every pixel, then cell 
concentration will be the last one read from the file. 
 
Concentration file format is as follows: 
 
x y z c 

 
where x,y,z, denote coordinate of the pixel. c is the value of the concentration. 
 
Example: 
 
0 0 0 1.2 
0 0 1 1.4 
... 

 
You may also specify cells which will not participate in the diffusion. You do it using  
<DoNotDiffuseTo> tag. In this example you do not let any FGF diffuse into Wall cells. 
You may of course use as many as necessary <DoNotDiffuseTo> tags . 
 
In addition to diffusion parameters we may specify how secretion should proceed. 
SecretionData section contains all the necessary information to tell CompuCell how to 
handle secretion. Let's study the example: 
 
<SecretionData> 
 <Secretion Type="Fluid">0.5</Secretion>  
 <SecretionOnContact Type="Fluid"  
 SecreteOnContactWith="Wall">0.3</SecretionOnContact>  
</SecretionData> 

 
Here we have a definition two major secretion modes. Line:  
 
<Secretion Type="Fluid">0.5</Secretion>  

 
ensures that every cell of type Fluid will get 0.5 increase in concentration every MCS. 
Line: 
  
<SecretionOnContact Type="Fluid" SecreteOnContactWith="Wall">0.3 
</SecretionOnContact> 
 

means that cells of type Fluid will get additional 0.3 increase in concentration but only 
when they touch cell of type Wall. This mode of secretion is called 
SecretionOnContact. 
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IX.3.6. FlexibleDiffusionSolver 

 
This steppable is one of the basic and most important modules in CompuCell3D 
simulations. As the name suggests it is responsible for solving diffusion equation but in 
addition to this it also handles chemical secretion which maybe thought of as being part 
of general diffusion equation.  
 

2c
= D c+kc+ secretion

t





 

 
where k is a decay constant of concentration c and D is the diffusion constant. The term 
called secretion has the meaning as described below. 
The principles of operations are analogous as in the case of AdvectionDiffusionSolver so 
most of has been said there applies to FlexibleDiffusionSolve. Also the syntax is very 
similar. Let's see an example 
 
 <Steppable Type="FlexibleDiffusionSolverFE"> 
     <AutoscaleDiffusion/> 
     <DiffusionField> 
        <DiffusionData> 
            <FieldName>FGF8</FieldName> 
            <DiffusionConstant>0.1</DiffusionConstant> 
            <DecayConstant>0.002</DecayConstant> 
  <ExtraTimesPerMCS>5</ExtraTimesPerMCS> 
            <DeltaT>0.1</DeltaT> 
            <DeltaX>1.0</DeltaX> 
            <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo> 
 
     <InitialConcentrationExpression>x*y 

      </InitialConcentrationExpression> 
 

        </DiffusionData> 
 
        <SecretionData> 
         <Secretion Type="Amoeba">0.1</Secretion> 
        </SecretionData> 
 
        <BoundaryConditions>              
         <Plane Axis="X">  
          <ConstantValue PlanePosition="Min" Value="10.0"/> 
          <ConstantValue PlanePosition="Max"  Value="10.0"/>                  
         </Plane> 
                     
         <Plane Axis="Y">                                                 
          <ConstantDerivative PlanePosition="Min" Value="10.0"/> 
          <ConstantDerivative PlanePosition="Max"  Value="10.0"/>  
         </Plane>             
        </BoundaryConditions> 
 
    </DiffusionField> 
 
    <DiffusionField> 
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        <DiffusionData> 
            <FieldName>FGF</FieldName> 
            <DiffusionConstant>0.02</DiffusionConstant> 
            <DecayConstant>0.001</DecayConstant> 
            <DeltaT>0.01</DeltaT> 
            <DeltaX>0.1</DeltaX> 
        <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>  
        </DiffusionData> 
        <SecretionData> 
            <SecretionOnContact Type="Medium"  
             SecreteOnContactWith="Amoeba">0.1</SecretionOnContact> 
            <Secretion Type="Amoeba">0.1</Secretion> 
        </SecretionData> 
    </DiffusionField> 
 </Steppable> 
 

 
We can also see new xml tags <DeltaT> and <DeltaX>. Their values determine the 
correspondence between MCS and actual time and between lattice spacing and actual 
spacing size. In this example for the first diffusion field one MCS corresponds to 0.1 
units of actual time and lattice spacing is equal 1 unit of actual length. What is happening 
here is that the diffusion constant gets multiplied by: 
 
DeltaT/(DeltaX* DeltaX) 

 
provided the decay constant is set to 0. If the decay constant is not zero DeltaT  appears 
additionally in the term (in the explicit numerical approximation of the diffusion equation 
solution) containing decay constant so in this case it is more than simple diffusion 
constant rescaling. 
DeltaT and DeltaX settings are closely related to ExtraTimesPerMCS setting which 
allows calling of diffusion (and only diffusion) more than once per MCS. The number of 
extra calls per MCS is specified by the user on a per-field basis using ExtraTimesPerMCS  
tag. 
IMPORTANT: When using ExtraTimesPerMCS secretion functions will called only 
once per MCS. This is different than using PDESolverCaller where entire module is 
called multiple times (this include diffusion and secretion for all fields).  
 
The AutoscaleDiffusion tag tells CC3D to automatically rescale diffusion constant 
when switching between sqaure and hex lattices. In previous versions of CC3D such 
scaling had to be done manually to ensure that solutions diffusion of equation on different 
lattices match. Here we introduced for user convenience a simple tag that does rescaling 
automatically. The rescaling factor comes from the fact that the discretization of the 
divergence term in the diffusion equation has factors such as unit lengths, using surface 
are and pixel/voxel volume in it. On square lattice all those values have numerical value 
of 1.0. On hex lattice, and for that matter of non-quare latticeses, only pixel/voxel volume 
has numerical value of 1. All other quantities have values different than 1.0 which causes 
the necessity to rescale diffusion constant. The detail of the hex lattice derivation will be 
presented in the Appendix 
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Instabilities of the Forward Euler Method 
Most of the PDE soplvers in CC3D use Forward Euler exmplicit numerical scheme. This 
method is unstable for large diffusioni constant. As a matter of fact using D=0.25 with 
pulse initial condition will lead to instabilities in 2D. To deal with this you would 
normally use implicit solvers however due to moving boundary conditions that we have 
to deal with in CC3D simulations, memory requirements, perofmance  and the fact that 
most diffusion constants encountered in biology are quite low (unfortunately this is not 
for all chemicals e.g. oxygen ) we decided to use explicit scheme. If you have to use large 
diffusion constants with explicit solvers you need to do rescaling: 

1) Set D, t, x according to your model 
2) If 

∆
∆

0.16					 	3  

you will need to call solver multiple times per MCS. 
3) Set <ExtraTimesPerMCS> to N-1 where: 

 
and 

∆ /
∆

0.16					 	3  

  
SecretionData sections are analogous to those defined in AdvectionDiffusionSolver. 
here however, the secretion is done done on per-pixel basis (as opposed to per cell basis 
for AdvectionDiffusionSolver). For example when we use the following xml statement 
  
<Secretion Type="Amoeba">0.1</Secretion> 

 
this means that every pixel that belongs to cells of type Amoebae will get boost in 
concentration by 0.1. That is the secretion proceeds uniformly in the whole body of a cell. 
Alternative secretion mode would be the one described by the following line: 
 
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">0.1 
</SecretionOnContact> 
 

Here the secretion will take place in medium and only in those pixels belonging to 
Medium that touch directly Amoeba. 
More secretion schemes will be added in the future. 
 
Initial Conditions 
In Advection Diffusion solver we used external file (<ConcentrationFileName> 
tag) to specify initial conditions.  FlexibleDiffusionSolverFE (and for that matter all 
solvers except AdvectionDiffusion solver) accepts specification of initial concentration in 
a form of a function of coordinates x, y, z. We use   
<InitialConcentrationExpression> tag to input the formula.  The initial 
concentration can also be input from the Python script (typically in the start function of 
the steppable) but often it is more convenient to type one line of the CC3DML script than 
few lines in Python. 
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Boundary Conditions 
 
All standard solvers (Flexible, Fast, and Reaction Diffusion) by default use the same 
boundary conditions as the GGH simulation (and those are specified in the Potts section 
of the CC3DML script). Users can, however, override those defaults and use customized 
boundary conditions for each field individually. Currently CompuCell3D supports the 
following boundary conditions for the diffusing fields: periodic, constant value 
(Dirichlet) and constant derivative (von Neumann). To specify custom boundary 
condition we include <BoundaryCondition> section inside <DiffusionField> tags.  
The <BoundaryCondition> section describes boundary conditions along particular axes. 
For example: 
         <Plane Axis="X">  
          <ConstantValue PlanePosition="Min" Value="10.0"/> 
          <ConstantValue PlanePosition="Max"  Value="10.0"/>                  
         </Plane> 

specifies boundary conditions along the X axis. They are Dirichlet-type boundary 
conditions. PlanePosition=”Min” denotes plane parallel to yz plane passing through 
x=0. Similarly PlanePosition=”Min” denotes plane parallel to yz plane passing through 
x=fieldDimX-1 where fieldDimX is x dimensionof the lattice. 
 
By analogy we specify constant derivative boundary conditions: 
         <Plane Axis="Y">                                                 
          <ConstantDerivative PlanePosition="Min" Value="10.0"/> 
          <ConstantDerivative PlanePosition="Max" Value="10.0"/>  
         </Plane>             

We can also mix types of boundary conditions along single axis: 
         <Plane Axis="Y">                                                 
          <ConstantDerivative PlanePosition="Min" Value="10.0"/> 
          <ConstantValue PlanePosition="Max" Value="0.0"/>  
         </Plane>             

Here in the xz plane at y=0 we have von Neumann boundary conditions but at 
y=fieldFimY-1 we have dirichlet boundary condition. 
 
To specify periodic boundary conditions along, say x axis we use the following syntax: 
         <Plane Axis="X">  
  <Periodic/> 
         </Plane> 

Notice, that <Periodic> boundary condition specification applies to both “ends” of the 
axis i.e. we cannot have periodic boundary conditions at x=0 and constant derivative at 
x=fieldDimX-1. 
 
The FlexibleDiffusionSolver is also capable of solving simple coupled diffusion type 
PDE of the form: 
 



-111- 

2

2

2

d f

c f

c d

c
= D c+ kc+ secretion+m cd +m cf

t
d

= D d +kd + secretion+ n dc+n df
t
f

= D f +kf + secretion+ p fc+ p fd
t














 

 
where c g c f c dm , m , n , n , p , p are coupling coefficients. To code the 

above equations in xml CompuCell3D syntax you need to use the following syntax: 
 
<Steppable Type="FlexibleDiffusionSolverFE"> 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>c</FieldName> 
      <DiffusionConstant>0.1</DiffusionConstant> 
      <DecayConstant>0.002</DecayConstant> 
      <CouplingTerm InteractingFieldName=”d” CouplingCoefficent=”0.1”/> 
      <CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”0.2”/> 
      <DeltaT>0.1</DeltaT> 
      <DeltaX>1.0</DeltaX> 
      <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo> 
    </DiffusionData> 
    <SecretionData> 
      <Secretion Type="Amoeba">0.1</Secretion> 
    </SecretionData> 
  </DiffusionField> 
 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>d</FieldName> 
      <DiffusionConstant>0.02</DiffusionConstant> 
      <DecayConstant>0.001</DecayConstant> 
      <CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.1”/> 
      <CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”-0.2”/> 
      <DeltaT>0.01</DeltaT> 
      <DeltaX>0.1</DeltaX> 
      <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>  
    </DiffusionData> 
    <SecretionData> 
      <Secretion Type="Amoeba">0.1</Secretion> 
    </SecretionData> 
  </DiffusionField> 
 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>f</FieldName> 
      <DiffusionConstant>0.02</DiffusionConstant> 
      <DecayConstant>0.001</DecayConstant> 
      <CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.2”/> 
      <CouplingTerm InteractingFieldName=”d” CouplingCoefficent=”0.2”/> 
      <DeltaT>0.01</DeltaT> 
      <DeltaX>0.1</DeltaX> 
      <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>  
    </DiffusionData> 
    <SecretionData> 
    <Secretion Type="Amoeba">0.1</Secretion> 

Comment [MSOffice17]: Are coupling terms in 
C++ code multiplied by concentration of that field? 
Instead of   “ md * d+ mf  * f”  using  “ c*( md * d+ 
mf  * f)”  
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      </SecretionData> 
  </DiffusionField> 
</Steppable> 

 
As one can see the only addition that is required to couple diffusion equations has simple 
syntax: 
<CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.1”/> 
<CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”-0.2”/> 

 

IX.3.7. FastDiffusionSolver2D 

FastDiffusionSolver2DFE steppable is a simplified version of the 
FlexibleDiffusionSolverFE steppable. It runs several times faster that flexible solver but 
lacks some of its features. Typical syntax is shown below: 
 
<Steppable Type="FastDiffusionSolver2DFE"> 
   <DiffusionField> 
     <DiffusionData> 
       <UseBoxWatcher/> 
       <FieldName>FGF</FieldName> 
       <DiffusionConstant>0.010</DiffusionConstant> 
       <DecayConstant>0.003</DecayConstant> 
  <ExtraTimesPerMCS>2</ExtraTimesPerMCS> 
       <DoNotDecayIn>Wall</DoNotDecay> 
       <ConcentrationFileName> 
       Demos/diffusion/diffusion_2D_fast_box.pulse.txt 
       </ConcentrationFileName> 
    </DiffusionData> 
  </DiffusionField> 
</Steppable> 

 
In particular for fast solver you cannot specify cells into which diffusion is prohibited. 
However, you may specify cell types where diffusant decay is prohibited 
For exmplanation how ExtraTimesPerMCS works see section on 
FlexibleDiffusionSolverFE. 

IX.3.8. KernelDiffusionSolver 

This diffusion solver has the advantage over previous solvers that it can handle large 
diffusion constants. It is also stable. However, it does not accept options like 
<DoNotDiffuseTo> or <DoNotDecayIn>. It also requires periodic boundary conditions. 
Simply put KernelDiffusionSolver solves diffusion equation  

2c
= D c+kc+ secretion

t





 

 
With fixed, periodic boundary conditions on the edges of the lattice. This is different 
from FlexibleDiffusionSolver where the boundary conditions evolve. You also need to 
choose a proper Kernel range (K) according to the value of diffusion constant. Usually 
when   K2 e-(K^2 / (4D) )  is small (this is the main part of the integrand), the approximation 
convergers to the exact value. 
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The syntax for this solver is as follows: 
 
<Steppable Type="KernelDiffusionSolver"> 
  <DiffusionField> 
    <Kernel>4</Kernel> 
    <DiffusionData> 
      <FieldName>FGF</FieldName> 
      <DiffusionConstant>1.0</DiffusionConstant> 
      <DecayConstant>0.000</DecayConstant> 
 <ConcentrationFileName> 
      Demos/diffusion/diffusion_2D.pulse.txt 
      </ConcentrationFileName> 
    </DiffusionData> 
  </DiffusionField> 
</Steppable> 

 
Inside <DiffusionField> tag one may also use option <CoarseGrainFactor> to  
For example: 
 
<Steppable Type="KernelDiffusionSolver"> 
  <DiffusionField> 
    <Kernel>4</Kernel> 
    <CoarseGrainFactor>2</CoarseGrainFactor> 
    <DiffusionData> 
      <FieldName>FGF</FieldName> 
      <DiffusionConstant>1.0</DiffusionConstant> 
      <DecayConstant>0.000</DecayConstant> 
      <ConcentrationFileName> 
      Demos/diffusion/diffusion_2D.pulse.txt 
      </ConcentrationFileName> 
    </DiffusionData> 
  </DiffusionField> 
</Steppable> 

 

IX.3.9. ReactionDiffusionSolver 

The reaction diffusion solver solves the following system of N reaction diffusion 
equations: 
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Let's consider a simple example of such system: 
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It can be coded as follows: 
 
<Steppable Type="ReactionDiffusionSolverFE"> 
  <AutoscaleDiffusion/> 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>F</FieldName> 
      <DiffusionConstant>0.010</DiffusionConstant> 
      <ConcentrationFileName> 
      Demos/diffusion/diffusion_2D.pulse.txt 
      </ConcentrationFileName> 
      <AdditionalTerm>-0.01*H</AdditionalTerm> 
    </DiffusionData> 
  </DiffusionField> 
 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>H</FieldName> 
      <DiffusionConstant>0.0</DiffusionConstant> 
      <AdditionalTerm>0.01*F</AdditionalTerm> 
    </DiffusionData> 
  </DiffusionField> 
</Steppable> 

 
Notice how we implement functions f from the general system of reaction diffusion 
equations. We simply use <AdditionalTerm> tag and there we type arithmetic 
expression involving field names (tags <FieldName>). In addition to this we may include 
in those expression word CellType. For example: 
 
<AdditionalTerm>0.01*F*CellType</AdditionalTerm>  
 
This means that function f will depend also on CellType . CellType hodls the value of 
the type of the cell at particular location - x, y, z - of the lattice. The inclusion of the cell 
type might be useful if you want to use additional terms which may change depending of 
the cell type. Then all you have to do is to either use if statements inside 
<AdditionalTerm> or form equivalent mathematical expression using functions allowed 
by muParser (http://muparser.sourceforge.net/mup_features.html#idDef2) 
For example, let's assume that additional term for second equation is the following: 

0.1* if    CellType=1

0.15* otherwiseH

F
f

F


 


 

In such a case additional term would be coded as follows: 
 
<AdditionalTerm>if (CellType==1,0.01*F,0.15*F) </AdditionalTerm> 
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Notice that we have used here muParser function called if. The syntax of it is as follows: 
 
if(condition, expression if condition true, \ 
   expression if condition false) 

 
One thing to remember is that computing time of the additional term depends on the level 
of complexity of this term. Thus it is not the best idea to code very complex expressions 
using muParser. 
 
Similarly as in the case of FlexibleDiffusionSolverwe may use AutoscaleDiffusion 
tag tells CC3D to automatically rescale diffusion constant. See section 
FlexibleDiffusionSolver or the Appendix for more information. 
 

IX.3.10. Steady State diffusion solver 
Often in the multi-scale simulations we have to deal with chemicals which have 
drastically different diffusion constants. For slow diffusion fields we can use standard 
explicit solvers (e.g. FlexibleDiffusionSolverFE) but once the diffusion constant becomes 
large the number of extra calls to explicit solvers becomes so large that solving diffusion 
euation using Forward-Euler based solvers is simply impractical. In situations when the 
diffusion sonstant is so large that the solution of the diffusion equation is not that much 
different from the asymptotic solution (i.e. at t   ) it is often more convenient to use 
SteadyStateDiffusion solver which solves Helmholtz equation: 
 2c kc F    
where F is a source function of the coordinates  - it is an input to the equation, k is decay 
constant and c is the concentration. The F function in CC3D is either given implicitely by 
specifying cellular secretion or explicitely by specifying concentration c before solving 
Helmholtz equation. 
 
The CC3D stead state diffusion solvers are stable and allow solutions for large values of 
diffusion constants. 
 
The example syntax for the steady-state solver is shown below: 
 
<Steppable Type="SteadyStateDiffusionSolver2D"> 
     <DiffusionField> 
        <DiffusionData> 
            <FieldName>INIT</FieldName> 
            <DiffusionConstant>1.0</DiffusionConstant> 
            <DecayConstant>0.01</DecayConstant> 
        </DiffusionData> 
     <SecretionData> 
            <Secretion Type="Body1">1.0</Secretion> 
        </SecretionData> 
 
        <BoundaryConditions> 
              
            <Plane Axis="X">                   
                <ConstantValue PlanePosition="Min" Value="10.0"/> 
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                <ConstantValue PlanePosition="Max"  Value="5.0"/> 
            </Plane> 
                     
            <Plane Axis="Y">                                 
                <ConstantDerivaive PlanePosition="Min" Value="0.0"/> 
                <ConstantDerivaive PlanePosition="Max"  Value="0.0"/> 
            </Plane> 
             
        </BoundaryConditions> 
 
    </DiffusionField>         
     
 </Steppable> 
  

The syntax is is similar (actually, almost identical) to the syntax of the 
FlexibleDiffusionSolverFE.  The only difference is that while FlexibleDiffusionSolver 
works in in both 2D and 3D users need to specify the dimensionality of the steady state 
solver. We use  
 
<Steppable Type="SteadyStateDiffusionSolver2D"> 

 
for 2D simulations when all the cells lie in the xy plane and  
 
<Steppable Type="SteadyStateDiffusionSolver"> 

for simulations in 3D. 

IX.3.11. BoxWatcher Steppable  
 
This steppable can potentially speed-up your simulation. Every MCS (or every 
Frequency MCS) it determines maximum and minimum coordinates of cells and then 
imposes slightly bigger box around cells and ensures that in the subsequent MCS spin flip 
attempts take place only inside this box containing cells (plus some amount of medium 
on the sides). Thus instead of sweeping entire lattice and attempting random spin flips 
CompuCell3D will only spend time trying flips inside the box. Depending on the 
simulation the performance gains are up to approx. 30%. The steppable will work best if 
you have simulation with cells localized in one region of the lattice with lots of empty 
space. The steppable will adjust box every MCS (or every Frequency MCS) according to 
evolving cellular pattern. 
 
The syntax is as follows: 
 
 <Steppable Type="BoxWatcher"> 
    <XMargin>5</XMargin> 
    <YMargin>5</YMargin> 
    <ZMargin>5</ZMargin> 
 </Steppable> 
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All that is required is to specify amount of extra space (expressed in units of pixels) that 
needs to be added to a tight box i.e. the box whose sides just touch most peripheral cells' 
pixels. 

IX.4. Additional Plugins and Modules 
 
Besides the modules that were introduced above CompuCell3D contains other modules 
which were developed to solve particular problem. For example module called 
DictyFieldInitializer is used to prepare initial cell configuration for the simulation of 
Dictyostelium discoideum morphogenesis based on the paper by P.Hogeweg and N.Savill  
Modelling morphogenesis: from single cells to crawling slugs. J. theor. Biol. 184, 
229-235. 
Such modules have limited area of applicability and are mostly used in a single 
simulation. For this reason we will not describe them in more detail here. Interested user 
may consult CompuCell3D manual 3.2.0 where all such modules were described. It is our 
goal however to eliminate a need to write customized modules as much as possible. For 
example, DictyFieldInitializer can be easily replaced by using UniformInitializer and 
defining several regions there. Similarly Reaction diffusion solver for this simulation can 
be replaced by a general Reaction Diffusion solver described above. 
While we might run into performance issues when using general as opposed to 
customized, the flexibility and portability associated with using general use modules are 
worth extra run time.  
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Appendix	

1. Calculating Inertia Tensor in CompuCell3D. 
 
For each cell the inertia tensor is defined as follows: 

2 2

2 2

2 2

i i i i i i
i i i

i i i i i i
i i i

i i i i i i
i i i

y z x y x z

I x y x z y z

x z y z x y

 
   

 
    
 
   
  

  
  
  

 

where index 'i' denotes i-th pixel of a given cell and xi, yi,zi are coordinates of that pixel in 
a given coordinate frame.  
where index 'i' denotes i-th pixel of a given cell and xi, yi,zi are coordinates of that pixel in 
a given coordinate frame.  

In Figure 21 we show one possible 
coordinate frame in which one can 
calculate inertia tensor. If the coordinate 
frame is fixed calculating components of 
inertia tensor for cell gaining or losing 
one pixel is quite easy. We will be adding 
and subtracting terms like 2 2

i iy z or i ix y .  

However, in CompuCell3D we are mostly 
interested in knowing tensor of inertia of a 
cell with respect to xyz coordinate frame 
with origin at the center of mass (COM) 
of a given cell as shown in Fig 21. Now, 
to calculate such tensor we cannot simply 

add or subtract  terms like 2 2
i iy z or i ix y to 

account for lost or gained pixel. If a cell gains 
or loses a pixel its COM coordinates change. 
If so then all the xi, yi,zi coordinates that 
appear in the inertia tensor expression will 
have different value. Thus for each change in 
cell shape (gain or loss of pixel) we would 
have to recalculate inertia tensor from scratch. 
This would be quite time consuming and 
would require us to keep track of all the pixels 
belonging to a given cell. It turns out however 
that there is a better way of keeping track of 
inertia tensor for cells. We will be using 

x 

y 

xi 

yi 

Figure 21. Cell and its coordinate frame in 
which we calculate inertia tensor 

x

y

xi 

yi 

Figure 22. Cell and coordinate system 
passing through center of mass of a 
cell. Notice that as cell changes shape 
the position of center of mass moves. 
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parallel axis theorem to do the calculations. Paralel axis theorem states that if ICOM is a 
moment of inertia with respect to axis passing through center of mass then we can 
calculate moment of inertia with respect to any parallel axis to the one passin through the 
COM by using the following formula: 

2
' 'x x xxI I Md   

where xxI denotes moment of inertia with respect to x axis passing through center of 

mass, ' 'x xI is a moment of inertia with respect to axis parallel to the x axis passing through 

center of mass, d is the distance between the axes and M is mass of the cell. 
 
Let us now draw a picture of a cell gaining one pixel: 

 
 
Now using parallel axis theorem we can write expression for the moment of inertia after 
cell gains one pixel the following that: 

2
' ' ( 1)new new

xx x x newI I V d     

where as before new
xxI denotes moment of inertia of a cell with new pixel with respect to x 

axis passing through center of mass, ' '
new

x xI is a moment of inertia with respect to axis 

parallel to the x axis passing through center of mass, dnew is the distance between the axes 
and V+1 is volume of the cell after it gained one pixel. Now let us rewrite above equation 
by adding ad subtracting Vd2 term: 
 

x

y 

xn+1 

yn+1 

Figure 23. Cell gaining one pixel.d denotes 
a distance from origin of a fixed fram of 
reference to a center of mass of a cell 
before cell gains new pixel. dnew denotes 
same distance but after cell gains new pixel

d dnew 
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Therefore we have found an expression for moment of inertia passing through the center 
of mass of the cell with additional pixel. Note that this expression involves moment of 
inertia but for the old cell (i.e. the original cell, not the one with extra pixel). When we 
add new pixel we know its coordinates and we can also easily calculate dnew .Thus when 
we need to calculate the moment of intertia for new cell instead of performing summation 
as given in the definition of the inertia tensor we can use much simpler expression. 
This was diagonal term of the inertia tensor. What about off-diagonal terms? Let us write 
explicitely expression for Ixy : 

( )( ) 1
N N N N N

xy i COM i COM i i COM i COM i COM COM
i i i i i

N

i i COM COM COM COM COM COM
i

N

i i COM COM
i

I x x y y x y x y y x x y

x y x Vy y Vx x y V

x y Vx y

        

    

  

    





 

where COMx denotes x COM position of the cell, similarly COMy denotes y COM position 

of cell and V denotes cell volume. In the above formula we have used the fact that 

i
i

COM i COM
i

x
x x x V

V
  


  and similarly for the y coordinate. 

Now, for the new cell with additional pixel we have the following relation: 
1

1 1

1 1
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( 1)
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N
new new new

xy i i COM COM
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N
new new
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where we have added and subtracted COM COMVx y  to be able to form 
N

old
xy i i COM COM

i

I x y Vx y   on the right hand side of the expression for new
xyI . As it was 

the case for diagonal element, calculating off-diagonal of the inertia tensor involves old
xyI   

and positions of center of mass of the cell before and after gaining new pixel. All those 
quantities are either known a priori ( old

xyI ) or can be easily calculated (center of mass 

position after gaining one pixel). 
Therefore we have shown how we can calculate tensor of inertia for a given cell with 
respect to a coordinate frame with origin at cell's center of mass, without evaluating full 
sums. Such "local" calculations greatly speed up simulations 
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2.Calculating shape constraint of a cell – elongation term 
 
The shape of single cell immersed in medium and not subject to too drastic surface or 
surface constraints will be spherical (circular in 2D). However in certain situation we 
may want to use cells which are elongated along one of their body axes. To facilitate this 
we can place constraint on principal lengths of cell. In 2D it is sufficient to constrain one 
of the principal lenghths of cell how ever in 3D we need to constrain 2 out of 3 principal 
lengths. Our first task is to diagonalize inertia tensor (i.e. find a coordinate frame 
transformation which brings inertia tensor to a giagonal form) 
 

2.1. Diagonalizing inertia tensor 
 
We will consider here more difficult 3D case. The 2D case is described in detail in 
M.Zajac, G.L.jones, J,A,Glazier "Simulating convergent extension by way of anisotropic 
differential adhesion"  Journal of Theoretical Biology 222 (2003) 247–259. 
 
In order to diagonalize inertia tensor we need to solve eigenvalue equation: 
det( ) 0I    or in full form 
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The eigenvalue equation will be in the form of 3rd order polynomial. The roots of it are 
guaranteed to be real. The polynomial itself can be found either by explicit derivation, 
using symbolic calculation or simply in Wikipedia ( 
http://en.wikipedia.org/wiki/Eigenvalue_algorithm ) 

 
 
so in our case the eigenvalue equation takes the form: 
 

3 2 2 2 2

2 2 2

(I I I ) (I +I I I I I I I I )

I I I I I I I I I 2I I I 0

xx yy zz xy yz xz xx yy yy zz xx zz

xx yy zz xx yz yy xz zz xy xy yz xz

L L L        

     
 

 
This equation can be solved analytically, again we may use Wikipedia ( 
http://en.wikipedia.org/wiki/Cubic_function )  
Now, the eigenvalues found that way are principal moments of inertia of a cell. That is 
they are components of inertia tensor in a coordinate frame rotated in such a way that off-
diagonal elements of inertia tensor are 0: 
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In our cell shape constraint we will want to obtain ellipsoidal cells. Therefore the target 
tensor of inertia for the cell should be tensor if inertia for ellipsoid: 
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where a,b,c are parameters describing the surface of an ellipsoid: 
2 2 2

2 2 2
1

x y z

a b c
    

 
In other words a,b,c are half lengths of  principal axes (they are analogues of circle's 
radius) 
Now we can determine semi axes lengths in terms of principal moments of inertia by 
inverting the following set of equations: 
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Once we have calculated semiaxes lengths in terms of moments of inertia we can plug –
in actual numbers for moment of inertia (the ones for actual cell) and obtain lengths of 
semiexes. Next we apply quadratic constraint on largest (semimajor) and smallest 
(seminimor axes). This is what elongation plugin does. 
 

3 Forward Euler method for solving PDE's in CompuCell3D. 
 
In CompuCell3D most of the solvers uses explicit schemes (Forward Euler method) to 
obtain PDE solutions. Thus for the diffusion equation we have: 

2 2 2

2 2 2

c c c c

t x y z

   
  

   
 

 
In a discretetized form we may write:  
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where to save space we used shorthand notation: 
( , , , ) ( , )

( , , , ) ( , )

c x x y z t c x x t

c x y z t c x t

    


 

 
and similarly for other coordinates. 
After rearranging terms we get the following expression: 

 2
( , ) ( , ) ( , ) ( , )

i neighbors

t
c x t t c i t c x t c x t

x 

 
      

  

where the sum over index 'i' goes over neighbors of point (x,y,z) and the neighbors will 
have the following concentrations: ( , )c x x t  , ( , )c y y t ,…, ( , )c z z t   . 
 

4. Calculating center of mass when using periodic boundary 
conditions. 
 
When you are running calculation with periodic boundary condition you may end up with 

situation like in the figure below: 
 
Clearly what happens is that simply connected cell is 
wrapped around the lattice edge so part of it is in the 
region of high values of x coordinate and the other is 
in the region where x coordinates have low values. 
Consequently a naïve calculation of center of mass 
position according to : 

i
i

COM

x
x

V



  

would result in COMx being somewhere in the middle 

of the lattice and abviously outside the cell.A better 
procedure could be as follows: Before calculating 
center of mass when new pixel is added or lost we 

"shift" a cell and new pixel (gained or lost )to the middle of the lattice do calculations "in 
the middle of the lattice" and shift back. Now if after shifting back it turns out that center 
of mass of a cell lies outside lattice position it in the center of mass by applygin a shift 
equal to the length of the lattice and whose direction should be such that the center of 
mass of the cell ends up inside the lattice (there is only one such shift and it might be be 
equal to zero vector). 

Figure 24. A connected cell in the 
lattice edge area – periodic 
boundary conditions are applied 

x 

y 
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This is how we do it using mathematical formulas: 

COMs x c 
  

 

First we define shift vector s


as a vector difference between vector pointing to center of 
mass of the lattice and vector pointing to (approximately) the middle of the lattice. 
Next we shift cell to the middle of the lattice using : 

COM COMx x s  
  

 

where COMx


denotes center of mass position of a cell after shifting but before adding or 

subtracting a pixel. 
Next we take into account the new pixel (either gained or lost) and calculate center of 
mass position (for the shifted cell): 

1
new COM i

COM

x V x
x

V

  


 
 

Above we have assumed that we are adding one pixel. 
Now all that we need to do is to shift back new

COMx


by same vector s


that brought cell to 

(approximately) center of the lattice. 
new new

COM COMx x s 
  

 

We are almost done. We still have to check if new
COMx


is inside the lattice. If this is not the 

case we need to shift it back to the lattice but now we are allowed to use only a vector 
whose components are multiples of lattice dimensions (and we can safely restrict to +1 
and -1 multiples of the lattice dimmensions) . For example we may have: 

max max( , ,0)P x y 


 where maxx , maxy , maxz are dimensions of the lattice. 

There is no cheating here. In the lattice with periodic boundary conditions you are 
allowed to shift point coordinates a vector whose components are multiples of lattice 
dimensions. 

All we need to do is to examine new center of mass position and form suitable vector P


. 
 

5. Dividing cluster cells 
 
While dividing non-clustered cells is straightforward, doing the same for clustered cells is 
more challenging. To divide non-cluster cell using directional mitosis algorithm we 
construct a line or a plane passing through center of mass of a cell and pixels of the cell 
(we are using PixelTracker plugin with mitosis) on one side of the line/plane end up in 
child cell and the rest stays in parent cell. The orientation of the line/plane can be either 
specified by the user or we can use CC3D built-in feature to calculate calculate 
orientation tion of principal axes and divide either along minor or major axis. 
 
With compartmental cells, things get more complicated because: 1) Compartmental cells 
are composed of many subcells. 2) There can be different topologies of clusters. Some 
clusters may look “snake-like” and some might be compactly packed blobs of subcells. 
The algorithm which we implemented in CC3D works in the following way: 

1) We first construct a set of pixels containing every pixel belonging to a cluster cell. 
You may think of it as of a single “regular” cell. 
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2) We store volumes of compartments so that we know how big compartments shold 
be after mitosis (they will be half of original volume) 

3) We calculate center of mass of entire cluster and calculate vector offsets between 
center of mass of a cluster and center of mass of particulat compartments as on 
the figure below: 

 
 

 
 
Figure 25. Vectors 1o


 and 2o


 show offsets between center of mass of a cluster and center 

of mass particular compartments.  
 
4) We pick division line/plane and for parents and child cells we offsets between 

cluster center of mass (after mitosis) and center of masses of clusters. We do it 
according to the formula: 

 nnoop



2

1
 

where p


denotes offset after mitosis from center of mass of child (parent) 
clusters, o


is orientation vector before mitosis (see picture above) and n


is a 

normalized  vector perpendicular to division line/plane. If we try to divide the 
cluster along dashed line as on the picture below 

 
Figure 26. Division of cell along dashed line. Notice the orientation of n


 

the offsets after the mitosis for child and parent cell will be 11 2

1
op


  and 22 op


 as 

expected because both parent and child cells will retain their heights but after mitosis 
will become twice narrower (cell with grey outer compartments is a parent cell): 
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Figure 27. Child and parent (the one with grey outer compartments) cells after 
mitosis. 
The formula given above is heuristic. It gives fairly simple way of assigning pixels of 
child/parent clusters to cellular compartments. It is not perfect but the idea is to get 
approximate shape of the cell after the mitosis and as simulation runs cell shape will 
readjust based on constraints such as adhesion of focal point plasticity. Before 
continuing with the mitosis we check if center of masses of compartments belong to 
child/parent clusters. If the center of masses are outside their target pixels we abandon 
mitosis and wait for readjustment of cell shape at which point mitosis algorithm will 
pass this sanity check. For certain “exotic” shapes of cluster shapes presented mitosis 
algorithm may not work well or at all . In this case we would have to write 
specialized mitosis algorithm. 
5) We divide clusters and knowing offsets from child/parent cluster center of mass 

we assign pixels to particular compartments. The assignment is based on the 
distance of particular pixel to center of masses of clusters. Pixel is assigned to 
particular compartment if its distance to the center of mass of the compartment is 
the smallest as compared to distances between centroids of other compartments. If 
given compartment has reached its target volume and other compartmets are 
underpopulated we would assign pixels to other compartments based on the 
closest distance criterion. Altohugh this method may result in some deviation 
from perfect 50-50 division of compartment volume in most cases after few MCS 
cells will readjust their volume.  

  
Figure 28. CC3D example of compartmental cell division. See also 
examples_PythonTutorial/clusterMitosis. 
 

7. Command line options of CompuCell3D 
Although most users run CC3D using Player GUI sometimes it is very convenient to run 
CC3D using command line options. CC3D allows to invoke Player directly from 
command line which is convenient because if saves several clicks and if you run many 
simulations this might be quite convenient. 

 
Remark: On Windows we use .bat extension for run scripts and on Linux/OSX it is .sh. 
Otherwise all the material in this section applies to all the platforms. 

 

7.1. CompuCell3D Player Command Line Options 
 

The command line options for running simulation with the player are as follows: 
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compucell3d.bat  [options] 

 
Options are: 

 
-i <simulation file> - users specify simulation file they want to run. It can be either 
CC3DML (XML) configuration file or Python script. 

 
-s <screenshotDescriptionFileName> - name of the file containing description of 
screenshots to be taken with the simulation. Usually this file is prepared using Player by 
switching to different views, clickin camera button and saving screenshot description file 
from the Player File menu. 

 
-o <customScreenshotDirectoryName> - allows users to specify where screenshots 
will be written. Overrides default settings. 

 
--noOutput   - instructs CC3D not to store any screenshots. Overrides Player settings. 

 
--exitWhenDone - instructs CC3D to exit at the end of simulation. Overrides Player 
settings. 

 
-h, --help  - prints command line usage on the screen 
 
Example command may look like: 
 
compucell3d.bat –i Demos\cellsort_2D\cellsort_2D.xml –s 
screenshotDescription.sdfml –o Demos\cellsort_2D\screenshot 

 
The frequency of the screenshots is read using Player settings so if you need to adjust it 
please use either GUI directly or change it using PlayerSettings plugin (see example 
Demos\cellsort_2D\cellsort_2D_PlayerSettings.xml) 

7.2. Runnig CompuCell3D in a GUI-Less Mode - Command Line 
Options. 
 
Sometimes when you want to run CC3D on a cluster you will have to use runScript.bat 
which allows running CC3D simulations without invoking GUI. However, all the 
screenshots will be still stored.  
Remark: current version of this script does not handle properly relative paths so it has to 
be run from the installation directory of CC3D i.e. you have to cd into this directory prior 
to runnit runScript.bat. Another solution is to use full paths. 
 
The output of this script is in the form of vtk files which can be subsequently replayed in 
the Player (and one can take screenshots then). By default all fields present in the 
simulation are stored in the vtk file. If users want to remove some of the fields fro mbeing 
stored in the vtk format they have to pass this information in the Python script: 
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CompuCellSetup.doNotOutputField(_fieldName) 

The best place to put such stetements is directly before steppable section in the Python 
main script. See also commented line (and try uncommenting it) in 
examples_PythonTutorial\ diffusion_extra_player_field\ 
diffusion_2D_extra_player_field.py.  
Storing entire fields (as opposed to storing screenshots) preserves exact snapshots of the 
simulation and allows result postprocessing. In addition to the vtk files runScript stores 
lattice description file with .dml extension which users open in the Player (File->Open 
Lattice Description Summary File…) if they want to reply generated vtk files. 
 
The format of the command is: 
 
runScript.bat [options] 

 
The command line options for runScript.bat are as follows: 
 
-i <simulation file> - users specify simulation file they want to run. It can be either 
CC3DML (XML) configuration file or Python script. Remember about using full paths if 
you run the script from directory different than  
-c <outputFileCoreName> - allows users to specify core name for the vtk files. The 
default name for vtk files is “Step” 
 
-o <customVtkDirectoryName> - allows users to specify where vtk files and the .dml 
file will be written. Overrides default settings 
 
-f  <frequency> or –outputFrequency=<frequency> - allows to specify how often 
vtk files are stored to the disk. Those files tend to be quite large for bigger simulations so 
storing them every single MCS (default setting) slows down simulation considerably and 
also uses a lot of disk space. 
 
--noOutput   - instructs CC3D not to store any output. This option makes little sense in 
most cases. 
 
-h, --help  - prints command line usage on the screen 
 
Example command may look as follows: 
 
runScript.bat –i examples_PythonTutorial\cellsort_2D_info_printer\ 
cellsort_2D_info_printer.py –f 10  
–o examples_PythonTutorial\cellsort_2D_info_printer\screenshots 
–c infoPrinter 
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8. Managing CompuCell3D simulations (CC3D project files) 
Until version 3.6.0 CompuCell3D simulations were stored as a combination of Python, 
XML, and PIF files. This solution was working fine but there were significant problems 
with keeping track of simulations files. We still support this convention. However, 
starting with version 3.6.0 we introduced new way of managing CC3D simulations by 
enforcing that a single CC3D simulation is stored in a folder containing .cc3d project file 
describing simulation resources (.cc3d is in fact XML), such as XML configuration file, 
Python scripts, PIF files, Concentration filets etc… and a directory called Simulation 
where all the resources reside. The structure of the new-style CC3D simulation is 
presented in the diagram below: 
 
->CellsortDemo 

CellsortDemo.cc3d 
  ->Simulation 
   Cellsort.xml 
   Cellsort.py 
   CellsortSteppables.py 
   Cellsort.piff 
   FGF.txt 
Bold fonts denote folders. The benefit of using CC3D project files instead of loosely 
related files are as follows: 
 

1) Previously users had to guess which file needs to be open in CC3D – XML or 
Python. While in a well written simulation one can link the files together in a way 
that when user opens either one the simulation would work but, nevertheless, such 
approach was clumsy and unreliable. Starting with 3.6.0 users open .cc3d file and 
they don’t have to stress out that CompUCell3D will complain with error 
message. 

2) All the files specified in the .cc3d project files are copied to the result output 
directory along with simulation results (uncles you explicitely specify otherwise). 
Thus, when you run multiple simulations each one with different parameters, the 
copies of all XML and Python files are stored eliminating guessing which 
parameters were associated with particular simulations.  

3) All file paths appearing in the simulation files are relative paths with respect to 
main simulation folder. This makes simulations portable because all simulation 
resources are contained withing single folder. In the example above when 
referring to Cellsort.piff file from Cellsort.xml you use “Simulation/ 
Cellsort.piff”. This effectively eliminates drawbacks of previous approach – when 
user one stores his simulations in Demos/cellsort and gives this simulation to his 
colleague who stores simulation in MySimulations/cellsort then second user will 
most likely see error message informing him that file 
“Demos/cellsort/cellsort.piff” was not found (I assume here that initial condition 
is specified using cellsort.piff). With approach based on relative paths such 
problems do not exist. Second user can put the simulation anywhere he wants and 
it will run just fine. 
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4) New style of storing CC3D simulations has also another advantage – it makes 
graphical management of simulation content and simulation generation very easy. 
As amatetr of fact new component of CC3D suite – Twedit++ - CC3D edition has 
a graphical tool that allows for easy project file management and it also has new 
simulation wizadrd which allows users to build template of CC3D simulation 
within less than a minute. 

Let’s now look in detail at the structure of .cc3d files: 
 
 
<Simulation version="3.6.0"> 
    <XMLScript>Simulation/Cellsort.xml</XMLScript>     
    <PythonScript>Simulation/Cellsort.py</PythonScript>  
    <Resource Type="Python">Simulation/CellsortSteppables.py</Resource>     
   <PIFFile>Simulation/Cellsort.piff</PIFFile>     
    <Resource Type="Field" Copy="No">Simulation/FGF.txt</Resource> 
</Simulation> 

 
As you can see the structure of the file is quite flat. All that we are storing there is names 
of files that are used in the simulation. Two files have special tags <XMLFile> which 
specifies name of the XML file storing “XML portion” of the simulation and 
<PythonScript> which specifies main Python script. We have also PIFFile tag which is 
used to designate PIF files. All other files used in the simulation are referred to as 
Resources. For example Python steppable file is a resource of type “Python”. FGF.txt is 
aresource of type “Field”. Notice that all the files are specified using paths relative to 
main simulation directory. 
As we mentioned before, when you run .cc3d simulation all the files listed in the project 
file are copied to result folder. If for somereason oyu want to avoid coping of some of the 
files, simply add Copy=”No” attribute in the tag with file name specification. 

 

9. Keeping Track of Simulation Files (deprecated) 
CompuCell3D will store screenshots, vtk lattice snapshots and CC3DML file/Python 
main script in the output directory. However often simulations consist of several files: 
CC3DML, Python main script, Python steppable script, Python plugin script, PIF files 
etc. If you want those files to be archived with the rest of simulation output you need to 
use SimulationFileStorage steppable declared in PySteppablesExamples.py. 
 
The usage is very simple (see also 
examples_PythonTutorial\cellsort_2D_info_printer\cellsort_2D_info_printer.py):  
 
from PySteppablesExamples import SimulationFileStorage 
sfs=SimulationFileStorage(_simulator=sim,_frequency=10) 
sfs.addFileNameToStore("\ 
examples_PythonTutorial/cellsort_2D_info_printer/cellsort_2D.xml") 
sfs.addFileNameToStore("\ 
examples_PythonTutorial/cellsort_2D_info_printer/cellsort_2D_info_printer.py") 
sfs.addFileNameToStore("examples_PythonTutorial/cellsort_2D_info_printer\ 
/cellsort_2D_steppables_info_printer.py") 
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steppableRegistry.registerSteppable(sfs) 

 
It wil ensure that files listed here will be writte to simulation directory. This way if you 
keep changing simulation files you will be able to easily recover entire simulation at  


