
-1-

CompuCell3D Manual and Tutorial

Version 3.6.1

Maciej H. Swat, Susan D. Hester, Randy W. Heiland, Benjamin L.
Zaitlen, James A. Glazier, Abbas Shirinifard

Biocomplexity Institute and Department of Physics, Indiana University, 727 East 3rd
Street, Bloomington IN, 47405-7105, USA

-2-

-3-

I. Introduction ... 6
II. GGH Applications .. 7
III. GGH Simulation Overview ... 7

III.A. Effective Energy ... 8
III.B. Dynamics ... 10
III.C. Algorithmic Implementation of Effective-Energy Calculations 11

IV. CompuCell3D ... 13
V. Building CC3DML-Based Simulations Using CompuCell3D 15

V.A A Short Introduction to XML ... 16
V.B Grain-Growth Simulation .. 16
V.C Cell-Sorting Simulation ... 21
V.D Bacterium-and-Macrophage Simulation ... 23

VI. Python Scripting ... 30
VI.A A Short Introduction to Python .. 31
VI.B Building Python-Based CompuCell3D Simulations .. 32
VI.C Cell-Type-Oscillator Simulation .. 33
VI.D Two-Dimensional Foam-Flow Simulation .. 38
VI.E. Diffusing-Field-Based Cell-Growth Simulation ... 48

VII. Conclusion ... 58
VIII. Acknowledgements .. 59
IX. XML Syntax of CompuCell3D modules .. 59

IX.1. Potts Section .. 59
IX.1.1 Lattice Type ... 64

IX.2. Plugins Section .. 66
IX.2.1. CellType Plugin .. 66
IX.2.2. Simple Volume and Surface Constraints .. 66
IX.2.3.VolumeTracker and SurfaceTracker plugins ... 67
IX.2.4. VolumeFlex Plugin ... 67
IX.2.5. SurfaceFlex Plugin.. 68
IX.2.6. VolumeLocalFlex Plugin .. 68
IX.2.7. SurfaceLocalFlex Plugin .. 69
IX.2.8. NeighborTracker Plugin ... 69
IX.2.9. Chemotaxis ... 70
IX.2.10. ExternalPotential plugin ... 73
IX.2.11. CellOrientation Plugin .. 74
IX.2.12. PolarizationVector Plugin ... 75
IX.2.13. CenterOfMass Plugin .. 76
IX.2.12. Contact Energy ... 76
IX.2.13. ContactLocalProduct Plugin ... 77
IX.2.14. AdhesionFlex Plugin .. 78
IX.2.15. ContactMultiCad Plugin ... 81
IX.2.15. MolecularContact ... 82
IX.2.15. ContactCompartment .. 82
IX.2.16. LengthConstraint Plugin ... 83
IX.2.17. Connectivity Plugins ... 84
IX.2.18. Mitosis Plugin ... 86

-4-

IX.2.19. Secretion Plugin .. 86
IX.2.20. PDESolverCaller Plugin ... 88
IX.2.21. Elasticity Plugin and ElasticityTracker Plugin 89
IX.2.22. FocalPointPlasticity Plugin ... 90
IX.2.23.Curvature Plugin .. 94
IX.2.24.PlayerSettings Plugin ... 95
IX.2.25.BoundaryPixelTracker Plugin ... 96
IX.2.26. GlobalBoundaryPixelTracker ... 96
IX.2.27. PixelTracker Plugin .. 97
IX.2.28. MomentOfInertia plugin ... 97
IX.2.29. SimpleClock plugin .. 98
IX.2.30. ConvergentExtension plugin .. 98

IX.3. Steppable Section ... 98
IX.3.1 UniformInitializer Steppable ... 99
IX.3.2. BlobInitializer Steppable .. 100
IX.3.3. PIF Initializer .. 100
IX.3.4. PIFDumper Steppable ... 102
IX.3.5. Mitosis Steppabe. .. 102
IX.3.5. AdvectionDiffusionSolver. ... 104
IX.3.6. FlexibleDiffusionSolver ... 107
IX.3.7. FastDiffusionSolver2D ... 112
IX.3.8. KernelDiffusionSolver .. 112
IX.3.9. ReactionDiffusionSolver .. 113
IX.3.10. Steady State diffusion solver .. 115
IX.3.11. BoxWatcher Steppable ... 116

IX.4. Additional Plugins and Modules ... 117
X. References .. 117
Appendix ... 124

1. Calculating Inertia Tensor in CompuCell3D. ... 124
2.Calculating shape constraint of a cell – elongation term ... 127

2.1. Diagonalizing inertia tensor ... 127
3 Forward Euler method for solving PDE's in CompuCell3D. 128
4. Calculating center of mass when using periodic boundary conditions. 129
5. Dividing cluster cells .. 130
7. Command line options of CompuCell3D ... 132

7.1. CompuCell3D Player Command Line Options ... 132
7.2. Runnig CompuCell3D in a GUI-Less Mode - Command Line Options. 133

8. Managing CompuCell3D simulations (CC3D project files) 135
9. Keeping Track of Simulation Files (deprecated) .. 136

-5-

The goal of this manual is to teach biomodelers how to effectively use multi-scale, multi-
cell simulation environment CompuCell3D to build, test, run and post-process
simulations of biological phenomena occurring at single cell, tissue or even up to single
organism levels. We first introduce basics of the Glazier-Graner-Hogeweg (GGH) model
aka Cellular Potts Model (CPM) and then follow with essential information about how to
use CompuCell3D and show simple examples of biological models implemented using
CompuCell3D. Subsequently we will introduce more advanced simulation building
techniques such as Python scripting and writing extension modules using C++. In
everyday practice, however, the knowledge of C++ is not essential and C++ modules are
usually developed by core CompuCell3D developers. However, to build sophisticated
and biologically relevant models you will probably want to use Python scripting. Thus we
strongly encourage readers to acquire at lease basic knowledge of Python. We don’t want
to endorse any particular book but to guide users we might suggests names of the authors
of the most popular books on Python programming: David Beazley, Mark Lutz, Mark
Summerfield, Michael Dawson, Magnus Lie Hetland.

-6-

I.	Introduction	
The last decade has seen fairly realistic simulations of single cells that can confirm or
predict experimental findings. Because they are computationally expensive, they can
simulate at most several cells at once. Even more detailed subcellular simulations can
replicate some of the processes taking place inside individual cells. E.g., Virtual Cell
(http://www.nrcam.uchc.edu) supports microscopic simulations of intracellular dynamics
to produce detailed replicas of individual cells, but can only simulate single cells or small
cell clusters.

Simulations of tissues, organs and organisms present a somewhat different challenge:
how to simplify and adapt single cell simulations to apply them efficiently to study, in-
silico, ensembles of several million cells. To be useful, these simplified simulations
should capture key cell-level behaviors, providing a phenomenological description of cell
interactions without requiring prohibitively detailed molecular-level simulations of the
internal state of each cell. While an understanding of cell biology, biochemistry, genetics,
etc. is essential for building useful, predictive simulations, the hardest part of simulation
building is identifying and quantitatively describing appropriate subsets of this
knowledge. In the excitement of discovery, scientists often forget that modeling and
simulation, by definition, require simplification of reality.

One choice is to ignore cells completely, e.g., Physiome (1) models tissues as continua
with bulk mechanical properties and detailed molecular reaction networks, which is
computationally efficient for describing dense tissues and non-cellular materials like
bone, extracellular matrix (ECM), fluids, and diffusing chemicals (2, 3), but not for
situations where cells reorganize or migrate.

Figure 1. Detail of a typical two-dimensional GGH cell-lattice configuration. Each
colored domain represents a single spatially-extended cell. The detail shows that each

generalized cell is a set of cell-lattice sites (or pixel), i

, with a unique index, i

, here

4 or 7. The color denotes the cell type, i

.

Multi-cell simulations are useful to interpolate between single-cell and continuum-tissue
extremes because cells provide a natural level of abstraction for simulation of tissues,

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 7 4 4

7 4 4 7 7 7

7 7 7 7 7 7

7 7 7 7 7 7

Detail of cell-lattice

-7-

organs and organisms (4). Treating cells phenomenologically reduces the millions of
interactions of gene products to several behaviors: most cells can move, divide, die,
differentiate, change shape, exert forces, secrete and absorb chemicals and electrical
charges, and change their distribution of surface properties. The Glazier-Graner-
Hogeweg (GGH) approach facilitates multiscale simulations by defining spatially-
extended generalized cells, which can represent clusters of cells, single cells, sub-
compartments of single cells or small subdomains of non-cellular materials. This flexible
definition allows tuning of the level of detail in a simulation from intracellular to
continuum without switching simulation framework to examine the effect of changing the
level of detail on a macroscopic outcome, e.g., by switching from a coupled ordinary-
differential-equation (ODE) Reaction-Kinetics (RK) model of gene regulation to a
Boolean description or from a simulation that includes subcellular structures to one that
neglects them.

II.	GGH	Applications	
Because it uses a regular cell lattice and regular field lattices, GGH simulations are often
faster than equivalent Finite Element (FE) simulations operating at the same spatial
granularity and level of modeling detail, permitting simulation of tens to hundreds of
thousands of cells on lattices of up to 10243 pixels on a single processor. This speed,
combined with the ability to add biological mechanisms via terms in the effective energy,
permit GGH modeling of a wide variety of situations, including: tumor growth (5-9),
gastrulation (10-12), skin pigmentation (13-16), neurospheres (17), angiogenesis (18-23),
the immune system (24, 25), yeast colony growth (26, 27), myxobacteria (28-31), stem-
cell differentiation (32, 33), Dictyostelium discoideum (34-37), simulated evolution (38-
43), general developmental patterning (14, 44), convergent extension (45, 46), epidermal
formation (47), hydra regeneration (48, 49), plant growth, retinal patterning (50, 51),
wound healing (47, 52, 53), biofilms (54-57), and limb-bud development (58, 59).

III.	GGH	Simulation	Overview		
All GGH simulations include a list of objects, a description of their interactions and
dynamics and appropriate initial conditions.

Objects in a GGH simulation are either generalized cells or fields in two dimensions (2D)
or three dimensions (3D). Generalized cells are spatially-extended objects (Figure 1),
which reside on a single cell lattice and may correspond to biological cells, sub-
compartments of biological cells, or to portions of non-cellular materials, e.g. ECM,
fluids, solids, etc. (8, 48, 60-72). We denote a lattice site or pixel by a vector of integers,

i

, the cell index of the generalized cell occupying pixel i

by i

 and the type of the

generalized cell i

 by i

. Each generalized cell has a unique cell index and

contains many pixels. Many generalized cells may share the same cell type. Generalized
cells permit coarsening or refinement of simulations, by increasing or decreasing the
number of lattice sites per cell, grouping multiple cells into clusters or subdividing cells
into variable numbers of subcells (subcellular compartments). Compartmental simulation
permits detailed representation of phenomena like cell shape and polarity, force
transduction, intracellular membranes and organelles and cell-shape changes. For details

-8-

on the use of subcells, which we do not discuss in this chapter see (27, 31, 73, 74). Each
generalized cell has an associated list of attributes, e.g., cell type, surface area and
volume, as well as more complex attributes describing a cell’s state, biochemical
interaction networks, etc.. Fields are continuously-variable concentrations, each of which
resides on its own lattice. Fields can represent chemical diffusants, non-diffusing ECM,
etc.. Multiple fields can be combined to represent materials with textures, e.g., fibers.

Interaction descriptions and dynamics define how GGH objects behave both biologically
and physically. Generalized-cell behaviors and interactions are embodied primarily in the
effective energy, which determines a generalized cell’s shape, motility, adhesion and
response to extracellular signals. The effective energy mixes true energies, such as cell-
cell adhesion with terms that mimic energies, e.g., the response of a cell to a chemotactic
gradient of a field (75). Adding constraints to the effective energy allows description of
many other cell properties, including osmotic pressure, membrane area, etc. (76-83).

The cell lattice evolves through attempts by generalized cells to move their boundaries in
a caricature of cytoskeletally-driven cell motility. These movements, called index-copy
attempts, change the effective energy, and we accept or reject each attempt with a
probability that depends on the resulting change of the effective energy, H, according to
an acceptance function. Nonequilibrium statistical physics then shows that the cell lattice
evolves to locally minimize the total effective energy. The classical GGH implements a
modified version of a classical stochastic Monte-Carlo pattern-evolution dynamics, called
Metropolis dynamics with Boltzmann acceptance (84, 85). A Monte Carlo Step (MCS)
consists of one index-copy attempt for each pixel in the cell lattice.

Auxiliary equations describe cells’ absorption and secretion of chemical diffusants and
extracellular materials (i.e., their interactions with fields), state changes within cells,
mitosis, and cell death. These auxiliary equations can be complex, e.g., detailed RK
descriptions of complex regulatory pathways. Usually, state changes affect generalized-
cell behaviors by changing parameters in the terms in the effective energy (e.g., cell
target volume or type or the surface density of particular cell-adhesion molecules).

Fields also evolve due to secretion, absorption, diffusion, reaction and decay according to
partial differential equations (PDEs). While complex coupled-PDE models are possible,
most simulations require only secretion, absorption, diffusion and decay, with all
reactions described by ODEs running inside individual generalized cells. The movement
of cells and variations in local diffusion constants (or diffusion tensors in anisotropic
ECM) mean that diffusion occurs in an environment with moving boundary conditions
and often with advection. These constraints rule out most sophisticated PDE solvers and
have led to a general use of simple forward-Euler methods, which can tolerate them.

The initial condition specifies the initial configurations of the cell lattice, fields, a list of
cells and their internal states related to auxiliary equations and any other information
required to completely describe the simulation.

III.A. Effective Energy
The core of GGH simulations is the effective energy, which describes cell behaviors and
interactions.

-9-

One of the most important effective-energy terms describes cell adhesion. If cells did not
stick to each other and to extracellular materials, complex life would not exist (86).
Adhesion provides a mechanism for building complex structures, as well as for holding
them together once they have formed. The many families of adhesion molecules (CAMs,
cadherins, etc.) allow embryos to control the relative adhesivities of their various cell
types to each other and to the noncellular ECM surrounding them, and thus to define
complex architectures in terms of the cell configurations which minimize the adhesion
energy.

To represent variations in energy due to adhesion between cells of different types, we
define a boundary energy that depends on ((), ())J , the boundary energy per unit
area between two cells (,) of given types ((), ()) at a link (the interface
between two neighboring pixels):

neighbors

boundary
,

, 1 ,
i j

H J i j i j

, (1)

where the sum is over all neighboring pairs of lattice sites

i and

j (note that the

neighbor range may be greater than one), and the boundary-energy coefficients are
symmetric,

 , ,J J . (2)

In addition to boundary energy, most simulations include multiple constraints on cell
behavior. The use of constraints to describe behaviors comes from the physics of classical
mechanics. In the GGH context we write constraint energies in a general elastic form:

 2constraintH value target_value . (3)

The constraint energy is zero if value = target_value (the constraint is satisfied) and
grows as value diverges from target_value . The constraint is elastic because the exponent
of 2 effectively creates an ideal spring pushing on the cells and driving them to satisfy the
constraint. is the spring constant (a positive real number), which determines the
constraint strength. Smaller values of allow the pattern to deviate more from the
equilibrium condition (i.e., the condition satisfying the constraint). Because the constraint
energy decreases smoothly to a minimum when the constraint is satisfied, the energy-
minimizing dynamics used in the GGH automatically drives any configuration towards
one that satisfies the constraint. However, because of the stochastic simulation method,
the cell lattice need not satisfy the constraint exactly at any given time, resulting in
random fluctuations. In addition, multiple constraints may conflict, leading to
configurations which only partially satisfy some constraints.

Because biological cells have a given volume at any time, most GGH simulations employ
a volume constraint, which restricts volume variations of generalized cells from their
target volumes:

 2vol vol tH v V

 , (4)

-10-

where for cell , vol denotes the inverse compressibility of the cell, is the

number of pixels in the cell (its volume), and tV is the cell’s target volume. This

constraint defines t2 ()P V as the pressure inside the cell. A cell with

tV has a positive internal pressure, while a cell with tV has a negative internal

pressure.

Since many cells have nearly fixed amounts of cell membrane, we often use a surface-
area constraint of form:

 2surf surf tH s S

 , (5)

where s is the surface area of cell , tS is its target surface area, and surf is its

inverse membrane compressibility.1

Adding the boundary energy and volume constraint terms together (equations (1) and (4)
), we obtain the basic GGH effective energy:

neighbors

GGH
,

2

vol t

, 1 δ ,

.

i j

H J i j i j

v V

 (6)

III.B. Dynamics
A GGH simulation consists of many attempts to copy cell indices between neighboring
pixels. In CompuCell3D the default dynamical algorithm is modified Metropolis
dynamics. During each index-copy attempt, we select a target pixel, i

, randomly from

the cell lattice, and then randomly select one of its neighboring pixels, i

, as a source
pixel. If they belong to the same generalized cell (i.e., if () ()i i

) we do not need

copy index. Otherwise the cell containing the source pixel ()i

attempts to occupy the
target pixel. Consequently, a successful index copy increases the volume of the source
cell and decreases the volume of the target cell by one pixel.

1 Because of lattice discretization and the option of defining long range neighborhoods,
the surface area of a cell scales in a non-Euclidian, lattice-dependent manner with cell

volume, i.e., 1/3 2/3
4 3s v v see (61) on bubble growth .

-11-

Figure 2. GGH representation of an index-copy attempt for two cells on a 2D square
lattice – The “white” pixel (source) attempts to replace the “grey” pixel (target). The
probability of accepting the index copy is given by equation (7).

 In the modified Metropolis algorithm we evaluate the change in the total effective energy
due to the attempted index copy and accept the index-copy attempt with probability:

 mexp / : 0; 1: 0P i i = H T H > H

, (7)

where mT is a parameter representing the effective cell motility (we can think of mT as the

amplitude of cell-membrane fluctuations). Equation (7) is the Boltzmann acceptance
function. Users can define other acceptance functions in CompuCell3D. The conversion
between MCS and experimental time depends on the average values of m/H T . MCS

and experimental time are proportional in biologically-meaningful situations (87-90).

III.C. Algorithmic Implementation of Effective-Energy Calculations
Consider an effective energy consisting of boundary-energy and volume-constraint terms
as in equation (6). After choosing the source (i

) and destination (i

) pixels (the cell

index of the source will overwrite the target pixel if the index copy is accepted), we
calculate the change in the effective energy that would result from the copy. We evaluate
the change in the boundary energy and volume constraint as follows. First we visit the

Changed
pixel

m/

0

: 0H kT

H

or

P e H

m/1 : 0H kTP e H

4 4 4 4 4 4
4 4 4 4 4 4

4 4 4 4 4 4
4 4 4 4 4 4

4 4 4 7 4 4

7 7 7 7 7 7

7 7 7 7 7 7

7 7 7 7 7 7

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

7 7 7 7 7 7

7 7 7 7 7 7

7 7 7 7 7 7

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 7 4 4

7 7 7 7 7 7

7 7 7 7 7 7

7 7 7 7 7 7

Index-copy succeeds

Index-copy fails

-12-

target pixel’s neighbors (i

). If the neighbor pixel belongs to a different generalized cell

from the target pixel, i.e., when i i

 (see equation (1)), we decrease H by

 J i , i

. If the neighbor belongs to a cell different from the source pixel (

i

) we increase H by J τ σ i ,τ σ i

.

The change in volume-constraint energy is evaluated according to:

new old
vol vol vol

2 2

vol t t

2 2

vol t t

vol t t

1 1

1 2 1 2 ,

H H H

v i V i v i V i

v i V i v i V i

v i V i v i V i

 (8)

where v i

 and v i

 denote the volumes of the generalized cells containing the

source and target pixels, respectively.

In this example, we could calculate the change in the effective energy locally, i.e., by
visiting the neighbors of the target of the index copy. Most effective energies are quasi-
local, allowing calculations of H similar to those presented above. The locality of the
effective energy is crucial to the utility of the GGH approach. If we had to calculate the
effective energy for the entire cell lattice for each index-copy attempt, the algorithm
would be prohibitively slow.

Target pixel

Pixels contributing to
the boundary energy

Source pixel

 1v i

 1v i

 v i

 v i

 8 w h i te ,g r e yJ

 8 w h i te ,g r e yJ

 6 w h i te ,g r e yJ

 6 w h i te ,g r e yJ

-13-

Figure 3. Calculating changes in the boundary energy and the volume-constraint energy
on a nearest-neighbor square lattice.

For longer-range interactions we use the appropriate list of neighbors, as shown in Figure
4 and Table 1. Longer-range interactions are less anisotropic but result in slower
simulations.

Figure 4. Locations of nth-nearest neighbors on a 2D square lattice and a 2D hexagonal
lattice.

 2D Square Lattice 2D Hexagonal Lattice

Neighbor
Order

Number of
Neighbors

Euclidian
Distance

Number of
Neighbors

Euclidian
Distance

1 4 1 6 3/2

2 4 2 6 3/6
3 4 2 6 3/8

4 8 5 12 3/14

Table 1. Multiplicity and Euclidian distances of nth-nearest neighbors for 2D square and
hexagonal lattices. The number of nth neighbors and their distances from the central pixel
differ in a 3D lattice. CompuCell3D calculates distance between neighbors by setting the
volume of a single pixel (whether in 2D or 3D) to 1.

IV.	CompuCell3D	
One advantage of the GGH model over alternative techniques is its mathematical
simplicity. We can implement fairly easily a computer program that initializes the cell
lattice and fields, performs index copies and displays the results. In the 15 years since the
GGH model was developed, researchers have written numerous programs to run GGH

1

1

1

1

2

2 2

2

3

3

3

3

4

4

4

4 4

4

4

4
1

1

1
1

1

1

2 2

2

22

2

3

3

3

3

3

3

4

4

4
44

4

4

4

4
4 4

4

-14-

simulations. Because all GGH implementations share the same logical structure and
perform similar tasks, much of this coding effort has gone into rewriting code already
developed by someone else. This redundancy leads to significant research overhead and
unnecessary duplication of effort and makes model reproduction, sharing and validation
needlessly cumbersome.

To overcome these problems, we developed CompuCell3D as a framework for GGH
simulations (91, 92). Unlike specialized research code, CompuCell3D is a simulation
environment that allows researchers to rapidly build and run shareable GGH-based
simulations. It greatly reduces the need to develop custom code and its adherence to
open-source standards ensures that any such code is shareable.

CompuCell3D supports non-programmers by providing visualization tools, an eXtensible
Markup Language (XML) interface for defining simulations, and the ability to extend the
framework through specialized modules. The C++ computational kernel of
CompuCell3D is also accessible using the open-source scripting language Python,
allowing users to create complex simulations without programming in lower-level
languages such as C or C++. Unlike typical research code, changing a simulation does
not require recompiling CompuCell3D.

Users define simulations using CompuCell3D XML (CC3DML) configuration files and/or
Python scripts. CompuCell3D reads and parses the CC3DML configuration file and uses
it to define the basic simulation structure, then initializes appropriate Python services (if
they are specified) and finally executes the underlying simulation algorithm.

CompuCell3D is modular: each module carries out a defined task. CompuCell3D
terminology calls modules associated with index copies or index-copy attempts plugins.
Some plugins calculate changes in effective energy, while others (lattice monitors) react
to accepted index copies, e.g., by updating generalized cells’ surface areas, volumes or
lists of neighbors. Plugins may depend on other plugins. For example, the Volume
plugin (which calculates the volume-energy constraint in equation (4)) depends on
VolumeTracker (a lattice monitor), which, as its name suggests, tracks changes in
generalized cells’ volumes. When implicit plugin dependencies exist, CompuCell3D
automatically loads and initializes dependent plugins. In addition to plugins,
CompuCell3D defines modules called steppables which run either repeatedly after a
defined intervals of Monte Carlo Steps or once at the beginning or end of the simulation.
Steppables typically define initial conditions, alter cell states, update fields or output
intermediate results.

Figure 5 shows the relations among index-copy attempts, Monte Carlo Steps, steppables
and plugins.

-15-

Figure 5. Flow chart of the GGH algorithm as implemented in CompuCell3D.

CompuCell3D includes a Graphical User Interface (GUI) and visualization tool,
CompuCell Player (also referred to as Player). From Player the user opens a CC3DML
configuration file and/or Python file and hits the “Play” button to run the simulation.
Player allows users to define multiple 2D or 3D visualizations of generalized cells, fields
or various vector plots while the simulation is running and save them automatically for
post-processing.

V.	Building	CC3DML‐Based	Simulations	Using	CompuCell3D	
To show how to build simulations in CompuCell3D, the reminder of this chapter provides
a series of examples of gradually increasing complexity. For each example we provide a
brief explanation of the physical and/or biological background of the simulation and

Run
end-of-simulation

steppables

Run
initialization
steppables

New MCS

Start
Initialize
modules

Pick source
and target

pixels

Calculate effective
energy change using
plugins and compute
index-copy probability

Index copy
accepted?

Copy indices
and run lattice

monitors

Run steppables
and visualize

results

#copy attempts=
cell-lattice

pixels?

Done?

End

Yes

No

Yes

No

No

Yes

One Monte Carlo Step

-16-

listings of the CC3DML configuration file and Python scripts, followed by a detailed
explanation of their syntax and algorithms. We can specify many simulations using only
a simple CC3DML configuration file. We begin with three examples using only
CC3DML to define simulations.

V.A A Short Introduction to XML
XML is a text-based data-description language, which allows standardized
representations of data. XML syntax consists of lists of elements, each either contained
between opening (<Tag>) and closing (</Tag>) tags:2
<Tag Attribute1="text1">ElementText</Tag>

or of form:

<Tag Attribute1="attribute_text1" Attribute2="attribute_text2"/>

We will denote the <Tag>…</Tag> syntax as a <Tag> tag pair. The opening tag of an
XML element may contain additional attributes characterizing the element. The content
of the XML element (ElementText in the above example) and the values of its
attributes (text1, attribute_text1, attribute_text2) are strings of
characters. Computer programs that read XML may interpret these strings as other data
types such as integers, Booleans or floating point numbers. XML elements may be
nested. The simple example below defines an element Cell with subelements
(represented as nested XML elements) Nucleus and Membrane assigning the element
Nucleus an attribute Size set to "10" and the element Membrane an attribute Area
set to "20.5", and setting the value of the Membrane element to Expanding:

<Cell>
 <Nucleus Size="10"/>
 <Membrane Area="20.5">Expanding</Membrane>
</Cell>

Although XML parsers ignore indentation, all the listings presented in this chapter are
block-indented for better readability.

V.B Grain-Growth Simulation
One of the simplest CompuCell3D simulations mimics crystalline grain growth or
annealing. Most simple metals are composed of microcrystals, or grains, each of which
has a particular crystalline-lattice orientation. The atoms at the surfaces of these grains
have a higher energy than those in the bulk because of their missing neighbors. We can
characterize this excess energy as a boundary energy. Atoms in convex regions of a
grain's surface have a higher energy than those in concave regions, in particular than
those in the concave face of an adjoining grain, because they have more missing
neighbors. For this reason, an atom at a convex curved boundary can reduce its energy by
“hopping” across the grain boundary to the concave side (62). The movement of atoms

2 In the text, we denote XML, CC3DML and Python code using the Courier font. In
listings presenting syntax, user-supplied variables are given in italics. Broken-out
listings are boxed. Punctuation at the end of boxes is implicit.

-17-

moves the grain boundaries, lowering the net configuration energy through annealing or
coarsening, with the net size of grains growing because of grain disappearance. Boundary
motion may require thermal activation because atoms in the space between grains may
have higher energy than atoms in grains. The effective energy driving grain growth is
simply the boundary energy in equation (1).

In CompuCell3D, we can represent grains as generalized cells. CC3DML Listing 1
defines our grain-growth simulation.

<CompuCell3D>
 <Potts>
 <Dimensions x=100" y="100" z="1"/>
 <Steps>10000</Steps>
 <Temperature>5</Temperature>
 <Boundary_y>Periodic</Boundary_y>
 <Boundary_x>Periodic</Boundary_x>
 <NeighborOrder>3</NeighborOrder>
 </Potts>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Grain" TypeId="1"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Grain">0</Energy>
 <Energy Type1="Grain" Type2="Grain">5</Energy>
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <NeighborOrder>3</NeighborOrder>
 </Plugin>

 <Steppable Type="UniformInitializer">
 <Region>
 <BoxMin x="0" y="0" z="0"/>
 <BoxMax x="100" y="100" z="1"/>
 <Gap>0</Gap>
 <Width>5</Width>
 <Types>Grain</Types>
 </Region>
 </Steppable>

</CompuCell3D>

Listing 1. CC3DML configuration file for 2D grain-growth simulation.

Each CC3DML configuration file begins with the <CompuCell3D> tag and ends with
the </CompuCell3D> tag. A CC3DML configuration file contains three sections in the
following sequence: the lattice section (contained within the <Potts> tag pair), the
plugins section, and the steppables section. The lattice section defines global parameters
for the simulation: cell-lattice and field-lattice dimensions (specified using the syntax
<Dimensions x="x_dim" y="y_dim" z="z_dim"/>), the number of Monte
Carlo Steps to run (defined within the <Steps> tag pair) the effective cell motility
(defined within the <Temperature> tag pair) and boundary conditions. The default
boundary conditions are no-flux. However, in this simulation, we have changed them to

-18-

be periodic along the x and y axes by assigning the value Periodic to the
<Boundary_x> and <Boundary_y> tag pairs. The value set by the
<NeighborOrder> tag pair defines the range over which source pixels are selected for
index-copy attempts (see Figure 4 and Table 1).

The plugins section lists the plugins the simulation will use. The syntax for all plugins
which require parameter specification is:

<Plugin Name="PluginName">
 <ParameterSpecification/>
</Plugin>

The CellType plugin uses the parameter syntax

<CellType TypeName="Name" TypeId="IntegerNumber"/>

to map verbose generalized-cell-type names to numeric cell TypeIds for all generalized-
cell types. It does not participate directly in index copies, but is used by other plugins for
cell-type-to-cell-index mapping. Even though the grain-growth simulation fills the entire
cell lattice with cells of type Grain, the current implementation of CompuCell3D
requires that all simulations define the Medium cell type with TypeId 0. Medium is a
special cell type with unconstrained volume and surface area that fills all cell-lattice
pixels unoccupied by cells of other types.3

The Contact plugin calculates changes in the boundary energy defined in equation (1)
for each index-copy attempt. The parameter syntax for the Contact plugin is:

<Energy Type1="TypeName1" Type2="TypeName1">EnergyValue</Energy>

where TypeName1 and TypeName2 are the names of the cell types and
EnergyValue is the boundary-energy coefficient, ,J TypeName1 TypeName2 ,

between cells of TypeName1 and TypeName2 (see equation (1)). The
<NeighborOrder> tag pair specifies the interaction range of the boundary energy.
The default value of this parameter is 1.

The steppables section includes only the UniformInitializer steppable. All
steppables have the following syntax:

<Steppable Type="SteppableName" Frequency="FrequencyMCS">
 <ParameterSpecification/>
</Steppable>

The Frequency attribute is optional and by default is 1 MCS.

CompuCell3D simulations require specification of initial condition. The simplest way to
define the initial cell lattice is to use the built-in initializer steppables, which construct
simple regions filled with generalized cells.

The UniformInitializer steppable in the grain-growth simulation defines one or
more rectangular (parallelepiped in 3D) regions filled with generalized cells of user
selectable types and sizes. We enclose each region definition within a <Region> tag

3 We highlight in yellow sections or text describing CompuCell3D behaviors which may
be confusing or lead to hard-to-track errors.

-19-

pair. We use the <BoxMin> and <BoxMax> tags to describe the boundaries of the
region, The <Width> tag pair defines the size of the square (cubical in 3D) generalized
cells and the <Gap> tag pair creates space between neighboring cells. The <Types>
tag pair lists the types of generalized cells. The grain-growth simulation uses only one
cell type, Grain, but we can also initialize cells using types randomly chosen from the
list, as in Listing 2.

<Steppable Type="UniformInitializer">
 <Region>
 <BoxMin x="10" y="10" z="0"/>
 <BoxMax x="90" y="90" z="1"/>
 <Gap>0</Gap>
 <Width>5</Width>
 <Types>Condensing,NonCondensing</Types>
 </Region>
</Steppable>

Listing 2. CC3DML code excerpt using the UniformInitializer steppable to
initialize a rectangular region filled with 5 x 5 pixel generalized cells with randomly-
assigned cell types (either Condensing or NonCondensing).

The coordinate values in BoxMax element must be one more than the coordinates of the
corresponding corner of the region to be filled. So to fill a square of side 10 beginning
with pixel location (5,5) we use the following region-boundary specification:

 <BoxMin x="5" y="5" z="0"/>
 <BoxMax x="16" y="16" z="1"/>

Listing the same type multiple times results in a proportionally higher fraction of
generalized cells of that type. For example,

<Types>Condensing,Condensing,NonCondensing</Types>

will allocate approximately 2/3 of the generalized cells to type Condensing and 1/3 to
type NonCondensing. UniformInitializer allows specification of multiple
regions. Each region is independent and can have its own cell sizes, types and cell
spacing. If the regions overlap, later-specified regions overwrite earlier-specified ones. If
region specification does not cover the entire lattice, uninitialized pixels have type
Medium.

Figure 6 shows sample output generated by the grain-growth simulation.

-20-

Figure 6. Snapshots of the cell-lattice configuration for the grain-growth simulation on a
100 x 100 pixel 3rd-neighbor square lattice, as specified in Listing 1. Boundary conditions
are periodic in both directions.

One advantage of GGH simulations compared to FE simulations is that going from 2D to
3D is easy. To run a 3D grain-growth simulation on a 100 x 100 x 100 lattice we only
need to make the following replacements in Listing 1:

<Dimensions x="100" y="100" z="1"/>
<Dimensions x="100" y="100" z="100"/>

and,

<BoxMax x="100" y="100" z="1"/> <BoxMax x="100" y="100" z="100"/>

Grain growth simulations are particularly sensitive to lattice anisotropy, so running them
on lower-anisotropy lattices is desirable. Longer-range lattices are less anisotropic but
cause simulations to run slower. Fortunately a hexagonal lattice of a given range is less
anisotropic than a square lattice of the same range. To run the grain-growth simulation on
a hexagonal lattice, we add <LatticeType>Hexagonal</LatticeType> to the
lattice section in Listing 1 and change the two occurrences of:

<NeighborOrder>3</NeighborOrder> <NeighborOrder>1</NeighborOrder>

Figure 7 shows snapshots for this simulation.

Figure 7. Snapshots of the cell-lattice configuration for the grain-growth simulation on a
100 x 100 pixel 1st -neighbor hexagonal lattice as specified in Listing 1 with substitutions
described in the text. The x and y length units in an hexagonal lattice differ, resulting in
differing x and y dimensions for a cell lattice with an equal number of pixels in the x and
y directions.

One inconvenience of the current implementation of CompuCell3D is that it does not
automatically rescale parameter values when interaction range, lattice dimensionality or
lattice type change. When changing these attributes, users must recalculate parameters to
keep the underlying physics of the simulation the same.

CompuCell3D dramatically reduces the amount of code necessary to build and run a
simulation. The grain-growth simulation took about 25 lines of CC3DML instead of 1000
lines of C, C++ or Fortran.

-21-

V.C Cell-Sorting Simulation
Cell sorting is an experimentally-observed phenomenon in which cells with different
adhesivities are randomly mixed and reaggregated. They can spontaneously sort to
reestablish coherent homogenous domains (93, 94). Sorting is a key mechanism in
embryonic development.

The grain-growth simulation used only one type of generalized cell. Simulating sorting of
two types of biological cell in an aggregate floating in solution is slightly more complex.
Listing 3 shows a simple cell-sorting simulation. It is similar to Listing 1 with a few
additional modules (shown in bold). The effective energy is that in equation (6).

<CompuCell3D>
 <Potts>
 <Dimensions x="100" y="100" z="1"/>
 <Steps>10000</Steps>
 <Temperature>10</Temperature>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="Volume">
 <TargetVolume>25</TargetVolume>
 <LambdaVolume>2.0</LambdaVolume>
 </Plugin>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Condensing" TypeId="1"/>
 <CellType TypeName="NonCondensing" TypeId="2"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>
 <Energy Type1="Condensing" Type2="Condensing">2</Energy>
 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>
 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>
 <Energy Type1="Condensing" Type2="Medium">16</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Steppable Type="BlobInitializer">
 <Region>
 <Gap>0</Gap>
 <Width>5</Width>
 <Radius>40</Radius>
 <Center x="50" y="50" z="0"/>
 <Types>Condensing,NonCondensing</Types>
 </Region>
 </Steppable>

</CompuCell3D>

Listing 3. CC3DML configuration file simulating cell sorting between Condensing
and NonCondensing cell types. Highlighted text indicates modules absent in Listing 1.

-22-

Notice how little modification of the grain-growth CC3DML configuration file this
simulation requires.

The main change from Listing 1 to the lattice section is that we omit the boundary
condition specification and use default no-flux boundary conditions.

In the CellType plugin we introduce the two cell types, Condensing and
NonCondensing, in place of Grain. In addition we do not the fill lattice completely
with Condensing and NonCondensing cells so the interactions with Medium
become important. The boundary-energy matrix in the Contact plugin thus requires
entries for the additional cell-type pairs. The hierarchy of boundary energies listed results
in cell sorting.

We also add the Volume plugin, which calculates the volume-constraint energy as given
in equation (4). In this plugin the <TargetVolume> tag pair sets target volume t 25V

for both Condensing cells and NonCondensing and the <LambdaVolume> tag
pair sets the constraint strength vol 2.0 for both cell types. We will see later how to

define volume-constraint parameters for each cell type or each cell individually.

In the cell-sorting simulation we initialize the cell lattice using the BlobInitializer
steppable which specifies circular (or spherical in 3D) regions filled with square (or
cubical in 3D) cells of user-defined size and types. The syntax is very similar to that for
UniformInitializer.

Looking in detail at the syntax of BlobInitializer in Listing 3, the <Radius> tag
pair defines the radius of a circular (or spherical) domain of cells in pixels. The
<Center> tag, with syntax <Center x="x_position" y="y_position"
z="z_position"/>, defines the coordinates of the center of the domain. The
remaining tags are the same as for UniformInitializer. As with
UniformInitializer, we can define multiple regions. We can use both
UniformInitializer and BlobInitializer in the same simulation. In the case
of overlap, later-specified regions overwrite earlier ones.

We show snapshots of the cell-sorting simulation in Figure 8. The less cohesive
NonCondensing cells engulf the more cohesive Condensing cells, which cluster
and form a single central domain. By changing the boundary energies we can produce
other cell-sorting patterns (95, 96).

-23-

Figure 8. Snapshots of the cell-lattice configurations for the cell-sorting simulation in
Listing 3. The boundary-energy hierarchy drives NonCondensing (light grey) cells to
surround Condensing (dark grey) cells. The white background denotes surrounding
Medium.

V.D Bacterium-and-Macrophage Simulation
In the two simulations we have presented so far, the cellular pattern develops without
fields. Often, however, biological patterning mechanisms require us to introduce and
evolve chemical fields and to have cells’ behaviors depend on the fields. To illustrate the
use of fields, we model the in vitro behavior of bacteria and macrophages in blood. In the
famous experimental movie taken in the 1950s by David Rogers at Vanderbilt University,
the macrophage appears to chase the bacterium, which seems to run away from the
macrophage. We can model both behaviors using cell secretion of diffusible chemical
signals and movement of the cells in response to the chemical (chemotaxis): the
bacterium secretes a signal (a chemoattractant) that attracts the macrophage and the
macrophage secretes a signal (a chemorepellant) which repels the bacterium (97).

Listing 4 shows the CC3DML configuration file for the bacterium-and-macrophage
simulation.

<CompuCell3D>
 <Potts>
 <Dimensions x="100" y="100" z="1"/>
 <Steps>100000</Steps>
 <Temperature>20</Temperature>
 <LatticeType>Hexagonal</LatticeType>
 </Potts>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Bacterium" TypeId="1" />
 <CellType TypeName="Macrophage" TypeId="2"/>
 <CellType TypeName="Red" TypeId="3"/>
 <CellType TypeName="Wall" TypeId="4" Freeze=""/>
 </Plugin>

 <Plugin Name="VolumeFlex">
 <VolumeEnergyParameters CellType="Macrophage" TargetVolume="150"
 LambdaVolume="15"/>
 <VolumeEnergyParameters CellType="Bacterium" TargetVolume="10"
 LambdaVolume="60"/>
 <VolumeEnergyParameters CellType="Red" TargetVolume="100"
 LambdaVolume="30"/>
 </Plugin>

 <Plugin Name="SurfaceFlex">
 <SurfaceEnergyParameters CellType="Macrophage" TargetSurface="50"
 LambdaSurface="30"/>
 <SurfaceEnergyParameters CellType="Bacterium" TargetSurface="10"
 LambdaSurface="4"/>
 <SurfaceEnergyParameters CellType="Red" TargetSurface="40"
 LambdaSurface="0"/>
 </Plugin>

-24-

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="Macrophage" Type2="Macrophage">150</Energy>
 <Energy Type1="Macrophage" Type2="Medium">8</Energy>
 <Energy Type1="Bacterium" Type2="Bacterium">150</Energy>
 <Energy Type1="Bacterium" Type2="Macrophage">15</Energy>
 <Energy Type1="Bacterium" Type2="Medium">8</Energy>
 <Energy Type1="Wall" Type2="Wall">0</Energy>
 <Energy Type1="Wall" Type2="Medium">0</Energy>
 <Energy Type1="Wall" Type2="Bacterium">150</Energy>
 <Energy Type1="Wall" Type2="Macrophage">150</Energy>
 <Energy Type1="Wall" Type2="Red">150</Energy>
 <Energy Type1="Red" Type2="Red">150</Energy>
 <Energy Type1="Red" Type2="Medium">30</Energy>
 <Energy Type1="Red" Type2="Bacterium">150</Energy>
 <Energy Type1="Red" Type2="Macrophage">150</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR">
 <ChemotaxisByType Type="Macrophage" Lambda="1"/>
 </ChemicalField>

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="REP">
 <ChemotaxisByType Type="Bacterium" Lambda="-0.1"/>
 </ChemicalField>
 </Plugin>

 <Steppable Type="FlexibleDiffusionSolverFE">
 <DiffusionField>
 <DiffusionData>
 <FieldName>ATTR</FieldName>
 <DiffusionConstant>0.10</DiffusionConstant>
 <DecayConstant>0.00005</DecayConstant>
 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
 <DoNotDiffuseTo>Red</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Bacterium">200</Secretion>
 </SecretionData>
 </DiffusionField>

 <DiffusionField>
 <DiffusionData>
 <FieldName>REP</FieldName>
 <DiffusionConstant>0.10</DiffusionConstant>
 <DecayConstant>0.001</DecayConstant>
 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
 <DoNotDiffuseTo>Red</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Macrophage">200</Secretion>
 </SecretionData>
 </DiffusionField>

-25-

 </Steppable>

 <Steppable Type="PIFInitializer">
 <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName>
 </Steppable>

</CompuCell3D>

Listing 4. CC3DML configuration file for the bacterium-and-macrophage simulation.

The simulation has five generalized-cell types: Medium, Bacterium, Macrophage,
Red blood cells and a surrounding Wall. It also has two diffusible fields, representing a
chemoattractant, ATTR, and a chemorepellent, REP. Because the default boundary-
energy between any generalized-cell type and the edge of the cell lattice is zero, we
define a surrounding wall to prevent cells from sticking to the cell-lattice boundary. As in
our previous simulations, we assign cell types using the CellType plugin. Note the new
syntax in the line specifying the cell type making up the walls:

<CellType TypeName="Wall" TypeId="4" Freeze=""/>

The Freeze="" attribute excludes generalized cells of type Wall from participating in
index copies, which makes the walls immobile.

We replace the Volume plugin with VolumeFlex and add the plugin SurfaceFlex.
These plugins allow independent assignment of target values and constraint strengths in
the volume-constraint and surface-constraint energies (equations (4) and (5)). These
plugins require a line for each generalized-cell type, specifying the type name and the
target volume (or target surface area), and vol (or surf) for that generalized-cell type,

e.g.:

<VolumeEnergyParameters CellType="Name" TargetVolume="Value"
LambdaVolume="Value "/>

We implement the actual bacterium-macrophage “chasing” mechanism using the
Chemotaxis plugin, which specifies how a generalized cell of a given type responds to
a field. The Chemotaxis plugin biases a cell’s motion up or down a field gradient by
changing the calculated effective-energy change used in the acceptance function,

equation (7). For a field c i

:

 chem chem ,H c i c i

 (9)

where c i

 is the chemical field at the index-copy target pixel, c i

 the field at the

index-copy source pixel, and chem the strength and direction of chemotaxis. If chem 0

and c i c i

, then chemH is negative, increasing the probability of accepting the

index copy in equation (7). The net effect is that the cell moves up the field gradient with

a velocity chem~ c

. If 0 is negative, the opposite occurs, and the cell will move

down the field gradient. Plugins with more sophisticated chemH calculations (e.g.,

-26-

including response saturation) are available within CompuCell3D (see the CompuCell3D
User Guide).

Figure 9. Connecting a field to GGH dynamics using a chemotaxis-energy term. The
difference in the value of the field c at the source, i

, and target, i

, pixels changes the

H of the index-copy attempt. Here c i c i

 and 0 , so chem 0H , increasing

the probability of accepting the index-copy attempt in equation (7).

In the Chemotaxis plugin we must identify the names of the fields, where the field
information is stored, the list of the generalized-cell types that will respond to the fields,
and the strength and direction of the response (Lambda = chem). The information for

each field is specified using the syntax:

<ChemicalField Source="where field is stored" Name="field name">
 <ChemotaxisByType Type="cell_type1" Lambda="lambda1"/>
 <ChemotaxisByType Type="cell_type2" Lambda="lambda1"/>
</ChemicalField>

In our current example, the first field, named ATTR, is stored in
FlexibleDiffusionSolverFE. Macrophage cells are attracted to ATTR with

chem 1 . None of the other cell types responds to ATTR. Similarly, Bacterium cells

are repelled by REP with chem 0.1 .

Keep in mind that fields are not created within the Chemotaxis plugin, which only
specifies how different cell types respond to the fields. We define and store the fields
elsewhere. Here, we use the FlexibeDiffusionSolverFE steppable as the source
of our fields. The FlexibleDiffusionSolverFE steppable is the main
CompuCell3D tool for defining diffusing fields, which evolve according to the diffusion
equation:

 2
c i

D i c i k i c i s i
t

, (10)

che

chem c m

m

he

0

H c i c i

 c i

x

-27-

where c i

 is the field concentration and D i

, k i

 and s i

 denote the diffusion

constant (in m2/s), decay constant (in s-1) and secretion rates (in concentration/s) of the

field, respectively. D i

, k i

, and s(

i) may vary with position and cell-lattice

configuration.

As in the Chemotaxis plugin, we may define the behaviors of multiple fields,
enclosing each one within <DiffusionField> tag pairs. For each field defined
within a <DiffusionData> tag pair, users provide values for the name of the field
(using the <FieldName> tag pair), the diffusion constant (using the
<DiffusionConstant> tag pair) , and the decay constant (using the
<DiffusionConstant> tag pair). Forward-Euler methods are numerically unstable
for large diffusion constants, limiting the maximum nominal diffusion constant allowed
in CompuCell3D simulations. However, by increasing the PDE-solver calling frequency,
which reduces the effective time step, CompuCell3D can simulate arbitrarily large
diffusion constants. For more information, see the CompuCell3D User Guide.

Each optional <DoNotDiffuseTo> tag pair, with syntax:

<DoNotDiffuseTo>cell_type</DoNotDiffuseTo>

prevents the field from diffusing into field-lattice pixels where the corresponding cell-

lattice pixel,

i , is occupied by a cell, i

, of the specified type. In our case, chemical

fields do not diffuse into the pixels occupied by Wall or Red cells. The optional
<SecretionData> tag pair defines a subsection which identifies cells types that
secrete or absorb the field and the rates of secretion:

<SecretionData>
 <Secretion Type="cell_type1">real_rate1</Secretion>
 <Secretion Type="cell_type2">real_rate2</Secretion>
<SecretionData>

A negative rate simulates absorption. In the bacterium and macrophage simulation,
Bacterium cells secrete ATTR and Macrophage cells secrete REP.

We load the initial configuration for the bacterium-and-macrophage simulation using the
PIFInitializer steppable. Many simulations require initial generalized-cell
configurations that we cannot easily construct from primitive regions filled with cells
using BlobInitializer and UniformInitializer. To allow maximum
flexibility, CompuCell3D can read the initial cell-lattice configuration from Pixel
Initialization Files (PIFs). A PIF is a text file that allows users to assign multiple
rectangular (parallelepiped in 3D) pixel regions or single pixels to particular cells.

Each line in a PIF has the syntax:

Cell_id Cell_type x_low x_high y_low y_high z_low z_high

where Cell_id is a unique cell index. A PIF may have multiple, possibly non-adjacent,
lines starting with the same Cell_id; all lines with the same Cell_id define pixels of
the same generalized cell. The values x_low, x_high, y_low, y_high, z_low and
z_high define rectangles (parallelepipeds in 3D) of pixels belonging to the cell. In the

-28-

case of overlapping pixels, a later line overwrites pixels defined by earlier lines. The
following line describes a 6 x 6-pixel square cell with cell index 0 and type Amoeba:

0 Amoeba 10 15 10 15 0 0
If we save this line to the file 'amoebae.pif', we can load it into a simulation using the
following syntax:

<Steppable Type="PIFInitializer">
 <PIFName>amoebae.pif</PIFName>
 </Steppable>

Listing 5 illustrates how to construct arbitrary shapes using a PIF. Here we define two
cells with indices 0 and 1, and cell types Amoeba and Bacterium, respectively. The
main body of each cell is a 6 x 6 square to which we attach additional pixels.

0 Amoeba 10 15 10 15 0 0
1 Bacterium 25 30 25 30 0 0
0 Amoeba 16 16 15 15 0 0
1 Bacterium 25 27 31 35 0 0

Listing 5. Simple PIF initializing two cells, one each of type Bacterium and Amoeba.

All lines with the same cell index (first column) define a single cell.
Figure 10 shows the initial cell-lattice configuration specified in Listing 5:

Figure 10. Initial configuration of the cell lattice based on the PIF in Listing 5.

In practice, because constructing complex PIFs by hand is cumbersome, we generally use
custom-written scripts to generate the file directly, or convert images stored in graphical
formats (e.g., gif, jpeg, png) from experiments or other programs.

Listing 6 shows the PIF for the bacterium-and-macrophage simulation.

0 Red 10 20 10 20 0 0
1 Red 10 20 40 50 0 0
2 Red 10 20 70 80 0 0
3 Red 40 50 0 10 0 0
4 Red 40 50 30 40 0 0
5 Red 40 50 60 70 0 0

-29-

6 Red 40 50 90 95 0 0
7 Red 70 80 10 20 0 0
8 Red 70 80 40 50 0 0
9 Red 70 80 70 80 0 0
10 Wall 0 99 0 1 0 0
10 Wall 98 99 0 99 0 0
10 Wall 0 99 98 99 0 0
10 Wall 0 1 0 99 0 0
11 Bacterium 5 5 5 5 0 0
12 Macrophage 35 35 35 35 0 0
13 Bacterium 65 65 65 65 0 0
14 Bacterium 65 65 5 5 0 0
15 Bacterium 5 5 65 65 0 0
16 Macrophage 75 75 95 95 0 0
17 Red 24 28 10 20 0 0
18 Red 24 28 40 50 0 0
19 Red 24 28 70 80 0 0
20 Red 40 50 14 20 0 0
21 Red 40 50 44 50 0 0
22 Red 40 50 74 80 0 0
23 Red 54 59 90 95 0 0
24 Red 70 80 24 28 0 0
25 Red 70 80 54 59 0 0
26 Red 70 80 84 90 0 0
27 Macrophage 10 10 95 95 0 0

Listing 6. PIF defining the initial cell-lattice configuration for the bacterium-and-
macrophage simulation. The file is stored as 'bacterium_macrophage_2D_wall_v3.pif'.

In Listing 4 we read the cell lattice configuration from the file
'bacterium_macrophage_2D_wall_v3.pif' using the lines:

<Steppable Type="PIFInitializer">
 <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName>
 </Steppable>

Figure 11 shows snapshots of the bacterium-and-macrophage simulation. By adjusting
the properties and number of bacteria, macrophages and red blood cells and the diffusion
properties of the chemical fields, we can build a surprisingly good reproduction of the
experiment.

-30-

Figure 11. Snapshots of the bacterium-and-macrophage simulation from Listing 4 and
the PIF in Listing 6 saved in the file 'bacterium_macrophage_2D_wall_v3.pif'. The upper
row shows the cell-lattice configuration with the Macrophages in grey, Bacteria in
white, red blood cells in dark grey and Medium in blue. Middle row shows the
concentration of the chemoattractant ATTR secreted by the Bacteria. The bottom row
shows the concentration of the chemorepellant REPL secreted by the Macrophages.
The bars at the bottom of the field images show the concentration scales (blue, low
concentration, red, high concentration).

VI.	Python	Scripting	
CC3DML is convenient for building simple simulations such as those we presented
above. To describe more complex simulations, CompuCell3D allows users to write
specialized, shareable modules in C/C++ (through the CompuCell3D Application
Programming Interface, or CC3D API) or Python (through a Python-scripting interface).
C and C++ modules have the advantage that they run at native speed. However,
developing them requires knowledge of both C/C++ and the CC3D API, and their
integration with CompuCell3D requires recompilation of the source code. Python module
development is less complicated, since Python has simpler syntax than C/C++ and users
can modify and extend a library of Python-module templates included with
CompuCell3D. Moreover, Python modules do not require recompilation.

t=200 MCS t=500 MCS t=800 MCS t=900 MCS t=1100 MCS

-31-

 Tasks performed by CompuCell3D modules either relate to index-copy attempts
(plugins) or run either once, at the beginning or end of a simulation, or once every several
MCS (steppables). Tasks run every index-copy attempt, like effective-energy-term
calculations, are the most frequently-called tasks in a GGH simulation and writing them
in Python may slow simulations. However, steppables and lattice monitors are good
candidates for Python implementation and cause negligible performance degradation.
Python implementations are suitable for most cell-parameter adjustments that depend on
the state of the simulation, e.g., simulating cell growth in response to a chemical, cell-
type differentiation and changes in cell-cell adhesion.

VI.A A Short Introduction to Python
Python is an object-oriented scripting language with all the syntactic constructs present in
any modern programming language. Python supports popular flow-control statements
such as if-elif-else conditional instructions and for and while loops. Unlike
C/C++, Python does not use ';' to end lines or '{' and '}' to define code blocks. Instead,
Python relies on indentation to define blocks of code. if statements, for or while
loops and their subsections are created by a ':' and increasing the level of indentation.
The end of a block is indicated by a decrease in the level of indentation. Python uses the
'=' operator for assignments and '==' for checking equality between objects. For
example, in the following code:
b=2
if b==2:
 a=10
 for c in range(0,a):
 b=a+c

print b

we indent the body of the if statement and the body of the inner for loop. The for
loop is executed inside the if statement. a=0 assigns the variable a a value of 10, while
b==2 is true if b has a value of 2. The for loop assigns the variable c values 0 through
a-1 and executes instructions inside the loop body.
As an object-oriented language, Python supports classes, inheritance and polymorphism.
Accessing members of objects uses the '.' operator. For example, to access the real part
of a complex number, we use the following code:
a=complex(2,3)
a=1.5+0.5j
print a.real

Here, real is a member of the Python class complex, which represents complex
numbers. If the object has composite subobjects, we use the '.' operator recursively:

object.subobject.member_of_subobject

Users may define Python objects without declaring their type. A single data structure
such as a list or dictionary can store objects of multiple types. Python provides automatic
memory management, which frees users from remembering to deallocate memory for
objects that are no longer used.

Long source code lines can be carried over to the following line using the '\' character:

-32-

very_long_variable_name = \
very_long_variable_name * very_important_constant

Note that double underscore '__' has a reserved meaning in Python and should not be
confused with a single underscore '_'.

We will present additional Python features in the subsequent sections and explain step-
by-step some basic concepts of Python programming (for more on Python, see Learning
Python, by Mark Lutz (98)). For more information on Python scripting in CompuCell3D,
see our Python Tutorials and CompuCell3D User Guide (available from the
CompuCell3D website, www.compucell3d.org).

VI.B Building Python-Based CompuCell3D Simulations
Python scripting allows users to augment their CC3DML configuration files with Python
scripts or to code their entire simulations in Python (in which case the Python script looks
very similar to the CC3DML script it replaces). Listing 7 shows the standard block of
template code for running a Python script in conjunction with a CC3DML configuration
file.

import sys
from os import environ
from os import getcwd
import string
sys.path.append(environ["PYTHON_MODULE_PATH"])
import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes
CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Listing 7. Basic Python template to run a CompuCell3D simulation through a Python
interpreter. Later examples will be based on this script.

The import sys line provides access to standard functions and variables needed to
manipulate the Python runtime environment. The next two lines,

from os import environ
from os import getcwd

import environ and getcwd housekeeping functions into the current namespace (i.e.,
current script) and are included in all our Python programs. In the next three lines,

import string
sys.path.append(environ["PYTHON_MODULE_PATH"])
import CompuCellSetup

we import the string module, which contains convenience functions for performing
operations on strings of characters, set the search path for Python modules and import the

-33-

CompuCellSetup module, which provides a set of convenience functions that simplify
initialization of CompuCell3D simulations.

Next, we create and initialize the core CompuCell3D modules:

sim,simthread = CompuCellSetup.getCoreSimulationObjects()
CompuCellSetup.initializeSimulationObjects(sim,simthread)

We then create a steppable registry (a Python container that stores steppables, i.e., a list
of all steppables that the Python code can access) and pass it to the function that runs the
simulation:

steppableRegistry=CompuCellSetup.getSteppableRegistry()
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

In the next section, we extend this template to build a simple simulation.

VI.C Cell-Type-Oscillator Simulation
Suppose that we would like to add a caricature of oscillatory gene expression to our cell-
sorting simulation (Listing 3) so that cells exchange types every 100 MCS. We will
implement the changes of cell types using a Python steppable, since it occurs at intervals
of 100 MCS.

Listing 8 shows the changes to the Python template in Listing 7 that are necessary to
create the desired type switching (changes are shown in bold).

import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

from PySteppables import *
class TypeSwitcherSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 if cell.type==1:
 cell.type=2
 elif (cell.type==2):
 cell.type=1
 else:
 print "Unknown type. In cellsort simulation there should\
 only be two types 1 and 2"

-34-

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable(typeSwitcherSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Listing 8. Python script expanding the template code in Listing 7 into a simple
TypeSwitcherSteppable steppable. The code illustrates dynamic modification of
cell parameters using a Python script. Lines added to Listing 7 are shown in bold.

A CompuCell3D steppable is a class (a type of object) that holds the parameters and
functions necessary for carrying out a task. Every steppable defines at least 4 functions:
__init__(self, _simulator, _frequency), start(self),
step(self, mcs) and finish(self).

CompuCell3D calls the start(self) function once at the beginning of the simulation
before any index-copy attempts. It calls the step(self, mcs) function periodically
after every _frequency MCS. It calls the finish(self) function once at the end of
the simulation. Listing 8 does not have explicit start(self) or finish(self)
functions. Instead, the class definition :

class TypeSwitcherSteppable(SteppablePy):
causes the TypeSwitcherSteppable to inherit components of the SteppablePy
class. SteppablePy contains default definitions of the start(self),
step(self,mcs) and finish(self) functions. Inheritance reduces the length of
the user-written Python code and ensures that the TypeSwitcherSteppable object
has all needed components. The line:

from PySteppables import *

makes the content of 'PySteppables.py' file (or module) available in the current
namespace. The PySteppables module includes the SteppablePy base class.

The __init__ function is a constructor that accepts user-defined parameters and
initializes a steppable object. Consider the __init__ function of the
TypeSwitcherSteppable:

def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

In the def line, we pass the necessary parameters: self (which is used in Python to
access class variables from within the class), _simulator (the main CompuCell3D
kernel object which runs the simulation), and _frequency (which tells

-35-

steppableRegistry how often to run the steppable, here, every 100 MCS). Next we
call the constructor for the inheritance class, SteppablePy, as required by Python. The
following statement:

self.simulator=_simulator

assigns to the class variable self.simulator a reference to _simulator object,
passed from the main script. We can think about Python reference as a pointer variable
that stores the address of the object but not a copy of the object itself. The last two lines
construct a list of all generalized cells in the simulation, a cell inventory, which allows us
to visit all the cells with a simple for loop to perform various tasks. The cell inventory is
a dynamic structure, i.e., it updates automatically when cells are created or destroyed
during a simulation.

The section of the TypeSwitcherSteppable steppable which implements the cell-
type switching is found in the step(self, mcs) function:

def step(self,mcs):
 for cell in self.cellList:
 if cell.type==1:
 cell.type=2
 elif (cell.type==2):
 cell.type=1
 else:
 print "Unknown type"

Here we use the cell inventory to iterate over all cells in the simulation and reassign their
cell types between cell.type 1 and cell.type 2. If we encounter a cell.type
that is neither 1 nor 2 (which we should not), we print an error message.

Once we have created a steppable (i.e., created an object of class
TypeSwitcherSteppable) we must register it using registerSteppable
function from steppableRegistry object:

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable(typeSwitcherSteppable)

CompuCell3D will not run unregistered steppables. As we will see, much of the script is
not specific to this example. We will recycle it with slight changes in later examples.

Figure 12 shows snapshots of the cell-type-oscillator simulation.

t=90 MCS t=110 MCS t=1490 MCS t=1510 MCS

-36-

Figure 12. Results of the Python cell-type-oscillator simulation using the
TypeSwitcherSteppable steppable implemented in Listing 8 in conjunction with
the CC3DML cell-sorting simulation in Listing 3. Cells exchange types and
corresponding adhesivities and colors every 100 MCS; i.e., between t=90 MCS and t=110
MCS and between t=1490 MCS and t=1510 MCS.

We mentioned earlier that users can run simulations without a CC3DML configuration
file. Listing 9 shows the cell-type-oscillator simulation written entirely in Python, with
changes to Listing 8 shown in bold.

def configureSimulation(sim):
 import CompuCell
 import CompuCellSetup

 ppd=CompuCell.PottsParseData()
 ppd.Steps(20000)
 ppd.Temperature(5)
 ppd.NeighborOrder(2)
 ppd.Dimensions(CompuCell.Dim3D(100,100,1))

 ctpd=CompuCell.CellTypeParseData()
 ctpd.CellType("Medium",0)
 ctpd.CellType("Condensing",1)
 ctpd.CellType("NonCondensing",2)

 cpd=CompuCell.ContactParseData()
 cpd.Energy("Medium","Medium",0)
 cpd.Energy("NonCondensing","NonCondensing",16)
 cpd.Energy("Condensing","Condensing",2)
 cpd.Energy("NonCondensing","Condensing",11)
 cpd.Energy("NonCondensing","Medium",16)
 cpd.Energy("Condensing","Medium",16)

 vpd=CompuCell.VolumeParseData()
 vpd.LambdaVolume(1.0)
 vpd.TargetVolume(25.0)

 bipd=CompuCell.BlobInitializerParseData()
 region=bipd.Region()
 region.Center(CompuCell.Point3D(50,50,0))
 region.Radius(40)
 region.Types("Condensing")
 region.Types("NonCondensing")
 region.Width(5)

 CompuCellSetup.registerPotts(sim,ppd)
 CompuCellSetup.registerPlugin(sim,ctpd)
 CompuCellSetup.registerPlugin(sim,cpd)
 CompuCellSetup.registerPlugin(sim,vpd)

 CompuCellSetup.registerSteppable(sim,bipd)

import sys
from os import environ

-37-

from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

configureSimulation(sim)

from PySteppables import *
class TypeSwitcherSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 if cell.type==1:
 cell.type=2
 elif (cell.type==2):
 cell.type=1
 else:
 print "Unknown type. In cellsort simulation there should
only be two types 1 and 2"

#Create extra player fields here or add attributes
CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable(typeSwitcherSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Listing 9. Stand-alone Python cell-type-oscillator script containing an initial section that
replaces the CC3DML configuration file from Listing 3. Lines added to Listing 8 are
shown in bold.

The configureSimulation function replaces the CC3DML file from Listing 3.
After importing CompuCell and CompuCellSetup, we have access to functions and
modules that provide all the functionality necessary to code a simulation in Python. The
general syntax for the opening lines of each block is:

snpd=CompuCell.SectionNameParseData()

where SectionName refers to the name of the section in a CC3DML configuration file
and snpd is the name of the object of type SectionNameParseData. The rest of the
block usually follows the syntax:

-38-

snpd.TagName(values)

where TagName corresponds to the name of the tag pair used to assign a value to a
parameter in a CC3DML file. For values within subsections, the syntax is:

snpd.SubsectionName().TagName(values)

To input dimensions, we use the syntax:

snpd.TagName(CompuCell.Dim3D(x_dim,y_dim,z_dim))

where x_dim, y_dim, and z_dim are the x, y and z dimensions. To input a set of (x,y,z)
coordinates, we use the syntax:

snpd.TagName(CompuCell.Point3D(x_coord,y_coord,z_coord))

where x_coord, y_coord, and z_coord are the x, y, and z coordinates.

In the first block (PottsParseData), we input the cell-lattice parameter values using
the syntax:

ppd.ParameterName(value)

where ParameterName matches a parameter name used in the CC3DML lattice
section.

Next we define the cell types using the syntax:

ctpd.CellType("cell_type",cell_id)

The next section assigns boundary energies between the cell types:

cpd.Energy("cell_type_1","cell_type_2",contact_energy)

We specify the rest of the parameter values in a similar fashion, following the general
syntax described above.

The examples in Listing 8 and Listing 9 define the TypeSwitcherSteppable class
within the main Python script. However, separating extension modules from the main
script and using an import statement to refer to modules stored in external files is more
practical. Using separate files ensures that each module can be used in multiple
simulations without duplicating source code, and makes scripts more readable and
editable. We will follow this convention in our remaining examples.

VI.D Two-Dimensional Foam-Flow Simulation
CompuCell3D can simulate simple physical experiments with foams. Indeed, GGH
techniques grew out of foam-simulation techniques (73). Our next example shows how to
use CC3DML and Python scripts to simulate quasi-two-dimensional foam flow.

The experimental apparatus (Figure 13) consists of a channel created by two parallel
rectangular glass plates separated by 5 mm, with the gap between their long sides sealed
and that between their short sides open. A foam generator injects small, uniform size
bubbles at one short end, pushing older bubbles towards the open end of the channel,
creating a foam flow. The top glass plate has a hole through which we inject air. Bubbles
passing under this point grow because of the air injected into them, forming characteristic
patterns (Figure 14) (99).

-39-

Figure 13. Schematic of experiment for studying quasi-2D foam flow.

Figure 14. Detail of processed experimental image of flowing quasi-2D bubbles. Image
size is 15 cm x 15 cm.

Generalized cells will represent bubbles in this simulation. To simulate this experiment in
CompuCell3D we need to write Python steppables that 1) create bubbles at one end of the
channel, 2) inject air into the bubble which includes a given location (the identity of this
bubble will change in time due to the flow), 3) remove bubbles at the open end of the
channel. We will store the source code in a file called 'foamairSteppables.py'. We will
also need a main Python script to call these steppables appropriately.

We simulate bubble injection by creating generalized cells (bubbles) along the lattice
edge corresponding to the left end of the channel (small-x values of the cell lattice). We
simulate air injection into a bubble at the injection point, by identifying the bubble
currently at the injection point and increasing its target volume at a fixed rate. Removing
a bubble from the simulation simply requires assigning it a target volume of zero once it
comes close to the right end of the channel (large-x values of the cell lattice).

-40-

We first define a CC3DML configuration file for the foam-flow simulation (Listing 10).

<CompuCell3D>
 <Potts>
 <Dimensions x="200" y="50" z="1"/>
 <Steps>10000</Steps>
 <Temperature>5</Temperature>
 <LatticeType>Hexagonal</LatticeType>
 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Foam" TypeId="1"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">5</Energy>
 <Energy Type1="Foam" Type2="Foam">5</Energy>
 <Energy Type1="Foam" Type2="Medium">5</Energy>
 <NeighborOrder>3</NeighborOrder>
 </Plugin>

 <Plugin Name="CenterOfMass"/>

</CompuCell3D>

Listing 10. CC3DML configuration file for the foam-flow simulation. This file initializes
needed plugins but all of the interesting work is done in Python.

The CC3DML configuration file is simple: it initializes the VolumeLocalFlex,
CellType, Contact and CenterOfMass plugins. We do not use a cell-lattice-
initializer steppable, because all bubbles are created as the simulation runs. We use
VolumeLocalFlex because individual bubbles will change their target volumes
during the simulation. We also include the CenterOfMass plugin to track the changing
centroids of each bubble. The CenterOfMass plugin in CompuCell3D actually
calculates Cx

, the centroid of the generalized cell multiplied by volume of the cell:

 δ (),C

i

x i i

, (11)

so the actual centroid of the bubble is:

Cx

x
v

. (12)

The ability to track a generalized-cell’s centroid is useful if we need to pick a single
reference point in the cell. In this example we will remove bubbles whose centroids have
x-coordinate greater than a cutoff value.

We will implement the Python script in four sections: 1) a main script (Listing 11), which
runs every MCS and calls the steppables to (2) create bubbles at the left end of the cell

-41-

lattice (BubbleNucleator, Listing 12), (3) enlarge the target volume of the bubble at
the injector site (AirInjector, Listing 13), and (4) set the target volume of bubbles at
the right end of the cell lattice to zero (BubbleCellRemover, Listing 14). We store
classes (2-4) in a separate file called 'foamairSteppables.py'.

import sys
from os import environ
import string
sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here
CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

from foamairSteppables import BubbleNucleator
bubbleNucleator=BubbleNucleator(sim,20)
bubbleNucleator.setNumberOfNewBubbles(1)
bubbleNucleator.setInitialTargetVolume(25)
bubbleNucleator.setInitialLambdaVolume(2.0)
bubbleNucleator.setInitialCellType(1)
steppableRegistry.registerSteppable(bubbleNucleator)

from foamairSteppables import AirInjector
airInjector=AirInjector(sim,40)
airInjector.setVolumeIncrement(25)
airInjector.setInjectionPoint(50,25,0)
steppableRegistry.registerSteppable(airInjector)

from foamairSteppables import BubbleCellRemover
bubbleCellRemover=BubbleCellRemover(sim)
bubbleCellRemover.setCutoffValue(170)
steppableRegistry.registerSteppable(bubbleCellRemover)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Listing 11. Main Python Script for foam-flow simulation. Changes to the template
(Listing 7) are shown in bold.

The main script in Listing 11 builds on the template Python code in Listing 7; we show
changes in bold. The line:

from foamairSteppables import BubbleNucleator

tells Python to look for the BubbleNucleator class in the file named
'foamairSteppables.py'.

bubbleNucleator=BubbleNucleator(sim, 20)

creates the steppable BubbleNucleator that will run every 20 MCS. The next few
lines in this section pass the number of bubbles to create, which in our case is one:

-42-

bubbleNucleator.setNumberOfNewBubbles(1)

the initial Vt for the new bubble, which is 25 pixels:

bubbleNucleator.setInitialTargetVolume(25)

the initial vol for the bubble:

bubbleNucleator.setInitialLambdaVolume(2.0)

and the bubble’s type.id:

bubbleNucleator.setInitialCellType(1)

Finally, we register the steppable:

steppableRegistry.registerSteppable(bubbleNucleator)

The next group of lines repeats the process for the AirInjector steppable, reading it
from the file 'foamairSteppables.py':
from foamairSteppables import AirInjector

AirInjector is run every 40 MCS:
airInjector=AirInjector(sim, 40)

and increases Vt by 25:
airInjector.setVolumeIncrement(25)

for the bubble occupying the pixel at the point (50, 25, 0) on the cell lattice:
airInjector.setInjectionPoint(50,25,0)

As before, the final line registers the steppable:
steppableRegistry.registerSteppable(airInjector)

The final new section reads the BubbleCellRemover steppable from the file
'foamairSteppables.py':
from foamairSteppables import BubbleCellRemover

and invokes the steppable, telling it to run every MCS; note that we have omitted the
number after sim:
bubbleCellRemover=BubbleCellRemover(sim)

Next we set 170 as the x-coordinate at which we will destroy bubbles:
bubbleCellRemover.setCutoffValue(170)

and, finally, register BubbleCellRemover
steppableRegistry.registerSteppable(bubbleCellRemover)

We must also write Python code to define the three steppables BubbleNucleator,
AirInjector, and BubbleCellRemover and save them in the file
'foamairSteppables.py'.

Listing 12 shows the code for the BubbleNucleator steppable.

from CompuCell import Point3D
from random import randint

class BubbleNucleator(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)

-43-

 self.simulator=_simulator

 def start(self):
 self.Potts=self.simulator.getPotts()
 self.dim=self.Potts.getCellFieldG().getDim()

 def setNumberOfNewBubbles(self,_numNewBubbles):
 self.numNewBubbles=int(_numNewBubbles)

 def setInitialTargetVolume(self,_initTargetVolume):
 self.initTargetVolume=_initTargetVolume

 def setInitialLambdaVolume(self,_initLambdaVolume):
 self.initLambdaVolume=_initLambdaVolume

 def setInitialCellType(self,_initCellType):
 self.initCellType=_initCellType

 def createNewCell(self,pt):
 print "Nucleated bubble at ",pt
 cell=self.Potts.createCellG(pt)
 cell.targetVolume=self.initTargetVolume
 cell.type=self.initCellType
 cell.lambdaVolume=self.initLambdaVolume

 def nucleateBubble(self):
 pt=Point3D(0,0,0)
 pt.y=randint(0,self.dim.y-1)
 pt.x=3
 self.createNewCell(pt)

 def step(self,mcs):
 for i in xrange(self.numNewBubbles):
 self.nucleateBubble()

Listing 12. Python code for the BubbleNucleator steppable, saved in the file
'foamairSteppables.py'. This module creates bubbles at points with random y coordinates
and x coordinate of 3.

The first two lines import necessary modules, where the line:

from CompuCell import Point3D

allows us to access points on the simulation cell lattice, and the line:

from random import randint

allows us to generate random integers.

In the constructor of the BubbleNucleator steppable class we assign to the variable
self.simulator a reference to the simulator object from the CompuCell3D
kernel. In the start(self) function, we assign a reference to the Potts object from
the CompuCell3D kernel to the variable self.Potts:

self.Potts=self.simulator.getPotts()

and assign the dimensions of the cell lattice to self.dim:

-44-

self.dim=self.Potts.getCellFieldG().getDim()

In addition to the four essential steppable member functions (__init__(self,
_simulator, _frequency), start(self), step(self, mcs) and
finish(self)), BubbleNucleator includes several functions, some of which set
parameters and some of which perform necessary tasks. The functions
setNumberOfNewBubbles, setInitialTargetVolume and
setInitialLambdaVolume accept the values passed from the main Python script in
Listing 11.

The CreateNewCell function requires that we pass the coordinates of the point, pt,
at which to create a new bubble:

def CreateNewCell (self,pt):

Then we use a built-in CompuCell3D function to add a new bubble at that location:

cell=self.Potts.createCellG(pt)

assigning the new cell a target volume tV targetVolume :

cell.targetVolume=self.initTargetVolume

type, type :

cell.type=self.initCellType

and compressibility vol lambdaVolume :

cell.lambdaVolume=initLambdaVolume

based on the values passed to the BubbleNucleator steppable from the main script.

The first three lines of the nucleateBubble function create a reference to a point on
the cell lattice (pt=Point3D(0,0,0)), assign it a random y-coordinate between 0 and
y_dim-1:

pt.y=randint(0,self.dim.y-1)

and an x-coordinate of 3:

pt.x=3

The line calls the createNewCell function and passes it the point (pt) at which to
create the new bubble:

self.createNewCell(pt)

Finally, the step(self,mcs) function calls the nucleateBubble function
self.numNewBubbles times per MCS.

Listing 13 shows the code for the AirInjector steppable.

class AirInjector(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.Potts=self.simulator.getPotts()
 self.cellField=self.Potts.getCellFieldG()

-45-

 def start(self): pass

 def setInjectionPoint(self,_x,_y,_z):
 self.injectionPoint=CompuCell.Point3D(int(_x),int(_y),int(_z))

 def setVolumeIncrement(self,_increment):
 self.volumeIncrement=_increment

 def step(self,mcs):
 if mcs <5000:
 return
 cell=self.cellField.get(self.injectionPoint)
 if cell:
 cell.targetVolume+=self.volumeIncrement

Listing 13. Python code for the AirInjector steppable which simulates air injection
into the bubble currently occupying the cell-lattice pixel at location (x,y,z). Air injection
begins after 5000 MCS to allow the channel to partially fill with bubbles. The steppable
is saved in file 'foamairSteppables.py'.

The first three lines of the __init__(self,_simulator,_frequency) function
are identical to the same lines in the BubbleNucleator steppable (Listing 12). The
final line of the function:

self.cellField=self.Potts.getCellFieldG()

loads the cell-lattice parameters. The start(self) function in this steppable does not
do anything:

def start(self): pass

The next two functions read the injectionPoint and volumeIncrement passed
to the AirInjector steppable by the main Python script (Listing 11). The step
function uses these values to identify the bubble at the injection site,
self.injectionPoint:

cell=self.cellField.get(self.injectionPoint)

and then increment that bubble’s target volume tV by self.volumeIncrement:

if cell:
 cell.targetVolume+=self.volumeIncrement

Note the syntax:

if cell:

which we use to test whether a cell is Medium or not. Medium in CompuCell3D is
assigned a NULL pointer, which, in Python, becomes a None object. Python evaluates the
None object as False and other objects (in our case, bubbles) as True, so the task is
only carried out on bubbles, not Medium.

In the first two lines of the step(self,mcs) function, we tell the function not to
perform its task until 5000 MCS have elapsed:

-46-

if mcs <5000:
 return

The 5000 MCS delay allows the simulation to establish a uniform flow of small bubbles
throughout a large portion of the cell lattice.

Finally, we define the BubbleCellRemover steppable (Listing 14).

class BubbleCellRemover(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def start(self):
 self.Potts=self.simulator.getPotts()
 self.dim=self.Potts.getCellFieldG().getDim()

 def setCutoffValue(self,_cutoffValue):
 self.cutoffValue=_cutoffValue

 def step(self,mcs):
 for cell in self.cellList:
 if cell:
 if int(cell.xCM/float(cell.volume))>self.cutoffValue:
 cell.targetVolume=0
 cell.lambdaVolume=10000

Listing 14. Python code for the BubbleCellRemover steppable. This module
removes cells once the x-coordinates of their centroids cutoffValue by setting
their target volumes to zero and increasing their vol to 10000. Like the other steppables

in the foam-flow simulation, we save it in the file 'foamairSteppables.py'.

At each MCS we scan the cell inventory looking for cells whose centroid has an x-
coordinate close to the right end of the lattice and remove these cells from the simulation
by setting their target volumes to zero and increasing vol to 10000.

The first two lines of the __init__ (self,_simulator,_frequency) function
are identical to the corresponding lines in the BubbleNucleator and AirInjector
steppables (Listing 12 and Listing 13). In the third line of the function, we gain access to
the generalized-cell inventory:

self.inventory=self.simulator.getPotts().getCellInventory()

and in the fourth line we make a list containing all of the generalized cells in the
simulation:

self.cellList=CellList(self.inventory)

The start(self) function is identical to that of the BubbleNucleator steppable
(Listing 12), and performs the same function.

The next function:

-47-

setCutoffValue(self,_cutoffValue)

reads the cutoffValue for the x-coordinate that we passed to
BubbleCellRemover from the main Python script (Listing 11). Finally, the
step(self, mcs) function iterates through the cell inventory. We first check to
make sure that the cell is not Medium:

if cell:

For each non-Medium cell we test whether the x-coordinate of the cell’s centroid is
greater than the cutoffValue:

if int(cell.xCM/float(cell.volume))>self.cutoffValue:

 and, if it is, set that cell’s targetVolume, tV , to zero:

cell.targetVolume=0

and its vol 10000 :

cell.lambdaVolume=10000

Running the CC3DML file from Listing 10 and the main Python script from Listing 11
(which loads the steppables in Listing 12, Listing 13 and Listing 14 from the file
'foamairSteppables.py') produces the snapshots shown in Figure 15.

-48-

Figure 15. Results of the foam-flow simulation on a 2D 3rd-neighbor hexagonal lattice.
Simulation code is given in Listing 10,Listing 11, Listing 12, Listing 13 and Listing 14.

VI.E. Diffusing-Field-Based Cell-Growth Simulation
One of the most frequent uses of Python scripting in CompuCell3D simulations is to
modify cell behavior based on local field concentrations. To demonstrate this use, we
incorporate stem-cell-like behavior into the cell-sorting simulation from Listing 1. This
extension requires including relatively sophisticated interactions between cells and
diffusing chemical, FGF (100).
We simulate a situation where NonCondensing cells secrete FGF, which diffuses
freely through the cell lattice and obeys:

 20.10 0.05 � ,
FGF i

FGF i i
t

 NonCondensing

, (13)

 t=200 MCS

t=2000 MCS

t=5500 MCS

t=7500 MCS

t=9880 MCS

-49-

where FGF denotes the FGF concentration and Condensing cells respond to the

field by growing at a constant rate proportional to the FGF concentration at their
centroids:

dVt ()

dt
 0.01[FGF](

x). (14)

When they reach a threshold volume, the Condensing cells undergo mitosis. One of
the resulting daughter cells remains a Condensing cell, while the other daughter cell
has an equal probability of becoming either another Condensing cell or a
DifferentiatedCondensing cell. DifferentiatedCondensing cells do not
divide.

Each generalized cell in CompuCell3D has a default list of attributes, e.g. type, volume,
surface (area), target volume, etc.. However, CompuCell3D allows users to add cell
attributes during execution of simulations. E.g., in the current simulation, we will record
data on each cell division in a list attached to each cell. Generalized cell attributes can be
added using either C++ or Python. However, attributes added using Python are not
accessible from C++ modules.

As in the foam-flow simulation, we divide the necessary simulation tasks among different
Python modules (or classes) which we save in a file 'cellsort_2D_field_modules.py' and
call from the main Python script. We reuse elements of the CC3DML files we presented
earlier to construct the CC3DML configuration file, presented in Listing 15.

<CompuCell3D>
 <Potts>
 <Dimensions x="200" y="200" z="1"/>
 <Steps>10000</Steps>
 <Temperature>10</Temperature>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Condensing" TypeId="1"/>
 <CellType TypeName="NonCondensing" TypeId="2"/>
 <CellType TypeName="CondensingDifferentiated" TypeId="3"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>
 <Energy Type1="Condensing" Type2="Condensing">2</Energy>
 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>
 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>
 <Energy Type1="Condensing" Type2="Medium">16</Energy>
 <Energy Type1="CondensingDifferentiated"
 Type2="CondensingDifferentiated">2</Energy>

-50-

 <Energy Type1="CondensingDifferentiated"
 Type2="Condensing">2</Energy>
 <Energy Type1="CondensingDifferentiated"
 Type2="NonCondensing">11</Energy>
 <Energy Type1="CondensingDifferentiated" Type2="Medium">16</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Plugin Name="CenterOfMass"/>

 <Steppable Type="FlexibleDiffusionSolverFE">
 <DiffusionField>
 <DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>0.10</DiffusionConstant>
 <DecayConstant>0.00005</DecayConstant>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="NonCondensing">0.05</Secretion>
 </SecretionData>
 </DiffusionField>
 </Steppable>

 <Steppable Type="BlobInitializer">
 <Region>
 <Gap>0</Gap>
 <Width>5</Width>
 <Radius>40</Radius>
 <Center x="100" y="100" z="0"/>
 <Types>Condensing,NonCondensing</Types>
 </Region>
 </Steppable>

</CompuCell3D>

Listing 15. CC3DML code for the diffusing-field-based cell-growth simulation.

The CC3DML code is a slightly extended version of the cell-sorting code in Listing 3
plus the FlexibleDiffusionSolverFE discussed in the bacterium-and-
macrophage simulation (see Listing 4). The initial cell-lattice does not contain any
CondensingDifferentiated cells. These cells appear only as the result of mitosis.
We use the VolumeLocalFlex plugin to allow the target volume to vary individually
for each cell, allowing cell growth as discussed in the foam-flow simulation. We manage
the volume-constraint parameters using a Python script. The CenterOfMass plugin
provides a reference point in each cell at which we measure the FGF concentration. We
then adjust the cell's target volume accordingly.

To build this simulation in CompuCell3D we need to write several Python routines. We
need: 1) A steppable, VolumeConstraintSteppable to initialize the volume-
constraint parameters for each cell and to simulate cell growth by periodically increasing
Condensing cells’ target volumes in proportion to the FGF concentration at their
centroids. 2) A plugin, CellsortMitosis, that runs the CompuCell3D mitosis
algorithm when any cell reaches a threshold volume and then adjusts the parameters of

-51-

the resulting parent and daughter cells. This plugin also appends information about the
time and type of cell division to a list attached to each cell. 3) A steppable,
MitosisDataPrinterSteppable, that prints the cell-division information from
the lists attached to each cell. 4) A class, MitosisData, which
MitosisDataPrinterSteppable uses to extract and format the data it prints. 5) A
main Python script to call the steppables and the CellsortMitosis plugin
appropriately. We store the source code for routines 1)-4) in a separate file called
'cellsort_2D_field_modules.py'.

Listing 16 shows the main Python script for the diffusing-field-based cell-growth
simulation, with changes to the template (Listing 7) shown in bold.

import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#add additional attributes
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#notice importing CompuCell to main script has to be
#done after call to getCoreSimulationObjects()
import CompuCell
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim)
stepperRegistry=CompuCellSetup.getStepperRegistry(sim)

from cellsort_2D_field_modules import CellsortMitosis
cellsortMitosis=CellsortMitosis(sim,changeWatcherRegistry,\
stepperRegistry)
cellsortMitosis.setDoublingVolume(50)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

from cellsort_2D_field_modules import VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable(sim)
steppableRegistry.registerSteppable(volumeConstraint)

from cellsort_2D_field_modules import MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim)
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Listing 16. Main Python script for the diffusing-field-based cell-growth simulation.
Changes to the template code (Listing 7) shown in bold.

-52-

The first change to the template code (Listing 7) is:
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim)

which instructs the CompuCell3D kernel to attach a Python-defined list to each cell when
it creates it. This list serves as a generic container which can store any set of Python
objects and hence any set of generalized-cell properties. In the current simulation, we use
the list to store objects of the class MitosisData, which records the Monte Carlo Step
at which each cell division involving the current cell or its parent, happened, as well as,
the cell index and cell type of the parent and daughter cells.

Because one of our Python modules is a lattice monitor, rather than a steppable, we need
to create stepperRegistry and changeWatcherRegistry objects, which store
the two types of lattice monitors:
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim)
stepperRegistry=CompuCellSetup.getStepperRegistry(sim)

The CellsortMitosis plugin is a lattice monitor because it acts in response to
certain index-copy events; it is invoked whenever a cell's volume reaches the threshold
volume for mitosis. The following lines create the CellsortMitosis lattice monitor
and register it with the stepperRegistry and changeWatcherRegistry:
from cellsort_2D_field_modules import CellsortMitosis
cellsortMitosis = CellsortMitosis(sim,changeWatcherRegistry,\
stepperRegistry)

Because the base class inherited by CellsortMitosis, unlike our steppables, handles
registration internally, we do not have to register CellsortMitosis explicitly. We
can now set the threshold volume at which Condensing cells divide:

cellsortMitosis.setDoublingVolume(50)

Next we import the VolumeConstraintSteppable steppable, which initializes
cells’ target volumes and compressibilities at the beginning of the simulation and also
implements chemical-dependent cell growth for Condensing cells, and register it:
from cellsort_2D_field_modules import VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable(sim)
steppableRegistry.registerSteppable(volumeConstraint)

Finally, we import, create and register the MitosisDataPrinterSteppable
steppable, which prints the content of MitosisData objects for cells that have divided:

from cellsort_2D_field_modules import MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim)
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable)

The number of MitosisData objects stored in each cell at any given Monte Carlo Step
depends on cell type (NonCondensing cells do not divide, whereas Condensing
cells can divide multiple times), and how often a given cell has divided.

Moving on to the Python modules, we consider the VolumeConstraintSteppable
steppable shown in Listing 17.

class VolumeConstraintSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):

-53-

 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def start(self):
 for cell in self.cellList:
 cell.targetVolume=25
 cell.lambdaVolume=2.0
 def step(self,mcs):
 field=CompuCell.getConcentrationField(self.simulator,"FGF")
 comPt=CompuCell.Point3D()
 for cell in self.cellList:
 if cell.type==1: #Condensing cell
 comPt.x=int(round(cell.xCM/float(cell.volume)))
 comPt.y=int(round(cell.yCM/float(cell.volume)))
 comPt.z=int(round(cell.zCM/float(cell.volume)))
 concentration=field.get(comPt) # get concentration at comPt
 # and increase cell's target volume
 cell.targetVolume+=0.1*concentration

Listing 17. Python code for the VolumeConstraintSteppable, saved in the file
'cellsort_2D_field_modules.py', for the diffusing-field-based cell-growth simulation. The
VolumeConstraintSteppable provides dynamic volume constraint parameters for
each cell, which depend on the cell type and the chemical field concentration at the cell’s
centroid.

The __init__ constructor looks very similar to the one in Listing 14, with the
difference that we pass _frequency=1 to update the cell volumes once per MCS. We
also request the field-lattice dimensions and values from CompuCell3D:

 self.dim=self.simulator.getPotts().getCellFieldG().getDim()

and specify that we will work with a field named FGF:

self.fieldName="FGF"

The script contains two functions: one that initializes the cells’ volume-constraint
parameters (start(self)) and one that updates them (step(self, mcs)).

The start(self) function executes only once, at the beginning of the simulation. It
iterates over each cell (for cell in self.cellList:) and assigns the initial
cells’ targetVolume (Vt () 25 pixels) and lambdaVolume (vol () 2.0)

parameters as the VolumeLocalFlex plugin requires.

The first line of the step(self, mcs) function extracts a reference to the FGF
concentration field defined using the FlexibleDiffusionSolverFE steppable in
the CC3DML file (each field created in a CompuCell3D simulation is registered and
accessible by both C++ and Python). The function then iterates over every cell in the
simulation. If a cell is of cell.type 1 (Condensing – see the CC3DML
configuration file, Listing 15), we calculate its centroid:

centerOfMassPoint.x=int(round(cell.xCM/float(cell.volume)))
centerOfMassPoint.y=int(round(cell.yCM/float(cell.volume)))

-54-

centerOfMassPoint.z=int(round(cell.zCM/float(cell.volume)))

 and retrieve the FGF concentration at that point:

concentration=field.get(centerOfMassPoint)

We then increase the target volume of the cell by 0.01 times that concentration:

cell.targetVolume+=0.01*concentration

We must include the CenterOfMass plugin in the CC3DML code. Otherwise the
centroid (cell.xCM, cell.yCM, cell.zCM) will have the default value (0,0,0).

Listing 18 shows the code for the CellsortMitosis plugin. The plugin divides the
mitotic cell into two cells and adjusts both cells' attributes. It also initializes and appends
MitosisData objects to the original cell's (self.parentCell) and daughter cell's
(self.childCell) attribute lists.

from random import random
from PyPluginsExamples import MitosisPyPluginBase
class CellsortMitosis(MitosisPyPluginBase):
 def __init__(self,_simulator,_changeWatcherRegistry,\
 _stepperRegistry):
 MitosisPyPluginBase.__init__(self,_simulator,\
 _changeWatcherRegistry,_stepperRegistry)

 def updateAttributes(self):
 self.parentCell.targetVolume=self.parentCell.volume/2.0
 self.childCell.targetVolume=self.parentCell.targetVolume
 self.childCell.lambdaVolume=self.parentCell.lambdaVolume

 if (random()<0.5):
 self.childCell.type=self.parentCell.type
 else:
 self.childCell.type=3

 ##record mitosis data in parent and daughter cells
 mcs=self.simulator.getStep()
 mitData=MitosisData(mcs,self.parentCell.id,self.parentCell.type,\
 self.childCell.id,self.childCell.type)

 #get a reference to lists storing Mitosis data
 parentCellList=CompuCell.getPyAttrib(self.parentCell)
 childCellList=CompuCell.getPyAttrib(self.childCell)

 parentCellList.append(mitData)
 childCellList.append(mitData)

Listing 18. Python code for the CellsortMitosis plugin for the diffusing-field-
based cell-growth simulation, saved in the file 'cellsort_2D_field_modules.py'. The
plugin handles division of cells when they reach a threshold volume.

The second line of Listing 18:

from PyPluginsExamples import MitosisPyPluginBase

-55-

lets us access the CompuCell3D base class MitosisPyPluginBase.

CellsortMitosis inherits the content of the MitosisPyPluginBase class.
MitosisPyPluginBase internally accesses the CompuCell3D-provided Mitosis
plugin, which is written in C++, and handles all the technicalities of plugin initialization
behind the scenes. The MitosisPyPluginBase class provides a simple-to-use
interface to this plugin. To create a customized version of MitosisPyPluginBase,
CellsortMitosis, we must call the constructor of MitosisPyPluginBase from
the CellsortMitosis constructor:
MitosisPyPluginBase.__init__(self,_simulator,\
 _changeWatcherRegistry,_stepperRegistry)

We also need to reimplement the function updateAttributes(self), which is
called by MitosisPyPluginBase after mitosis takes place, to define the post-
division cells’ parameters. The objects self.childCell and self.parentCell
that appear in the function are initialized and managed by MitosisPyPluginBase.
In the current simulation, after division we set Vt for the parent and daughter cells to half
of the tV of the parent just prior to cell division. vol. is left unchanged for the parent cell

and the same value is assigned to the daughter cell:
self.parentCell.targetVolume=self.parentCell.volume/2.0
self.childCell.targetVolume=self.parentCell.targetVolume
self.childCell.lambdaVolume=self.parentCell.lambdaVolume

The cell type of one of the two daughter cells (childCell) is randomly chosen to be
either Condensing (i.e., the same as the parent type) or
CondensingDifferentiated, which we have defined to be cell.type 3
(Listing 15):

if (random()<0.5):
 self.childCell.type=self.parentCell.type
 else:
 self.childCell.type=3

The parent cell remains Condensing. We now add a description of this cell division to
the lists attached to each cell. First we collect the data in a list called mitData:
 mcs=self.simulator.getStep()
 mitData=MitosisData(mcs,self.parentCell.id,self.parentCell.type,\
 self.childCell.id,self.childCell.type)

then we access the lists attached to the two cells:
 parentCellList=CompuCell.getPyAttrib(self.parentCell)
 childCellList=CompuCell.getPyAttrib(self.childCell)

and append the new mitosis data to these lists:
 parentCellList.append(mitData)
 childCellList.append(mitData)

Listing 19 shows the Python code for the MitosisData class, which stores the data on
the cell division that we append to the cells’ attribute lists after each cell division.

class MitosisData:

-56-

 def __init__(self,_MCS,_parentId,_parentType,_offspringId,\
_offspringType):
 self.MCS=_MCS
 self.parentId=_parentId
 self.parentType=_parentType
 self.offspringId=_offspringId
 self.offspringType=_offspringType
 def __str__(self):
 return "Mitosis time="+str(self.MCS)+"\
 parentId="+str(self.parentId)+"\
 offspringId="+str(self.offspringId)

Listing 19. Python code for the MitosisData class for the diffusing-field-based cell-
growth simulation, saved in the file 'cellsort_2D_field_modules.py'. MitosisData
objects store information about cell divisions involving the parent and daughter cells.

In the constructor of MitosisData, we read in the time (in MCS) of the division, along
with the parent and daughter cell indices and types. The __str__(self) convenience
function returns an ASCII string representation of the time and cell indices only, to allow
the Python print command to print out this information.

Listing 20 shows the Python code for the MitosisDataPrinterSteppable
steppable, which prints the mitosis data to the user's screen.

class MitosisDataPrinterSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 mitDataList=CompuCell.getPyAttrib(cell)
 if len(mitDataList) > 0:
 print "MITOSIS DATA FOR CELL ID",cell.id
 for mitData in mitDataList:
 print mitData

Listing 20. The Python code for the MitosisDataPrinter steppable for the
diffusing-field-based cell-growth simulation, saved in the file
'cellsort_2D_field_modules.py'. The steppable prints the cell-division history for dividing
cells (see Figure 18).

The constructor is identical to that for the VolumeConstraintSteppable steppable
(Listing 17). Within the step(self,mcs) function, we iterate over each cell (for
cell in self.cellList:) and access the Python list attached to the cell
(mitDataList=CompuCell.getPyAttrib(cell)). If a given cell has
undergone mitosis, then the list will have entries, and thus a nonzero length. If so, we
print the MitosisData objects stored in the list:
 if len(mitDataList) > 0:
 print "MITOSIS DATA FOR CELL ID",cell.id

-57-

 for mitData in mitDataList:
 print mitData

Figure 16 and Figure 17 show snapshots of the diffusing-field-based cell-growth
simulation. Figure 18 shows a sample screen output of the cell-division history.

Figure 16. Snapshots of the diffusing-field-based cell-growth simulation obtained by
running the CC3DML file in Listing 15 in conjunction with the Python file in Listing 16.
As the simulation progresses, NonCondensing cells (light gray) secrete diffusing
chemical, FGF, which causes Condensing (dark gray) cells to proliferate. Some
Condensing cells differentiate to CondensingDifferentiated (white) cells.

Figure 17. Snapshots of FGF concentration in the diffusing-field-based cell-growth
simulation obtained by running the CC3DML file in Listing 15 in conjunction with the
Python files in Listing 16, Listing 17, Listing 18, Listing 19, Listing 20. The bars at the
bottom of the field images show the concentration scales (blue, low concentration; red,
high concentration).

t=200 MCS t=600 MCS t=1200 MCS t=1800 MCS

t=200 MCS t=600 MCS t=1200 MCS t=1800 MCS

-58-

Figure 18. Sample output from the MitosisDataPrinterSteppable steppable in Listing 20.

The diffusing-field-based cell-growth simulation includes concepts that extend easily to
simulate biological phenomena that involve diffusants, cell growth and mitosis, e.g.,
limb-bud development (58, 59), tumor growth (5-9) and Drosophila imaginal-disc
development.

VII.	Conclusion	
In most cases, building a complex CompuCell3D simulation requires writing Python
modules, a main Python script and a CC3DML configuration file. While the effort to
write this code can be substantial, it is much less than that required to develop custom
simulations in lower-level languages. Working from the substantial base of Python
templates provided by CompuCell3D further streamlines simulation development. Python
programs are fairly short, so simulations can be published in journal articles, greatly
facilitating simulation validation, reuse and adaptation. Finally, CompuCell3D’s modular
structure allows new Python modules to be reused from simulation to simulation. The
CompuCell3D website, www.compucell3d.org, allows users to archive their modules and
make them accessible to other users.

We hope the examples we have shown will convince readers to evaluate the suitability of
GGH simulations using CompuCell3D for their research.

-59-

All the code examples presented in this chapter are available from www.compucell3d.org.
They will be curated to ensure their correctness and compatibility with future versions of
CompuCell3D.

VIII.	Acknowledgements	
We gratefully acknowledge support from the National Institutes of Health, National
Institute of General Medical Sciences, grants 1R01 GM077138-01A1 and 1R01
GM076692-01, and the Office of Vice President for Research, the College of Arts and
Sciences, the Pervasive Technologies Laboratories and the Biocomplexity Institute at
Indiana University. Indiana University’s University Information Technology Services
provided time on their BigRed clusters for simulation execution. Early versions of
CompuCell and CompuCell3D were developed at the University of Notre Dame by
J.A.G., Dr. Mark Alber and Dr. Jesus Izaguirre and collaborators with the support of
National Science Foundation, Division of Integrative Biology, grant IBN-00836563.
Since the primary home of CompuCell3D moved to Indiana University in 2004, the Notre
Dame team have continued to provide important support for its development.

IX.	XML	Syntax	of	CompuCell3D	modules	

IX.1. Potts Section
The first section of the .xml file defines the global parameters of the lattice and the
simulation.

 <Potts>
 <Dimensions x="101" y="101" z="1"/>
 <Anneal>0</Anneal>
 <Steps>1000</Steps>
 <FluctuationAmplitude>5</ FluctuationAmplitude >
 <Flip2DimRatio>1</Flip2DimRatio>
 <Boundary_y>Periodic</Boundary_y>
 <Boundary_x>Periodic</Boundary_x>
 <NeighborOrder>2</NeighborOrder>
 <DebugOutputFrequency>20</DebugOutputFrequency>
 <RandomSeed>167473</RandomSeed>
 <EnergyFunctionCalculator Type="Statistics">
 <OutputFileName Frequency="10">statData.txt</OutputFileName>
 <OutputCoreFileNameSpinFlips Frequency="1" GatherResults=""
 OutputAccepted="" OutputRejected="" OutputTotal="">
 statDataSingleFlip
 </OutputCoreFileNameSpinFlips>
 </EnergyFunctionCalculator>
 </Potts>

This section appears at the beginning of the configuration file. Line <Dimensions
x="101" y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1,
i.e., the lattice is two-dimensional and extends in the xy plane. The basis of the lattice is
0 in each direction, so the 101 lattice sites in the x and y directions have indices ranging
from 0 to 100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts in

-60-

MCS. After executing this number of steps, CompuCell can run simulation at zero
temperature for an additional period. In our case it will run for <Anneal>10</Anneal>
extra steps. FluctuationAmplitude parameter determines intrinsic fluctuation or motility
of cell membrane. Fluctuation amplitude is a temperature parameter in classical GGH
model formulation. We have decided tyo use FluctuationAmplitude term instead of
temperature because using word “temperature” to describe intrinsic motility of cell
membrane was quite confusing.

In the above example, fluctuation amplitude applies to all cells in the simulation. To
define fluctuation amplitude separately for each cell type we use the following syntax:
<FluctuationAmplitude>
 <FluctuationAmplitudeParameters CellType="Condensing"\
 FluctuationAmplitude="10"/>
 <FluctuationAmplitudeParameters CellType="NonCondensing”\
 FluctuationAmplitude="5"/>
</FluctuationAmplitude>

When CompuCell3D encounters expanded definition of FluctuationAmplitude it will use
it in place of a global definition –
<FluctuationAmplitude>5</ FluctuationAmplitude >

To complete the picture CompUCell3D allows users to set fluctuation amplitude
individually for each cell. Using Python scripting we write:

 for cell in self.cellList:
 if cell.type==1:
 cell.fluctAmpl=20

When determining which value of fluctuation amplitude to use, CompuCell first checks if
fluctAmpl is non-negative. If this is the case it will use this value as fluctuation
amplitude. Otherwise it will check if users defined fluctuation amplitude for cell types
using expanded XML definition and if so it will use those values as fluctuation
amplitudes. Lastly it will resort to globally defined fluctuation amplitude (Temperature).
Thus, it is perfectly fine to use FluctuationAmplitude XML tags and set fluctAmpl for
certain cells. In such a case CompuCell3D will use fluctAmpl for cells for which users
defined it and for all other cells it will use values defined in the XML.

In GGH model, the fluctuation amplitude is determined taking into account fluctuation
amplitude of “source” (expanding) cell and “destination” (being overwritten) cell.
Currently CompuCell3D supports 3 type functions used to calculate resultant fluctuation
amplitude (those functions take as argument fluctuation amplitude of “source” and
“destination” cells and return fluctuation amplitude that is used in calculation of pixel-
copy acceptance). The 3 functions are Min, Max, and ArithmeticAverage and we can set
them using the following option of the Potts section:

<Potts>
 <FluctuationAmplitudeFunctionName>
 Min

-61-

 </FluctuationAmplitudeFunctionName>
…
</Potts>

By default we use Min function. Notice that if you use global fluctuation amplitude
definition (Temperature) it does not really matter which function you use. The
differences arise when “source” and “destination” cells have different fluctuation
amplitudes.
The above concepts are best illustrated by the following example:

<PythonScript>Demos/FluctuationAmplitude/FluctuationAmplitude.py\
</PythonScript>
 <Potts>
 <Dimensions x="100" y="100" z="1"/>
 <Steps>10000</Steps>
 <FluctuationAmplitude>5</FluctuationAmplitude>
 <FluctuationAmplitudeFunctionName>ArithmeticAverage\
 </FluctuationAmplitudeFunctionName>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

Where in the XML section we define global fluctuation amplitude and we also use
ArithmeticAverage function to determine resultant fluctuation amplitude for the pixel
copy.

In python script we will periodically set higher fluctuation amplitude for lattice quadrants
so that when running the simulation we can see that cells belonging to different lattice
quadrants have different membrane fluctuations:

class FluctuationAmplitude(SteppableBasePy):
 def __init__(self,_simulator,_frequency=1):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 self.quarters=[[0,0,50,50],[0,50,50,100],\
 [50,50,100,100],[50,0,100,50]]

 self.steppableCallCounter=0

 def step(self, mcs):

 quarterIndex=self.steppableCallCounter % 4
 quarter=self.quarters[quarterIndex]

 for cell in self.cellList:

 if cell.xCOM>=quarter[0] and cell.yCOM>=quarter[1] and\
 cell.xCOM<quarter[2] and cell.yCOM<quarter[3]:

 cell.fluctAmpl=50
 else:

 #this means CompuCell3D will use globally defined FluctuationAmplitude
 cell.fluctAmpl=-1

 self.steppableCallCounter+=1

-62-

Assigning negative fluctuationAmplitude cell.fluctAmpl=-1 is interpreted by
CompuCell3D as a hint to use fluctuation amplitude defined in the XML.

The below section describes Temperature and CellMotility tags which are beibng
deprecated (however cor compatibility reasons we still support those):

The first section of the .xml file defines the global parameters of the lattice and the
simulation.

 <Potts>
 <Dimensions x="101" y="101" z="1"/>
 <Anneal>0</Anneal>
 <Steps>1000</Steps>
 <Temperature>5</Temperature>
 <Flip2DimRatio>1</Flip2DimRatio>
 <Boundary_y>Periodic</Boundary_y>
 <Boundary_x>Periodic</Boundary_x>
 <NeighborOrder>2</NeighborOrder>
 <DebugOutputFrequency>20</DebugOutputFrequency>
 <RandomSeed>167473</RandomSeed>
 <EnergyFunctionCalculator Type="Statistics">
 <OutputFileName Frequency="10">statData.txt</OutputFileName>
 <OutputCoreFileNameSpinFlips Frequency="1" GatherResults=""
 OutputAccepted="" OutputRejected="" OutputTotal="">
 statDataSingleFlip
 </OutputCoreFileNameSpinFlips>
 </EnergyFunctionCalculator>
 </Potts>

This section appears at the beginning of the configuration file. Line <Dimensions
x="101" y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1,
i.e., the lattice is two-dimensional and extends in the xy plane. The basis of the lattice is
0 in each direction, so the 101 lattice sites in the x and y directions have indices ranging
from 0 to 100. <Steps>1000</Steps> tells CompuCell how long the simulation lasts in
MCS. After executing this number of steps, CompuCell can run simulation at zero
temperature for an additional period. In our case it will run for <Anneal>10</Anneal>
extra steps. Setting the temperature is as easyas writing
<Temperature>5</Temperature>.

We can also set temperature (or in other words cell motility) individually for each cell
type. The syntax to do this is following:

 <CellMotility>
 <MotilityParameters CellType="Condensing" Motility="10"/>
 <MotilityParameters CellType="NonCondensing" Motility="5"/>
 </CellMotility>

You may use it in the Potts section in place of <Temperature> .

Comment [MSOffice1]: We can also define
temperature by cell type. Can we have different
temperature for each cell?

-63-

Now, as you remember from the discussion about the difference between spin-flip
attempts and MCS we can specify how many spin flips should be attempted in every
MCS. We specify this number indirectly by specifying the Flip2DimRatio -
<Flip2DimRatio>1</Flip2DimRatio>, which tells CompuCell that it should make 1 x
number of lattice sites attempts per MCS – in our case one MCS is 101x101x1 spin-flip
attempts. To set 2.5x101x101x1 spin flip attempts per MCS you would write
<Flip2DimRatio>2.5</Flip2DimRatio>.
The next line specifies the neighbor order. The higher neighbor order the longer the
Euclidian distance from a given pixel. In previous versions of CompuCell3D we have
been using <FlipNeighborMaxDistance> or <Depth> (in Contact energy plugins) flag
to accomplish same task. Since now CompuCell3D supports two kinds of latices it would
be inconvenient to change distances. It is much easier to think in terms n-th nearest
neighbors. For the backwards compatibility we still support old flags but we discourage
its use, especially that in the future we might support more than just two lattice types.
Using nearest neighbor interactions may cause artifacts due to lattice anisotropy. The
longer the interaction range, the more isotropic the simulation and the slower it runs. In
addition, if the interaction range is comparable to the cell size, you may generate
unexpected effects, since non-adjacent cells will contact each other.
On hex lattice those problems seem to be less seveare and there 1st or 2nd nearest neighbor
usually are sufficient.
The Potts section also contains tags called <Boundary_y> and <Boundary_x>.These tags
impose boundary conditions on the lattice. In this case the x and y axes are periodic
(<Boundary_x>Periodic</Boundary_x>) so that e.g. the pixel with x=0, y=1, z=1 will
neighbor the pixel with x=100, y=1, z=1. If you do not specify boundary conditions
CompuCell will assume them to be of type no-flux, i.e. lattice will not be extended. The
conditions are independent in each direction, so you can specify any combination of
boundary conditions you like.
DebugOutputFrequency is used to tell CompuCell3D how often it should output text
information about the status of the simulation. This tag is optional.
RandomSeed is used to initialize random number generator. If you do not do this all
simulations will use same sequence of random numbers. Something you may want to
avoid in the real simulations but is very useful while debugging your models.
EnergyFunctionCalculator is another option of Potts object that allows users to output
statistical data from the simulation for further analysis. The OutputFileName tag is used
to specify the name of the file to which CompuCell3D will write average changes in
energies returned by each plugins with corresponding standard deviations for those MCS
whose values are divisible by the Frequency argument. Here it will write these data every
10 MCS.
A second line with OutputCoreFileNameSpinFlips tag is used to tell CompuCell3D to
output energy change for every plugin, every spin flip for MCS' divisible by the
frequency. Option GatherResults=”” will ensure that there is only one file written for
accepted (OutputAccepted), rejected (OutputRejected)and accepted and rejected
(OutputTotal) spin flips. If you will not specify GatherResults CompuCell3D will

Comment [MSOffice2]: in terms of nth nearest
neighbors.

Comment [MSOffice3]: is

-64-

output separate files for different MCS's and depending on the Frequency you may end
up with many files in your directory.

One option of the Potts section that we have not used here is the ability to customize
acceptance function for Metropolis algorithm:

<Offset>-0.1</Offset>
<KBoltzman>1.2</KBoltzman>

This ensures that spin flips attempts that increase the energy of the system are accepted
with probability

 /ΔE δ kTP = e where and k are specified by Offset and KBoltzman tags respectively.
By default =0 and k=1.

As an alternative to exponential acceptance function you may use a simplified version
which is essentially 1 order expansion of the exponential:

P=1−
E− δ

kT

To be able to use this function all you need to do is to add the following line in the Pots
section:

<AcceptanceFunctionName>FirstOrderExpansion</AcceptanceFunctionName>

IX.1.1 Lattice Type

Early versions of CompuCell3D allowed users to use only square lattice. Most recent
versions however, allow the simulation to be run on hexagonal lattice as well.
To enable hexagonal lattice you need to put

<LatticeType>Hexagonal</LatticeType>

in the Potts section of the XML configuration file.

There are few things to be aware of. When using hexagonal lattice. Obviously your pixels
are hexagons (2D) or rhombic dodecahedrons (3D) but what is more important is that
surface or perimeter of the pixel (depending whether in 2D or 3D) is different than in the
case of sqaure pixel. The way CompuCell3D hex lattice implementation was done was
that the volume of the pixel was constrained to be 1 regardless of the lattice type.
Second, there is one to one correspondence between pixels of the square lattice and pixels
of the hex lattice. Consequently we can come up with transformation equations which
give positions of hex pixels as a function of square lattice pixel position:

-65-

3 3 6

2 3 3

1 3 3 6

2 2 3 3

3 6

2 3

1 3 6

2 2 3

hex

hex

hex

hex

x, y,z = x, y+ , z for y odd z odd

x, y,z = x+ , y+ , z for y even z odd

x, y,z = x, y, z for y odd z even

x, y,z = x+ , y, z for y even z even

Based on the above facts one can work out how unit length and unit surface transform to
the hex lattice. The conversion factors are given below:
For the 2D case, assuming that each pixel has unit volume, we get:

2
0.6204

3 3

2
1.075

3

hex unit

hex unit

S =

L =

where S hex− unit denotes length of the hexagon and Lhex−unit denotes a distance between
centers of the hexagons. Notice that unit surface in 2D is simply a length of the hexagon
side and surface area of the hexagon with side 'a' is:

23
6

4
S = a

In 3D we can derive the corresponding unit quantities starting with the formulae for
Volume and surface of rhombic dodecahedron (12 hedra)

3

2

16
3

9

8 2

V = a

S = a

where 'a' denotes length of dodecahedron edge.
Constraining the volume to be one we get

9V3
16 3

a =

and thus unit surface is given by:

-66-

28 2 9V3 0.445
12 12 16 3

unit hex

S
S = =

and unit length by:

2 2 9V32 2 1.122
3 3 16 3

unit hexL = a =

IX.2. Plugins Section

In this section we overview XML syntax for all the plugins available in CompuCell3D.
Plugins are either energy functions, lattice monitors or store user assigned data that
CompuCell3D uses internally to configure simulation before it is run.

IX.2.1. CellType Plugin
An example of the plugin that stores user assigned data that is used to configure
simulation before it is run is a CellType Plugin. This plugin is responsible for defining
cell types and storing cell type information. It is a basic plugin used by virtually every
CompuCell simulation. The syntax is straight forward as can be seen in the example
below:

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Fluid" TypeId="1"/>
 <CellType TypeName="Wall" TypeId="2" Freeze=""/>
</Plugin>

Here we have defined three cell types that will be present in the simulation:
Medium,Fluid,Wall. Notice that we assign a number – TypeId – to every cell type. It is
strongly recommended that TypeId’s are consecutive positive integers (e.g. 0,1,2,3...).
Medium is traditionally given TypeId=0 but this is not a requirement. However every
CC3D simulation mut define CellType Plugin and include at least Medium specification.

Notice that in the example above cell type “Wall” has extra attribute Freeze=””. This
attribute tells CompuCell that cells of “frozen” type will not be altered by spin flips.
Freezing certain cell types is a very useful technique in constructing different geometries
for simulations or for restricting ways in which cells can move. In the example below we
have frozen cell types wall to create tube geometry for fluid flow studies.

IX.2.2. Simple Volume and Surface Constraints

One of the most commonly used energy term in the GGH Hamiltonian is a term that
restricts variation of single cell volume. Its simplest form can be coded as show below:

 <Plugin Name="Volume">
 <TargetVolume>25</TargetVolume>

-67-

 <LambdaVolume>2.0</LambdaVolume>
 </Plugin>

By analogy we may define a term which will put similar constraint regarding the surface
of the cell:

 <Plugin Name="Surface">
 <TargetSurface>20</TargetSurface>
 <LambdaSurface>1.5</LambdaSurface>
 </Plugin>

These two plugins inform CompuCell that the Hamiltonian will have two additional
terms associated with volume and surface conservation. That is when spin flip is
attempted one cell will increase its volume and another cell will decrease. Thus overall
energy of the system may or will change. Volume constraint essentially ensures that cells
maintain the volume which close (this depends on thermal fluctuations) to target volume .
The role of surface plugin is analogous to volume, that is to “preserve” surface. Note that
surface plugin is commented out in the example above.

Energy terms for volume and surface constraints have the form:

2
argvolume volume cell t etE = λ (V V)

2

argsurface surface cell t etE = λ (S S)

Remark:
Notice that flipping a single spin may cause surface change in more that two cells –
this is especially true in 3D.

IX.2.3.VolumeTracker and SurfaceTracker plugins

These two plugins monitor lattice and update volume and surface of the cells once spin
flip occurs. In most cases users will not call those plugins directly. They will be called
automatically when either Volume (calls Volume Tracker) or Surface (calls Surface
Tracker) or CenterOfMass (calls VolumeTracker) plugins are requested. However one
should be aware that in some situations, for example when doing foam coarsening
simulation as presented in the introduction, when neither Volume or Surface plugins are
called, one may still want to track changes ion surface or volume of cells . In such
situations one can explicitely invoke VolumeTracker or Surface Tracker plugin with the
following syntax:

<Plugin Name=”VolumeTracker”/>

<Plugin Name=”SurfaceTracker”/>

IX.2.4. VolumeFlex Plugin

-68-

VolumeFlex plugin is more sophisticated version of Volume Plugin. While Volume
Plugin treats all cell types the same i.e. they all have the same target volume and lambda
coefficient, VolumeFlex plugin allows you to assign different lambda and different target
volume to different cell types. The syntax for this plugin is straightforward and
essentially mimics the example below.

<Plugin Name="VolumeFlex">
 <VolumeEnergyParameters CellType="Prestalk" TargetVolume="68" LambdaVolume="15"/>
 <VolumeEnergyParameters CellType="Prespore" TargetVolume="69" LambdaVolume="12"/>
 <VolumeEnergyParameters CellType="Autocycling" TargetVolume="80" LambdaVolume="10"/>
 <VolumeEnergyParameters CellType="Ground" TargetVolume="0" LambdaVolume="0"/>
 <VolumeEnergyParameters CellType="Wall" TargetVolume="0" LambdaVolume="0"/>
</Plugin>

Notice that in the example above cell types Wall and Ground have target volume and
coefficient lambda set to 0 – very unusual. That's because in this particular those cells are
were frozen so the parameters specified for these cells do not matter. In fact it is safe to
remove specifications for these cell types, but just for the illustration purposes we left
them.

Using VolumeFlex Plugin you can effectively freeze certain cell types. All you need to
do is to put very high lambda coefficient for the cell type you wish to freeze. You have to
be careful though , because if initial volume of the cell of a given type is different from
target volume for this cell type the cells will either shrink or expand to match target
volume (this is out of control and you should avoid it), and only after this initial volume
adjustment will they remain frozen . That is provided LambdaVolume is high enough. In
any case, we do not recommend this way of freezing cells because it is difficult to use,
and also not efficient in terms of speed of simulation run.

IX.2.5. SurfaceFlex Plugin

SurfaceFlex plugin is more sophisticated version of Surface Plugin. Everything that was
said with respect to VolumeFlex plugin applies to SurfaceFlex. For syntax see example
below:

 <Plugin Name="SurfaceFlex">
 <SurfaceEnergyParameters CellType="Prestalk" TargetSurface="90" LambdaSurface="0.15"/>
 <SurfaceEnergyParameters CellType="Prespore" TargetSurface="98" LambdaSurface="0.15"/>
 <SurfaceEnergyParameters CellType="Autocycling" TargetSurface="92" LambdaSurface="0.1"/>
 <SurfaceEnergyParameters CellType="Ground" TargetSurface="0" LambdaSurface="0"/>
 <SurfaceEnergyParameters CellType="Wall" TargetSurface="0" LambdaSurface="0"/>
 </Plugin>

IX.2.6. VolumeLocalFlex Plugin

VolumeLocalFlex Plugin is very similar to Volume plugin. You specify both lambda
coefficient and target volume, but as opposed to Volume Plugin the energy is calculated
using target volume and lambda volume that are specified individually for each cell. In
the course of simulation you can change this target volume depending on e.g.
concentration of FGF in the particular cell. This way you can specify which cells grow
faster, which slower based on a state of the simulation. This plugin requires you to

-69-

develop a module (plugin or steppable) which will alter target volume for each cell. You
can do it either in C++ or even better in Python.

Example syntax:

<Plugin Name="VolumeLocalFlex"/>

IX.2.7. SurfaceLocalFlex Plugin

This plugin is analogous to VolumeLocalFlex but operates on cell surface.

Example syntax:

<Plugin Name="SurfaceLocalFlex"/>

IX.2.8. NeighborTracker Plugin

This plugin, as its name suggests, tracks neighbors of every cell. In addition it calculates
common contact area between cell and its neighbors. We consider a neighbor this cell
that has at least one common pixel side with a given cell. This means that cells that touch
each other either “by edge” or by “corner” are not considered neighbors. See the drawing
below:

5 5 5 4 4

5 5 5 4 4

5 5 4 4 4

1 1 2 2 2

1 1 2 2 2

Figure 19. Cells 5,4,1 are considered neighbors as they have non-zero common surface
area. Same applies to pair of cells 4 ,2 and to 1 and 2. However, cells 2 and 5 are not
neighbors because they touch each other “by corner”. Notice that cell 5 has 8 pixels cell 4
, 7 pixels, cell 1 4 pixels and cell 2 6 pixels.

Example syntax:

<Plugin Name="NeighborTracker"/>

This plugin is used as a helper module by other plugins and steppables e.g. Elasticity and
AdvectionDiffusionSolver use NeighborTracker plugin.

-70-

IX.2.9. Chemotaxis

Chemotaxis plugin , as its name suggests is used to simulate chemotaxis of cells. For
every spin flip this plugin calculates change of energy associated with pixel move. There
are several methods to define a change in energy due to chemotaxis. By default we define
a chemotaxis using the following formula:

 chem neighborΔE = λ c x c x

where

 neighborc x

, c x

denote chemical concentration at the spin-flip-source and spin-flip-

destination pixel. respectively.

We also support a slight modification of the above formula in the Chemotaxis plugin
where ΔE is non-zero only if the cell located at x

after the spin flip is non-medium. to

enable such mode users need to include <Algorithm=”Regular”/> tag in the body of
XML plugin.

Let's look at the syntax by studying the example usage of the Chemotaxis plugin:

<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
 <ChemotaxisByType Type="Amoeba" Lambda="300"/>
 <ChemotaxisByType Type="Bacteria" Lambda="200"/>
 </ChemicalField>

 </Plugin>

The body of the chemotaxis plugin description contains sections called ChemicalField.
In this section you tell CompuCell3D which module contains chemical field that you
wish to use for chemotaxis. In our case it is FlexibleDiffusionSolverFE. Next you
need to specify the name of the field - FGF in our case. Next you specify lambda for each
cell type so that cells of different type may respond differently to a given chemical. In
particular types not listed will not respond to chemotaxis at all. Older versions of
CompuCell3D allowed for different syntaxes as well. Despite the fact that those syntaxes
are still supported for backward compatibility reasons, we discourage their use, because,
they are somewhat confusing.

Ocassionally you may want to use different formula for the chemotaxis than the one
presented above. Current CompCell3D allows you to use the following definitions of
change in chemotaxis energy (Saturation and SaturationLinear respectively):

neighbor

chem

neighbor

c x c x
ΔE = λ

s+c xs+c x

Comment [MSOffice4]: Not sure about the sign

Comment [MSOffice5]: Destination
means”source”

-71-

or

 11

neighbor

chem

neighbor

c x c x
ΔE = λ

s c x +s c x +

where 's' denotes saturation constant. To use first of the above formulas all you need to do
is to let CompuCell3D know the value of the saturation coefficient:

<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
 <ChemotaxisByType Type="Amoeba" Lambda="0"/>
 <ChemotaxisByType Type="Bacteria" Lambda="2000000"
SaturationCoef="1"/>
 </ChemicalField>
 </Plugin>

Notice that this only requires small change in line where you previously specified only
lambda.

 <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/>

To use second of the above formulas use SaturationLinearCoef instead of
SaturationCoef:

<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
 <ChemotaxisByType Type="Amoeba" Lambda="0"/>
 <ChemotaxisByType Type="Bacteria" Lambda="2000000"
SaturationLinearCoef="1"/>
 </ChemicalField>
 </Plugin>

Sometimes it is desirable to have chemotaxis between only certain types of cells and not
between other pairs of types. To deal with this situation it is enough to augment
ChemotaxisByType element with the following attribute:

<ChemotaxisByType Type="Amoeba" Lambda="100 "ChemotactTowards="Medium"
/>

This will cause that the change in chemotaxis energy will be non-zero only for those spin
flip attempts that will try to slip Amoeba and Medium pixels.

The definitions of chemotaxis presented so far do not allow specification of chemotaxis
parameters individually for each cell. To do this we will use Python scripting. We still
need to specify in the XML which fields are important from chamotaxis stand point. Only
fields listed in the XML will be used to calculate chemotaxis energy:

-72-

…
<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Bacterium" TypeId="1" />
 <CellType TypeName="Macrophage" TypeId="2"/>
 <CellType TypeName="Wall" TypeId="3" Freeze=""/>
 </Plugin>
…
<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR">
 <ChemotaxisByType Type="Macrophage" Lambda="20"/>
 </ChemicalField>
 </Plugin>
…

In the above excerpt from the XML configuration file we see that cells of type
Macrophage will chemotax in response to ATTR gradient.

Using Python scripting we can modify chemotaxing properties of individual cells as
follows:
class ChemotaxisSteering(SteppableBasePy):
 def __init__(self,_simulator,_frequency=100):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def start(self):

 for cell in self.cellList:
 if cell.type==2:
 cd=self.chemotaxisPlugin.addChemotaxisData(cell,"ATTR")
 cd.setLambda(20.0)

 # cd.initializeChemotactTowardsVectorTypes("Bacterium,Medium")
 cd.assignChemotactTowardsVectorTypes([0,1])

 break

 def step(self,mcs):
 for cell in self.cellList:
 if cell.type==2:

 cd=self.chemotaxisPlugin.getChemotaxisData(cell,"ATTR")
 if cd:
 l=cd.getLambda()-3
 cd.setLambda(l)
 break

In the start function for first encountered cell of type Macrophage (type==2) we insert
ChemotaxisData object (it determines chemotaxing properties) and initialize parameter
to 20. We also initialize vector of cell types towards which Macrophage cell will
chemotax (it will chemotax towards Medium and Bacterium cells). Notice the break
statement inside the if statement, inside the loop. It ensures that only first encountered
Macrophage cell will have chemotaxing properties altered.

-73-

In the step function we decrease lambda chemotaxis by 3 units every 100 MCS. In effect
we turn a cell from chemotaxing up ATTR gradient to being chemorepelled.

In the above example we have more than one macrophage but only one of them has
altered chemotaxing properties. The other macrophages have chemotaxing properties set
itn eh XML section. CompuCell3D first checks if local definitions of chemotaxis are
available (i.e. for individual cells) and if so it uses those. Otherwise it will use definitions
from from the XML.

The ChemotaxisData structure has additional functions which allo to set chemotaxis
formula used. For example we may type:
 def start(self):

 for cell in self.cellList:
 if cell.type==2:
 cd=self.chemotaxisPlugin.addChemotaxisData(cell,"ATTR")
 cd.setLambda(20.0)
 cd.setSaturationCoef(200.0)

 # cd.initializeChemotactTowardsVectorTypes("Bacterium,Medium")
 cd.assignChemotactTowardsVectorTypes([0,1])

 break

to activate Saturation formula. To activate SaturationLinear formula we would use:

 cd.setSaturationLinearCoef(2.0)

CAUTION: when you use chemotaxis plugin you have to make sure that fields that you
refer to and module that contains this fields are declared in the xml file. Otherwise you
will most likely cause either program crash (which is not as bad as it sounds) or
unpredicted behavior (much worse scenario, although unlikely as we made sure that in
the case of undefined symbols, CompuCell3D exits)

IX.2.10. ExternalPotential plugin

Chemotaxis plugin is used to cause directional cell movement. Another way to achieve
directional movement is to use ExternalPotential plugin. This plugin is responsible for
imposing a directed pressure (or rather force) on cells. It is used mainly in fluid flow
studies with periodic boundary conditions along these coordinates along which force acts.
If NoFlux boundary conditions are set instead , the cells will be squeezed.

This is the example usage of this plugin:

 <Plugin Name="ExternalPotential">
 <Lambda x="-0.5" y="0.0" z="0.0"/>
 </Plugin>

-74-

Lambda is a vector quantity and determines components of force along three axes. In this
case we apply force along x.
We can also apply external potential to specific cell types:

<Plugin Name="ExternalPotential">
 <ExternalPotentialParameters CellType="Body1" x="-10" y="0" z="0"/>
 <ExternalPotentialParameters CellType="Body2" x="0" y="0" z="0"/>
 <ExternalPotentialParameters CellType="Body3" x="0" y="0" z="0"/>
</Plugin>

Where in ExternalPotentialParameters we specity which cell type is subject to
external potential (Lambda is specified using x,y,z attributes).

We can also apply external potential to individual cells. In that case, in the XML section
we only need to specify:

<Plugin Name="ExternalPotential"/>

and in the Python file we change lambdaVecX, lambdaVecY, lambdaVecZ, which are
properties of cell. For example in Python we could write:

cell.lambdaVecX=-10

Calculations done by ExternalPotential Plugin are by default based on direction of pixel
copy (similarly as in chemotaxis plugin). One can however force CC3D to do
calculations based on movement of center of mass of cell. To use algorithm based on
center of mass movement we use the following XML syntax:

<Plugin Name="ExternalPotential">
 <Algorithm>CenterOfMassBased</Algorithm>
…
</Plugin>

Remark:Note that in the pixel-based algorithm the typical value of pixel displacement
used in calculations is of the order of 1 (pixel) whereas typical displacement of center of
mass of cell due to single pixel copy is of the order of 1/cell volume (pixels) – ~ 0.1
pixel. This implies that to achieve compatible behavior of cells when using center of
mass algorithm we need to multiply lambda’s by appropriate factor, typicall of the order
of 10.

IX.2.11. CellOrientation Plugin

Similarly as ExternalPotential plugin this plugin gives preference to those pixel copies
whose direction aligns with polarization vector (which is a property of each cell):

cipiE

))((*))((,

where (i) denotes cell at site i, p

 is polarization vector for cell at site i and c

pixel
copy vector. Because two cell participate in the pixel copy process the net energy change
is simply a sum of above expressions: one for growing cell and one for shrinking cell. To
set lambda we have two options: use global setting in the XML:

-75-

<Plugin Name="CellOrientation">
 <LambdaCellOrientation>0.5</LambdaCellOrientation>
 </Plugin>

Or set individually for each cell and manage values of from Python. In this case we
use the following XML syntax:

<Plugin Name="CellOrientation">
 <LambdaFlex/>
 </Plugin>

or equivalently the shorter version:

<Plugin Name="CellOrientation"/>

If we manage values in Python we would use the following syntax to acces and modify
values of lambda:

self.cellOrientationPlugin.getLambdaCellOrientation(cell)

self.cellOrientationPlugin.setLambdaCellOrientation(cell,0.5)

Calculations done by CellOrientation Plugin are by default based on direction of pixel
copy (similarly as in chemotaxis plugin). One can however force CC3D to do
calculations based on movement of center of mass of cell. To use algorithm based on
center of mass movement we use the following XML syntax:

<Plugin Name="CellOrientation">
 <Algorithm>CenterOfMassBased</Algorithm>
…
</Plugin>

See remark in External potential description about rescaling of parameters when
changing algorithm to Center Of Mass–based.

IX.2.12. PolarizationVector Plugin

PolarizationVector plugin is a simple plugin whose only task is to ensure that each cell in
CompuCell3D simulation has as its attribute 3-component vector of floating point
numbers. This plugin is normally used in together with CellOrientation but it also can be
reused in other applications, assuming that we do not use CellOrientation plugin at the
same time. The XML syntax is very simple:

<Plugin Name="PolarizationVector"/>

To access or modify polarization vector requires use of Python scripting.

self.polarizationPlugin.getPolarizationVector(cell)

-76-

or to change values of the polarization vector:

self.polarizationPlugin.getPolarizationVector(cell,0.1,0.2,0.3)

IX.2.13. CenterOfMass Plugin

This plugin monitors changes n the lattice and updates centroids of the cell:
xCM=∑

i

xi , yCM=∑
i

yi , zCM=∑
i

zi where i denotes pixels belonging to a given

cell. To obtain coordinates of a center of mass f a given cell you need to divide centroids
by cell volume:

XCM=
xCM

V
, Y CM=

yCM

V
, Z CM=

zCM

V

This plugin is aware of boundary conditions and centroids are calculated properly
regardless which boundary conditions are used. The XML syntax is very simple:

<Plugin Name="CenterOfMass"/>

IX.2.12. Contact Energy

Energy calculations for the foam simulation are based on the boundary or contact energy
between cells (or surface tension, if you prefer).
Together with volume constraint contact energy is one of the most commonly used
energy terms in the GGH Hamiltonian. In essence it describes how cells "stick" to each
other.

The explicit formula for the energy is:

1adhesion σ(i) σ(j) σ(i),σ(j)
i, j,neighbors

E = J(τ ,τ)(δ) ,

where i and j label two neighboring lattice sites ,σ 's denote cell Ids, τ 's denote cell types .
In the case of foam simulation the total energy of the foam is simply the total boundary
length times the surface tension (here defined to be 2J).

Once again, in the above formula, you need to differentiate between cell types and cell
Ids. This formula shows that cell types and cell Ids are not the same. The Contact plugin
in the .xml file, defines the energy per unit area of contact between cells of different types
(σ(i) σ(j)J(τ ,τ)) and the interaction range (NeighborOrder) of the contact:

 <Plugin Name="Contact">
 <Energy Type1="Foam" Type2="Foam">3</Energy>
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="Medium" Type2="Foam">0</Energy>
 <NeighborOrder>2</NeighborOrder>

-77-

 </Plugin>

In this case, the interaction range is 2, thus only up to second nearest neighbor pixels
of a pixel undergoing a change or closer will be used to calculate contact energy change.
Foam cells have contact energy per unit area of 3 and Foam and Medium as well as Medium
and Medium have contact energy of 0 per unit area.

IX.2.13. ContactLocalProduct Plugin

This plugin calculates contact energy based on local (i.e. per cell) cadhering expression
levels. This plugin has to be used in conjunction with a steppable that assigns cadherin
expression levels to the cell. Such steppables are usually written in Python – see
ContactLocalProductExample in Demos directory.

We use the following formulas to calculate energy for this plugin:

 offset σ i ,σ j
i, j neighbors

E = E k f N i ,N j if σ i σ j medium

 offset σ i ,σ j
i, j neighbors

E = E k if σ i σ j = medium

By default 0offsetE = . f N i ,N j is a function of cadherins and can be either a simple

product N i N j , a product of squared expression levels 2 2
N i N j or a

 min N i ,N j .

In the case of the second formula offset σ i ,σ jE k plays the role of “regular” contact

energy between cell and medium.

The syntax of this plugin is as follows:

 <Plugin Name="ContactLocalProduct">
 <ContactSpecificity Type1="Medium" Type2="Medium">0</ContactSpecificity>
 <ContactSpecificity Type1="Medium" Type2="CadExpLevel1">-16</ContactSpecificity>
 <ContactSpecificity Type1="Medium" Type2="CadExpLevel2">-16</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel1">-2</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel2">2.75</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel2" Type2="CadExpLevel2">-1</ContactSpecificity>
 <ContactFunctionType>Quadratic</ContactFunctionType>
 <EnergyOffset>0.0</EnergyOffset>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

Users need to specify ContactSpecificity (σ i ,σ jk) between different cell types

ContactFunctionType (by default it is set to Linear - N i N j but other allowed key

words are Quadratic - 2 2
N i N j and Min - min N i ,N j). EnergyOffset can

Comment [MSOffice6]: Do we show an
example?

Comment [MSOffice7]: It would be very
helpful , if you could explain what cadExpLevel1
does in a paragraph. Does it stick to cadExpLevel2?
How strong is it in comparison to cadExpLevel1 and
medium?

Comment [MSOffice8]: Is it a cell type?

Comment [MSOffice9]: What does it mean?
Negative or positive values?

-78-

be set to user specified value using above syntax. NeighborOrder has the same meaning
as for “regular” Contact plugin.

Alternatively one can write customized function of the two cadherins and use it instead of
the 3 choices given above. To do this, simply use the following syntax:

<Plugin Name="ContactLocalProduct">
 <ContactSpecificity Type1="Medium" Type2="Medium">0</ContactSpecificity>
 <ContactSpecificity Type1="Medium" Type2="CadExpLevel1">-16</ContactSpecificity>
 <ContactSpecificity Type1="Medium" Type2="CadExpLevel2">-16</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel1">-2</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel2">2.75</ContactSpecificity>
 <ContactSpecificity Type1="CadExpLevel2" Type2="CadExpLevel2">-1</ContactSpecificity>
 <ContactFunctionType>Quadratic</ContactFunctionType>
 <EnergyOffset>0.0</EnergyOffset>
 <NeighborOrder>2</NeighborOrder>
 <CustomFunction>
 <Variable>J1</Variable>
 <Variable>J2</Variable>
 <Expression>sin(J1*J2)</Expression>
 </CustomFunction>
 </Plugin>

Here we define variable names for cadherins in interacting cells (J1 denotes cadherin for
one of the cells and cell2 denotes cadherin for another cell). Then in the Expression tag
we give mathematical expression involving the two cadherin levels. The expression
syntax has to follow syntax of the muParser -
http://muparser.sourceforge.net/mup_features.html#idDef2.

IX.2.14. AdhesionFlex Plugin

Adhesion Flex is a generalization of ContactLocalProduct plugin. It allows setting
individual adhesivity properties for each cell. Users can use either XML syntax or Python
scripting to initialize adhesion molecule density for each cell. In addition, Medium can
also carry its own adhesion molecules. We use the following formula to calculate Contact
energy in AdhesionFlex plugin:

)(),(
, ,

1))(),((ji
neighborsji nm

nmmn jNiNFkE

where indexes i, j label pixels, J σ i ,σ j denotes contact energy between cell types

 σ i and σ j , exactly as in “regular” contact plugin and indexes m,n label cadherins in

cells composed f pixels i and j respectively. F denotes user-defined function of Nm and
Nn. Altohugh this may look a bit complex, the basic idea is simple: each cell has certain
number of cadherins on its surface. When cell touch each other the resultant energy is
simpy a “product” -))(),((jNiNFk nmmn - of every cadherin from one cell with every

cadherin from another cell.The XML syntax for this plugin is given below:

 <Plugin Name="AdhesionFlex">
 <AdhesionMolecule Molecule="NCad"/>
 <AdhesionMolecule Molecule="NCam"/>
 <AdhesionMolecule Molecule="Int"/>

-79-

 <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCad"
 Density="6.1"/>
 <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCam"
 Density="4.1"/>
 <AdhesionMoleculeDensity CellType="Cell1" Molecule="Int"
 Density="8.1"/>
 <AdhesionMoleculeDensity CellType="Medium" Molecule="Int"
 Density="3.1"/>
 <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCad"
 Density="2.1"/>
 <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCam"
 Density="3.1"/>

 <BindingFormula Name="Binary">
 <Formula> min(Molecule1,Molecule2)</Formula>
 <Variables>
 <AdhesionInteractionMatrix>
 <BindingParameter Molecule1="NCad" Molecule2="NCad" >
 -1.0</BindingParameter>
 <BindingParameter Molecule1="NCam" Molecule2="NCam">
 2.0</BindingParameter>
 <BindingParameter Molecule1="NCad" Molecule2="NCam" >
 -10.0</BindingParameter>
 <BindingParameter Molecule1="Int" Molecule2="Int" >
 -10.0</BindingParameter>
 </AdhesionInteractionMatrix>
 </Variables>
 </BindingFormula>

 <NeighborOrder>2</NeighborOrder>
</Plugin>

kmn matrix is specified within the AdhesionInteractionMatrix tag – the elements are
listed using BindingParameter tags. The AdhesionMoleculeDensity tag specifies initial
concentration of adhesion molecules. Even if you are going to modify those from Python
(in the start function of the steppable) you are still required to specify the names of
adhesion molecules and associate them with appropriate cell types. Failure to do so may
result in simulation crash or undefined behaviors. The user-defined function F is
specified using Formula tag where the arguments of the function are called Molecule1
and Molecule2. The syntax has to follow syntax of the muParser -
http://muparser.sourceforge.net/mup_features.html#idDef2 .

CompuCell3D example – Demos/AdhesionFlex - demonstrates how to manipulate
concentration of adhesion molecules:

self.adhesionFlexPlugin.getAdhesionMoleculeDensity(cell,"NCad")

allows to access adhesion molecule concentration using its name (as given in the XML
above using AdhesionMoleculeDensity tag).

self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex(cell,1)

-80-

allows to access adhesion molecule concentration using its index in the adhesion
molecule density vector. The order of the adhesion molecule densities in the vector is the
same as the order in which they were declared in the XML above -
AdhesionMoleculeDensity tags.

self.adhesionFlexPlugin.getAdhesionMoleculeDensityVector(cell)

allows access to entire adhesion molecule density vector.

Each of these functions has its corresponding function whith operates on Medium. In this
case we do not give cell as first argument:

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensity(“Int”)

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityByIndex (0)

self.adhesionFlexPlugin.getMediumAdhesionMoleculeDensityVector(cell)

To change the value of the adhesion molecule density we use set functions:

self.adhesionFlexPlugin.setAdhesionMoleculeDensity(cell,"NCad",0.1)

self.adhesionFlexPlugin.setAdhesionMoleculeDensityByIndex(cell,1,1.02)

self.adhesionFlexPlugin.setAdhesionMoleculeDensityVector(cell,\
[3.4,2.1,12.1])

Notice that in this las function we passed entire Python list as the argument. CC3D will
check if the number of entries in this vector is the same as the number of entries in the
currently used vector. If so the values from the passed vector will be copied, otherwise
they will be ignored.

IMPORTANT: during mitosis we create new cell (childCell) and the adhesion
molecule vector of this cell will have no components. However in order for simulation to
continue we have to initialize this vector with number of cadherins appropriate to
childCell type. We know that setAdhesionMoleculeDensityVector is not appropriate
for this task so we have to use:

self.adhesionFlexPlugin.assignNewAdhesionMoleculeDensityVector(cell,\
[3.4,2.1,12.1])

which will ensure that the content of passed vector is copied entirely into cell’s vector
(making size adjustments as necessry).

-81-

IMPORTANT: You have to make sure that the number of newly assigned adhesion
molecules is exactly the same as the number of adhesion molecules declared for the
cell of this particular type.

All of get functions has corresponding set function which operates on Medium:

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensity("NCam",2.8)

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityByIndex(2,16.8)

self.adhesionFlexPlugin.setMediumAdhesionMoleculeDensityVector(\
[1.4,3.1,18.1])

self.adhesionFlexPlugin.assignNewMediumAdhesionMoleculeDensityVector(\
[1.4,3.1,18.1])

IX.2.15. ContactMultiCad Plugin

ContactMultiCad plugin is a modified version of ContactLocalProduct plugin. In this
case users can use several cadherins and describe how they translate into contact energy.
The energy formula used by this plugin is given below:

 offset mn m n
i, j neighbors m,n

E = E + J σ i ,σ j k N i N j

where indexes i, j label pixels, J σ i ,σ j denotes contact energy between cell types

 σ i and σ j , exactly as in “regular” contact plugin and indexes m,n label cadherins in

cells composed f pixels i and j respectively.

The syntax for this plugin is as follows:

 <Plugin Name="ContactMultiCad">

 <Energy Type1="Medium" Type2="CadExpLevel1">0</Energy>
 <Energy Type1="Medium" Type2="CadExpLevel2">0</Energy>
 <Energy Type1="CadExpLevel1" Type2="CadExpLevel1">0</Energy>
 <Energy Type1="CadExpLevel1" Type2="CadExpLevel2">0</Energy>
 <Energy Type1="CadExpLevel2" Type2="CadExpLevel2">0</Energy>

 <SpecificityCadherin>
 <Specificity Cadherin1="NCad1" Cadherin2="NCad1">-10</Specificity>
 <Specificity Cadherin1="NCad0" Cadherin2="NCad0">-12</Specificity>
 <Specificity Cadherin1="NCad1" Cadherin2="NCad0">-1</Specificity>
 </SpecificityCadherin>

 <EnergyOffset>0.0</EnergyOffset>
 </NeighborOrder>2</NeighborOrder>
 </Plugin>

-82-

Entries of the type <Energy Type1="Medium" Type2="CadExpLevel1">0</Energy>
have the same meaning as in “regular” contact energy. Specificity parameters
specification mnk are enclosed between tags <SpecificityCadherin> and

<SpecificityCadherin>. The names NCad0 and Ncad1 are arbitrary. However the
matrix mnk will be ordered according to lexographic order of Cadherin names. For that

reason we recommend that you name cadherins in such a way that makes it easy what the
order will be. As in the example above using NameNumber
(e.g. NCad0, NCad1) makes it easy to figure out what the order will be (NCad0 will get
index 0 and NCad1 will get index 1). This is important because cadherins will be set in
Python and if you won't keep track of the ordering of the specificity you might wrongly
assign cadherins in Python and get unexpected results. In the example the order of
cadherins is clear based on the definition of cadherin specificity parameters.

IX.2.15. MolecularContact
This plugin is analogous to ContactLocalProduct and allows users to specify functional
form of adhesion molecules interactions using Python syntax. It is in beta state and for
this reason we are not discussing it in more detail and currently suggest to use Either
AdhesionFlex or ContactLocal product plugins.

IX.2.15. ContactCompartment

This plugin is a generalization of the contact energy plugin for the case of compartmental
cell models.

 contactcompartment i i j j
i, j neighbors

E = J σ μ ,ν ,σ μ ,ν

where i and j denote pixels ,
denotes, as before, a cell type of a
cell with cluster id and cell id. In
compartmental cell models a cell is a
collection of subcells. Each subcell
has a unique id (cell id). In addition
to that each subcell will have
additional attribute, a cluster id that
determines to which cluster of
subcells a given subcell belongs.
(think of a cluster as a cell with
nonhomogenous cytoskeleton) The
idea here is to have different contact
energies between subcells belonging
to the same cluster and different
energies for cells belonging to
different clusters. Technically
subcells of a cluster are “regular”
CompuCell3D cells. By giving them
an extra attribute cluster id we can

Figure 20. Two compartmental cells (cluster id =1
and cluster id =2) Compartmentalized cell =1
consists of subcells with cell id =1,2,3 and
compartmentalized cell =2 consists of subcells with
cell id =4,5,6

Comment [MSOffice10]: ?

Comment [MSOffice11]: A annotated figure
would make it more clear.

-83-

introduce a concept of compartmental cells. In our convention 0,0) denotes medium

Introduction of cluster id and cell id are essential for the definition of

 i i j jJ σ μ ,ν ,σ μ ,ν .

external
i i j j i i j j i i

internal
i i j j i i

J σ μ ,ν ,σ μ ,ν = J σ μ ,ν ,σ μ ,ν if μ μ

J σ μ ,ν ,σ μ ,ν if μ = μ

As you can see from above there are two hierarchies of contact energies – external and
internal. The energies depend on cell types as in the case “regular” Contact plugin. Now,
however, depending whether pixels for which we calculate contact energies belong to the
same cluster or not we will use internal or external contact energies respectively.

IX.2.16. LengthConstraint Plugin

This plugin imposes elongation constraint on the cell. Effectively it “measures” a cell
along its “axis of elongation” and ensures that cell length along the elongation axis is
close to target length. For detailed description of this algorithm in 2D see Roeland Merks'
paper “Cell elongation is a key to in silico replication of in vitro vasculogenesis and
subsequent remodeling” Developmental Biology 289 (2006) 44-54). This plugin is
usually used in conjunction with Connectivity Plugin or ConnectivityGlobal Plugin. The
syntax is as follows:

<Plugin Name="LengthConstraint">
 <LengthEnergyParameters CellType="Body1" TargetLength="30" LambdaLength="5"/>
</Plugin>

LambdaLength determines the degree of cell length oscillation around TargetLength
parameter. The higher LambdaLength the less freedom a cell will have to deviate from
TargetLength.
In the 3D case we use the following syntax:

<Plugin Name="LengthConstraint">
 <LengthEnergyParameters CellType="Body1" TargetLength="20"
 MinorTargetLength="5" LambdaLength="100" />
</Plugin>

Notice new attribute called MinorTargetLength. In 3D it is not sufficient to constrain
the "length" of the cell you also need to constrain "width" of the cell along axis
perpendicular to the major axis of the cell. This "width" is referred to as
MinorTargetLength.

The parameters are assigned using Python – see Demos\elongationFlexTest example.

-84-

To control length constraint individually for each cell we may use Python scripting to
assign LambdaLength, TartgetLength and in 3D MinorTargetLength. In Python steppable
we typically would write the following code:
self.lengthConstraintPlugin.setLengthConstraintData(cell,10,20)

which enables length constraint for cell cell with LambdaLength=10 and
TargetLength=20. In 3D we may specify MinorTargetLength (we set it to 5) by adding
4th parameter to the above call:
self.lengthConstraintPlugin.setLengthConstraintData(cell,10,20,5)

If we use CC3DML specification of length constraint for certain cell types and in Python
we set this constraint individually for a single cell then the local definition of the
constraint has priority over definitions for the cell type.

If, in the simulation, we will be setting length constraint for only few individual cells then
it is best to manipulate the constraint parameters from the Python script. In this case in
the CC3DML we only have to declare that we will use length constraint plugin and we
may skip the definition by-type definitions:
<Plugin Name="LengthConstraint"/>

Remark: When using target length plugins (either global , as shown here, or local as we
will show in the subsequent subsection) it is important to use connectivity constraint.
This constrain will check if a given pixel copy can break cell connectivity. If so, it will
add large energy penalty (defined by a user) to change of energy effectively prohibiting
such pixel copy. In the case of 2D on square lattice checking cell connectivity can be
done locally and thus is very fast. Unfortunately on hex lattice and in 3D on either lattice
we don’t have an algorithm of performing such check locally and therefore we do it
globally using breadth first search algorithm and comparing volumes of cells calculated
this way with actual volume of the cell. If they agree we conclude that cell connectivity is
preserved. However the computational cost of running such algorithm, can be quite high.
Therefore if one does need extremely elongated cells (it is when connectivity algorithm
has to do a lot of work) one may neglect connectivity constraint and use Length constrain
only. For slight cells elongations the connectivity should be preserved however,
occasionally cells may fragment.

IX.2.17. Connectivity Plugins
The basic Connectivity plugin works only in 2D and only on square lattice and is used
to ensure that cells are connected or in other words to prevent separation of the cell into
pieces. The detailed algorithm for this plugin is described in Roeland Merks' paper “Cell
elongation is a key to in-silico replication of in vitro vasculogenesis and subsequent
remodeling” Developmental Biology 289 (2006) 44-54). There was one modification of
the algorithm as compared to the paper. Namely, to ensure proper connectivity we had to
reject all spin flips that resulted in more that two collisions. (see the paper for detailed
explanation what this means).
The syntax of the plugin is straightforward:

Comment [MSOffice12]: ?

-85-

 <Plugin Name="Connectivity">
 <Penalty>100000</Penalty>
 </Plugin>

Penalty denotes energy that will be added to overall change of energy if attempted spin
flip would violate connectivity constraints. If the penalty is positive and much larger than
the absolute value of other energy changes in the simulation this has the effect of
preventing a spin flip from occurring.
A more general type of connectivity constraint is implemented in ConnectivityGlobal
plugin. In this case we calculate volume of a cell using breadth first search algorithm and
compare it with actual volume of the cell. If they agree we conclude that cell connectivity
is preserved. This plugin works both in 2D and 3D and on either type of lattice. However
the computational cost of running such algorithm, can be quite high so it is best to limit
this plugin to cell types for which connectivity of cell is really essential:

<Plugin Name="ConnectivityGlobal">
 <Penalty Type="Body1">1000000000</Penalty>
</Plugin>

In certain types of simulation it may happen that at some point cells change cell types. If
a cell that was not subject to connectivity constraint, changes type to the cell that is
constrained by global connectivity and this cell is fragmented before type change this
situation normally would result in simulation freeze. However CompuCell3D, first before
applying constraint it will check if the cell is fragmented. If it is, there is no constraint.
Global connectivity constraint is only applied when cell is non-fragmented. The
numerical value of Penalty in the XML syntax above does not really matter as long as it
is greater than 0. CompuCell3D guarantees that cells for which penalty is greater than 0
will remain connected.

Quite often in the simulation we don't need to impose connectivity constraint on all cells
or on all cells of given type. Usually only select cell types or select cells are elongated
and therefore need connectivity constraint. In such a case we use ConnectivityLocalFlex
plugin and assign connectivity constraints to particular cells in Python

In XML we only declare:

<Plugin Name="ConnectivityLocalFlex"/>

In Python we manipulate/access connectivity parameters for individual cells using the
following syntax:

self.connectivityLocalFlexPlugin.setConnectivityStrength(cell,20.7)

self.connectivityLocalFlexPlugin.getConnectivityStrength(cell)

See also example in Demos\elongationLocalFlexTest.

-86-

ConnectivityLocalFlex plugin works only in 2D and on a square lattice. We may also
use ConnectivityGlobal plugin to set connectivity constraint individually for each cell.
Analogously, as in the case of ConnectivityLocalFlex , in the CC3DML we declare
<Plugin Name="ConnectivityGlobal"/>

and in Python we manipulate/access connectivity parameters for individual cells using
the following syntax:
self.connectivityGlobalPlugin.setConnectivityStrength(cell,10000000)

self.connectivityGlobalPlugin.getConnectivityStrength(cell)

IX.2.18. Mitosis Plugin

Mitosis plugin carries out cell division into two cells once the parent cell reaches critical
volume (DoublingVolume). The two cells after mitosis will have approximately the same
volume although it cannot be guaranteed in general case if the parent cell is fragmented.
One major problem with Mitosis plugin is that after mitosis the attributes of the offspring
cell might not be initialized properly. By default cell type of the offspring cell will be
the same as cell type of parent and they will also share target volume. All other
parameters for the new cell remain uninitialized.
Remark: For this reason we stringly recommend using Mitosis plugin through Python
interface as there users can quite easily customize what happens to parent and offspring
cells after mitosis. An example of the use of Mitosis plugin through Python scripting is
provided in CompuCell3D’s Python Scripting Manual. The syntax of the “standard”
mitosis plugin is the following:

<Plugin Name="Mitosis">
 <DoublingVolume>50</DoublingVolume>
</Plugin>

Every time a cell reaches DoublingVolume it will undergo the mitosis and the offspring
cell will inherit type and target volume of the parent. If this simple behavior is
unsatisfactory consider use Python scripting to implement proper mitotic divisions of
cells.

IX.2.19. Secretion Plugin
In earlier version os of CC3D secretion was part of PDE solvers. We still support this
mode of model description however, starting in 3.5.0 we developed separate plugin
which handles secretion only. Via secretion plugin we can simulate cell ular secretion of
various chemicals. The secretion plugin allows users to specify various secretion modes
in the XML file - XML syntax is practically identical to the SecretionData syntax of PDE
solvers. In addition to this Secretion plugin allows users to maniupulate secretion
properties of individual cells from Python level. To account for possibility of PDE solver
being called multiple times during each MCS, the Secretion plugin can be called multiple
times in each MCS as well. We leave it up to user the rescaling of secretion constants

Comment [MSOffice13]: In case of uneven
volume distribution between daughter cells, since
target volume of daughter cells are the same, within
few MCS, they will adapt their volume to the target
volume.

-87-

when using multiple secretion calls in each MCS. Note:Secretion for individual cells
invoked via Python will be called only once per MCS.

Typical XML xyntax for Secretion plugin is presented below:

<Plugin Name="Secretion">
 <Field Name="ATTR" ExtraTimesPerMC=”2”>
 <Secretion Type="Bacterium">200</Secretion>
 <SecretionOnContact Type="Medium" SecreteOnContactWith="B">300</SecretionOnContact>
 <ConstantConcentration Type="Bacterium">500</ConstantConcentration>
 </Field>
</Plugin>

By default ExtraTimesPerMC is set to 0 - meaning no extra calls to Secretion plugin per
MCS.

Typical use of secretion from Python is dempnstrated best in the example below:

class SecretionSteppable(SecretionBasePy):
 def __init__(self,_simulator,_frequency=1):
 SecretionBasePy.__init__(self,_simulator, _frequency)

 def step(self,mcs):
 attrSecretor=self.getFieldSecretor("ATTR")
 for cell in self.cellList:
 if cell.type==3:
 attrSecretor.secreteInsideCell(cell,300)
 attrSecretor.secreteInsideCellAtBoundary(cell,300)
 attrSecretor.secreteOutsideCellAtBoundary(cell,500)
 attrSecretor.secreteInsideCellAtCOM(cell,300)

Remark: Instead of using SteppableBasePy class we are using SecretionBasePy class.
The reason for this is that in order for secretion plugin with secretion modes accessible
from Python to behave exactly as previous versions of PDE solvers (where secretion was
done first followed by “diffusion” step) we have to ensure that secretion steppable
implemented in Python is called before each Monte Carlo Step, which implies that it will
be also called before “diffusing” function of the PDE solvers. SecretionBasePy sets
extra flag which ensures that steppable which inherits from SecretionBasePy is called
before MCS (and before all “regular’ Python steppables). There is no magic to
SecretionBasePy - if you still want to use SteppableBasePy as a base class for
secretion (or for that matter SteppablePy) do so, but remember that you need to set flag:

self.runBeforeMCS=1

to ensure that your new stoppable will run before each MCS. See example below for
alternative implementation of SecretionSteppable using SteppableBasePy as a base
class:

class SecretionSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=1):
 SteppableBasePy.__init__(self,_simulator, _frequency)
 self.runBeforeMCS=1

-88-

 def step(self,mcs):
 attrSecretor=self.getFieldSecretor("ATTR")
 for cell in self.cellList:
 if cell.type==3:
 attrSecretor.secreteInsideCell(cell,300)
 attrSecretor.secreteInsideCellAtBoundary(cell,300)
 attrSecretor.secreteOutsideCellAtBoundary(cell,500)
 attrSecretor.secreteInsideCellAtCOM(cell,300)

The secretion of individual cells is handled through Field Secretor objects. Field Secretor
concenpt is quite convenient because the amoun of Python coding is quite small. To
secrete chemical (this is now done for individual cell) we first create field secretor object,
attrSecretor=self.getFieldSecretor("ATTR"), which allows us to secrete into field
called ATTR.
Remark: Make sure that fields into which you will be secreting chemicals exist. They
are usually fields defined in PDE solvers. When using secretion plugin you do not need to
specify SecretionData section for the PDE solvers
Then we pick a cell and using field secretor we simulate secretion of chemical ATTR by
a cell:

attrSecretor.secreteInsideCell(cell,300)

Currently we support 4 secretion modes for individual cells:

1. secreteInsideCell – this is equivalent to secretion in every pixel belonging to a
cell

2. secreteInsideCellAtBoundary – secretion takes place in the pixels belonging
to the cell boundary

3. secreteInsideCellAtBoundary – secretion takes place in pixels which are
outide the cell but in contact with cell boundary pixels

4. secreteInsideCellAtCOM – secretion at the center of mass of the cell

As you may infer from above modes 1, 2 and 3 require tracking of pixels belonging to
cell and pixels belonging to cell boundary. If you are not using modes 1-3 you may
disable pipxel tracking by including
<DisablePixelTracker/> and/or <DisableBoundaryPixelTracker/> tags – as shown
in the example below:
<Plugin Name="Secretion">

 <DisablePixelTracker/>
 <DisableBoundaryPixelTracker/>

 <Field Name="ATTR" ExtraTimesPerMC=”2”>
 <Secretion Type="Bacterium">200</Secretion>
 <SecretionOnContact Type="Medium" SecreteOnContactWith="B">300</SecretionOnContact>
 <ConstantConcentration Type="Bacterium">500</ConstantConcentration>
 </Field>
</Plugin>

IX.2.20. PDESolverCaller Plugin

-89-

PDE solvers in CompuCell3D are implemented as steppables . This means that by default
they are called every MCS. In many cases this is insufficient. For example if diffusion
constant is large, then explicit finite difference method will become unstable and the
numerical solution will have no sense. To fix this problem one could call PDE solver
many times during single MCS. This is precisely the task taken care of by
PDESolverCaller plugin. The syntax is straightforward:

<Plugin Name="PDESolverCaller">
 <CallPDE PDESolverName="FlexibleDiffusionSolverFE"ExtraTimesPerMC="8"/>
</Plugin>

All you need to do is to give the name of the steppable that implements a given PDE
solver and pass let CompCell3D know how many extra times per MCS this solver is to be
called (here FlexibleDiffusionSolverFE was 8 extra times per MCS).

IX.2.21. Elasticity Plugin and ElasticityTracker Plugin

This plugin is responsible for handling the following energy term:

 2

ij ij ij
i, j cellneighbors

E = λ l L

where ijl is a distance between center of masses of cells i and j and ijL is a target length

corresponding to ijl .

The syntax of this plugin is the following

 <Plugin Name="ElasticityEnergy">
 <LambdaElasticity>200.0</LambdaElasticity>
 <TargetLengthElasticity>6</TargetLengthElasticity>
 </Plugin>

In this case ijλ and ijL are the same for all participating cells types.

By adding extra attribute <Local/> to the above plugin:

 <Plugin Name="ElasticityEnergy">
 <Local/>
 <LambdaElasticity>200.0</LambdaElasticity>
 <TargetLengthElasticity>6</TargetLengthElasticity>
 </Plugin>

we tell CompuCell3D to use ijλ and ijL defined on per pair of cells basis. The

initialization of ijλ and ijL usually takes place in Python script and users must make sure

that ij jil = l and ij jiλ = λ or else one can get unexpected results. We provide example

python and xml files that demo the use of plasticity plugin.

Comment [MSOffice14]: Example?

-90-

Users have to specify which cell types participate in the plasticity calculations. This is
done by including ElasticityTracker plugin before Elasticity plugin in the xml file. The
syntax is very clear:

 <Plugin Name="ElasticityTracker">
 <IncludeType>Body1</IncludeType>
 <IncludeType>Body2</IncludeType>
 <IncludeType>Body3</IncludeType>
 </Plugin>

All is required is a list of participating cell types. Here cells of type Body1, Body2 and
Body3 will be taken into account for elasticity energy calculation purposes.
The way in which CompuCell3D determines which cells are to be included in the
elasticity energy calculations is by examining which cells are in contact with each other
before simulation begins.
If the types of cells touching each other are listed in the list of IncudeTypes of
ElasticityTracker then such cells are being taken into account when calculating elastic
constraint. Cells which initially are not touching will not participate in calculations even
if their type is included in the list of “ElasticityTracker”. However, in some cases it is
desirable to add elasticity pair even for cells that do not touch each other or do it once
simulation has started. To do this ElasticityTracker plugin defines two function :

assignElasticityPair(_cell1 , _cell2)

removeElasticityPair(_cell1 , _cell2)

where _cell1 and _cell2 denote pointers to cell objects.
These functions add or remove two cell links to or from elastic constraint. Typically they
are called from Python level.

IX.2.22. FocalPointPlasticity Plugin
Similarly as Elasticity plugin, FocalPointPlasticity pust constrains the distance between
cells’ center of masses. The main difference is that the list of “focal point plasticity
neighbors” can change as the simulation goes and user specifies the maximum number of
“focal point plasticity neighbors” a given cell can have. Let’s look at relatively simple
XML syntax of FocalPointPlasticityPlugin (see Demos/FocalPointPlasticity example
and we will show more complex examples later):

 <Plugin Name="FocalPointPlasticity">
 <Parameters Type1="Condensing" Type2="NonCondensing">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions>2</MaxNumberOfJunctions>
 </Parameters>

Comment [MSOffice15]: Cell which initially
are not touching will not participate in this plug even
if their type is included in the list of
“ElasticityTracker”.

-91-

 <Parameters Type1="Condensing" Type2="Condensing">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions>2</MaxNumberOfJunctions>
 </Parameters>
 <NeighborOrder>1</NeighborOrder>
 </Plugin>

Parameters section describes properties of links between cells. MaxNumberOfJunctions,
ActivationEnergy, MaxDistance and NeighborOrder are responsible for establishing
connections between cells. CC3D constantly monitors pixel copies and during pixel copy
between two neighboring cells/subcells it checks if those cells are already participating in
focal point plasticity constraint. If they are not, CC3D will check if connection can be
made (e.g. Condensing cells can have up to two connections with Condensing cells and
up to 2 connections with NonCondensing cells – see first line of Parameters section and
MaxNumberOfJunctions tag). The NeighborOrder parameter determines the pixel
vicinity of the pixel that is about to be overwritten which CC3D will scan in search of the
new link between cells. NeighborOrder 1 (which is default value if you do not specify
this parameter) means that only nearest pixel neighbors will be visited. The
ActivationEnergy parameter is added to overall energy in order to increase the odds of
pixel copy which would lead to new connection.

Once cells are linked the energy calculation is carried out in a very similar way as for the
Elasticity plugin:

 2

ij ij ij
i, j cellneighbors

E = λ l L

where ijl is a distance between center of masses of cells i and j and ijL is a target length

corresponding to ijl .

ij and Lij between different cell types are determined using Lambda and TargetDistance
tags. The MaxDistance determines the distance between cells’ center of masses when the
link between those cells break. When the link breaks, then in order for the two cells to
reconnect they would need to come in contact (in order to reconnect). However it is
usually more likely that there will be other cells in the vicinity of separated cells so it is
more likely to establish new link than restore broken one.
The above example was one of the simplest examples of use of FocalPointPlasticity. A
more complicated one involves compartmental cells. In this case each cell has separate
“internal” list of links between cells belonging to the same cluster and another list
between cells belonging to different clusters. The energy contributions from both lists
are summed up and everything that we have said when discussing example above applies
to compartmental cells. Sample syntax of the FocalPointPlasticity plugin which includes
compartmental cells is shown below. We use InternalParameters tag/section to
describe links between cells of the same cluster (see Demos/FocalPointPlasticity
example):

-92-

 <Plugin Name="FocalPointPlasticity">

 <Parameters Type1="Top" Type2="Top">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
 </Parameters>

 <Parameters Type1="Bottom" Type2="Bottom">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
 </Parameters>

 <InternalParameters Type1="Top" Type2="Center">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions>1</MaxNumberOfJunctions>
 </InternalParameters>

 <InternalParameters Type1="Bottom" Type2="Center">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>
 <MaxNumberOfJunctions>1</MaxNumberOfJunctions>
 </InternalParameters>

 <NeighborOrder>1</NeighborOrder>

 </Plugin>

Sometimes it is necessary to modify link parameters individually for every cell pair. In
this case we would manipulate FocalPointPlasticity links using Python scripting.
Example Demos/FocalPointPlasticityCompartments demonstrates exactly this situation.
Still, you need to include XML section as the one shown above for compartmental cells,
because we need to tell CC3D how to link cells. The only notable difference is that in the
XML we have to include <Local/> tag to signal that we will set link parameters (Lambda,
TaretDistance, MaxDistance) individually for each cell pair:

 <Plugin Name="FocalPointPlasticity">
 <Local/>
 <Parameters Type1="Top" Type2="Top">
 <Lambda>10.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 <TargetDistance>7</TargetDistance>
 <MaxDistance>20.0</MaxDistance>

-93-

 <MaxNumberOfJunctions NeighborOrder="1">1</MaxNumberOfJunctions>
 </Parameters>
……..
</Plugin>

Python steppable where we manipulate cell-cell focal point plasticity link properties is
shown below:

class FocalPointPlasticityCompartmentsParams(SteppablePy):
 def __init__(self,_simulator,_frequency=10):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.focalPointPlasticityPlugin=CompuCell.\
 getFocalPointPlasticityPlugin()
 self.inventory=self.simulator.getPotts().\
 getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 for fppd in InternalFocalPointPlasticityDataList\
 (self.focalPointPlasticityPlugin,cell):
 self.focalPointPlasticityPlugin.\
 setInternalFocalPointPlasticityParameters\
 (cell,fppd.neighborAddress,0.0,0.0,0.0)

The syntax to change focal point plasticity parameters (or as here internal parameters) is
as follows:
setFocalPointPlasticityParameters(cell1, cell2, lambda,\
targetDistance, maxDistance)

setInternalFocalPointPlasticityParameters(cell1, cell2, lambda,\
targetDistance, maxDistance)

Similarly to inspect current values of the focal point plasticity parameters we would use
the following Python construct:

for cell in self.cellList:
 for fppd in InternalFocalPointPlasticityDataList\
 (self.focalPointPlasticityPlugin,cell):
 print "fppd.neighborId",fppd.neighborAddress.id
 " lambda=",fppd.lambdaDistance

For non-internal parameters we simply use FocalPointPlasticityDataList instead of
InternalFocalPointPlasticityDataList .

Examples Demos/FocalPointPlasticity… show in relatively simple way how to use
FocalPointPlasticity plugin. Those examples also contain useful comments.

-94-

When using FocalPointPlasticity Plugin from mitosis module one might need to break or
create focal point plasticity links. To do so FocalPointPlasticity Plugin provides 4
convenience functions which can be invoked from the Python level:

deleteFocalPointPlasticityLink(cell1,cell2)

deleteInternalFocalPointPlasticityLink(cell1,cell2)

createFocalPointPlasticityLink(\
cell1,cell2,lambda,targetDistance,maxDistance)

createInternalFocalPointPlasticityLink(\
cell1,cell2,lambda,targetDistance,maxDistance)

IX.2.23.Curvature Plugin
This plugin implements energy term for compartmental cells. It is based on “A New
Mechanism for Collective Migration in Myxococcus xanthus”, J. Starruß, Th. Bley, L.
Søgaard-Andersen and A. Deutsch, Journal of Statistical Physics, DOI: 10.1007/s10955-
007-9298-9, (2007). For a “long” compartmental cell composed of many subcells it
imposes constraint on curvature of cells. The syntax is slightly complex:

 <Plugin Name="Curvature">

 <InternalParameters Type1="Top" Type2="Center">
 <Lambda>100.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 </InternalParameters>

 <InternalParameters Type1="Center" Type2="Center">
 <Lambda>100.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 </InternalParameters>

 <InternalParameters Type1="Bottom" Type2="Center">
 <Lambda>100.0</Lambda>
 <ActivationEnergy>-50.0</ActivationEnergy>
 </InternalParameters>

 <InternalTypeSpecificParameters>
 <Parameters TypeName="Top" MaxNumberOfJunctions="1"
 NeighborOrder="1"/>
 <Parameters TypeName="Center" MaxNumberOfJunctions="2"
 NeighborOrder="1"/>
 <Parameters TypeName="Bottom" MaxNumberOfJunctions="1"
 NeighborOrder="1"/>
 </InternalTypeSpecificParameters>

 </Plugin>

-95-

The InternalTypeSpecificParameter tells Curvature Plugin how many neighbors a
cell of given type will have. In this case, numbers which make sense are 1 and 2. The
middle segment will have 2 connection and head and tail segments will have only one
connection with neighboring segmens (subcells). The connections are established
dymamically. The way it happens is that during simulation CC3D constantly monitors
pixel copies and during pixel copy between two neighboring cells/subcells it checks if
those cells are already “connected” using curvature constraint. If they are not, CC3D will
check if connection can be made (e.g. Center cells can have up to two connections and
Top and Bottom only one connection). Usually establishing connections takes place at the
beginning if the simulation and often happens within first Monte Carlo Step (depending
on actual initial configuration, of course, but if segments touch each other connections
are established almost immediately). The ActivationEnergy parameter is added to
overall energy in order to increase the odds of pixel copy which would lead to new
connection. Lambda tag/parameter determines “the strength” of curvature constraint. The
higher the Lambda the more “stiff” cells will be i.e. they will tend to align along straight
line.

IX.2.24.PlayerSettings Plugin

This plugin allows users to specify or configure Player settings directly from XML,
without s single click. Some users might prefer this way of setting configuring Player. In
addition to this if users want to run two different simulations at the same time on the
same machine but with different , say, cell colors, then doing it with “regular” Player
configuration file might be tricky. The solution is to use PlayerSetting Plugin. The syntax
of this plugin is as follows:

<Plugin Name="PlayerSettings">
 <Project2D XZProj="50"/>
 <Concentration LegendEnable="true" NumberOfLegendBoxes="3"/>
 <VisualControl ScreenshotFrequency="200" ScreenUpdateFrequency="10"
 NoOutput="true" ClosePlayerAfterSimulationDone="true" />
 <Border BorderColor="red" BorderOn="false"/>
 <TypesInvisibleIn3D Types="0,2,4,5"/>
 <Cell Type="1" Color="red"/>
 <Cell Type="2" Color="yellow"/>
 <!-- Note: SaveSettings flag is unimportant for the new Player
 because whenever settings are changed from XML script
 they are written by default to disk
 This seems to be default behavior of most modern applications.
 We may implement this feature later
 <Settings SaveSettings="false"/>
 -->
</Plugin>

As can be seen from above syntax all the keywords correspond to an action in the Player.
Project2D sets up the values of the projection on the Player steering bar. Here we set the
player to start 2D display in the xz projection with y coordinate set to 50. Borders and Comment [MSOffice16]: Not clear?

-96-

contours properties are handled using Border and Contour elements. Specifying cell
colors is done using Cell element. VisualControl element allows users to specify zoom
factor and screen update and screenshot frequencies. Notice, screen update frequency
migh not work properly when using Python script. In this case CompuCell will use
whatever screen update frequency was stored in the config file (by default 1). We may
also change things such as screen update frequency or screenshot frequency and choose
whether or not to close the player after the simulation.
To start Player in the 3D view instead of adding <Project2D> tag we add <View3D>
section:

<View3D>
 <CameraClippingRange Max="388.363853764" Min="182.272762471"/>
 <CameraFocalPoint x="50.0" y="50.0" z="0.75"/>
 <CameraPosition x="150.062764552" y="-88.9777652942" z="213.639720537"/>
 <CameraViewUp x="0.112255891114" y="0.855400655565" z="0.505656339196"/>
</View3D>

The camera settings stored here position 3D camera. The best way to get those settings is
to run a simulation, add 2D screenshot using camera button, switch to 3D and position
camera (using mouse) however you like and subsequently add another screenshot using
camera button, save screenshot descrition file (File->Save Screenshot
Description…) and open up in text editor newly saved screenshot description file (with
.sdfml extension) and copy camera setting from there into PlayerSettings <View3D>
section. An example of using Player settings is shown in
Demos\cellsort_2D\cellsort_2D_PlayerSettings.xml.
Although the set of allowed changes of player settings is fairly small at the moment we
believe that the options that users have right now are quite sufficient for configuring the
Player from the XML or python level. We will continue adding new options though.

IX.2.25.BoundaryPixelTracker Plugin
This plugin allows storing list of boundary pixels for each cell. The syntax is as follows:

<Plugin Name="BoundaryPixelTracker">
 <NeighborOrder>1</NeighborOrder>
 </Plugin>

This plugin is also used by other plugins as a helper module.

IX.2.26. GlobalBoundaryPixelTracker

This plugin tracks boundary pixels of all the cells including medium It is used in a
Boundary Walker algorithm where instead of blindly picking pixel copy candidate we
pick it from the set of pixels comprising boundaries of non frozen cells. In situations
when lattice is large and there are not that many cells it makes sense to use
BoundaryWalker algorithm to limit number of "wrong" pixel picks when perfming pixel
copy attempts. Take a look at the following example:
<Potts>
 <Dimensions x="100" y="100" z="1"/>

-97-

 <Anneal>10</Anneal>
 <Steps>10000</Steps>
 <Temperature>5</Temperature>
 <Flip2DimRatio>1</Flip2DimRatio>
 <NeighborOrder>2</NeighborOrder>
 <MetropolisAlgorithm>BoundaryWalker</MetropolisAlgorithm>
 <Boundary_x>Periodic</Boundary_x>
 </Potts>

 <Plugin Name="GlobalBoundaryPixelTracker">
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

Here we are using BoundaryWalker algorithm (Potts section) and subsequently we list
GlobalBoundaryTracker plugin where we set neighbor order to match that in the Potts
section. The neighbor order determines how "thick" the overall boundary of cells will be.
The higher this number the more pixels will belong to the boundary.

IX.2.27. PixelTracker Plugin
This plugin allows storing list of all pixels belonging to a given cell. The syntax is as
follows:

<Plugin Name="PixelTracker"/>

This plugin is also used by other plugins (e.g. Mitosis) as a helper module.

IX.2.28. MomentOfInertia plugin
This plugin updates tensor of inertia for every cell. Internally it uses parallel axis theorem
to calculate most up-to-date tensor of inertia. It can be called directly:

<Plugin Name="MomentOfInertia"/>

However, most commonly it is called indirectly by other plugins like Elongation plugin.

MomentOfInertia plugin gives users access (via Python scripting) to current lengths of
cell’s semiaxes. Examples in Demos/MomentOfInertia demonstrate how to get lengths
of semiaxes:

axes=self.momentOfInertiaPlugin.getSemiaxes(cell)

axes is a 3-component vector with 0th element being length of minor axis, 1st – length of
median axis (which is set to 0 in 2D) and 2nd element indicating the length of major
semiaxis.

Important: Because calculating lengths of semiaxes involves quite a few of floating
point operations it may happen (usually on hexagonal lattice) that for cells composed of
1, 2, or 3 pixels one moment the square of one of the semiaxes may end up being slightly
negative leadind to NaN (not a number)length. This is due to roundoff error and whenever

-98-

CC3D detects very small absolute value of square of the length of semiaxes (10-6) it sets
length of this semiaxes to 0.0 regardless whether the squared value is positive or
negative. However it is a good practice to test whether the length of semiaxis is sane by
doing simple if (here we show how to test for a NaN)

jf length!=length:
 print “length is NaN”:
else:
 print “length is a proper floating point number”

IX.2.29. SimpleClock plugin
This plugin adds an integer as a cell attribute:

<Plugin Name="SimpleClock"/>

IX.2.30. ConvergentExtension plugin

This is very specialized plugin which currently is in Tier 2 plugins in terms of support. IT
implements energy term described in “Simulating Convergent Extension by Way of
Anisotropic Differemtial Adhesion,” Zajac M, Jones GL, and Glazier JA, Journal of
Theoretical Biology 222 (2), 2003.

CC3D’s ConvergentExtension plugin is a somewhat simplified version of energy term
described in the paper.

This plugin uses the following syntax:

 <Plugin Name="ConvergentExtension">
 <Alpha Type="Condensing" >0.99</Alpha>
 <Alpha Type="NonCondensing" >0.99</Alpha>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

The Alpha tag represents numerical value of parameter from the paper.

IX.3. Steppable Section
Steppables are CompuCell modules that are called every Monte Carlo Step (MCS). More
precisely, they are called after all the spin attempts in a given MCS have been carried out.
Steppables may have various functions like for example solving PDE's, checking if
critical concentration threshold have been met, updating target volume or target surface
given the concentration of come growth factor, initializing cell field, writing numerical
results to a file etc. In summary Steppables perform all functions that need to be done
every MCS. In the reminder of this section we will present steppables currently available
in the CompuCell and describe their usage.

-99-

IX.3.1 UniformInitializer Steppable

This steppable lays out pattern of cells on the lattice. It allows users to specify rectangular
regions of field with square (or cube in 3D) cells of user defined types (or random types).
Cells can be touching each other or can be separated by a gap.

The syntax of the plugin is as follows:

 <Steppable Type="UniformInitializer">
 <Region>
 <BoxMin x="35" y="0" z="30"/>
 <BoxMax x="135" y="1" z="430"/>
 <Gap>0</Gap>
 <Width>5</Width>
 <Types>psm</Types>
 </Region>
</Steppable>

Above we have defined a 2D rectangular box filled with 5x5 cells touching each other
(Gap=0) and having type psm. Notice that if you want to initialize 2D box in xz plane as
above then y_min and y_max have to be 0 and 1 respectively.

Users can include as many regions as they want. The regions can overlap each other.
Simply cells that are overwritten will either disappear or be truncated.

Additionally users can initialize region with random cell types chosen from provided list
of cell types:

 <Steppable Type="UniformInitializer">
 <Region>
 <BoxMin x="35" y="0" z="30"/>
 <BoxMax x="135" y="1" z="430"/>
 <Gap>0</Gap>
 <Width>5</Width>
 <Types>psm,ncad,ncam</Types>
 </Region>
</Steppable>

When user specifies more than one cell type between <Types> tags (notice, the types
have to be separated with ',' and there should be no spaces) then cells for this region will
be initialized with types chosen randomly from the provided list (here the choices would
be psm, ncad, ncam).
Remark: If one of the type names is repeated inside <Types> element this type will get
greater weighting means probability of assigning this type to a cell will be greater. So for
example <Types>psm,ncad,ncam,ncam,ncam</Types> ncam will assigned to a cell
with probability 3/5 and psm and ncad with probability 1/5.

-100-

IX.3.2. BlobInitializer Steppable

This steppable is used to lay out circular blob of cells on the lattice. This plugin does not
have yet the flexibility of UniformInitializer but this will change in the future release.
Original syntax of this plugin looks as follows:

 <Steppable Type="BlobInitializer">
 <Gap>0</Gap>
 <Width>5</Width>
 <CellSortInit>yes</CellSortInit>
 <Radius>40</Radius>
 </Steppable>

The blob is centered in the middle of th lattice and has radius given by <Radius>
parameter all cells are initially squares (or cubes in 3D) - <Width> determines the length
of the cube or square side and <Gap> determines space between squares or cubes.
<CellSortInit> tag and value yes is used to initialize cells randomly with type id being
either 1 or 2. Otherwise all cells will have type id 1. This can be easily modified in
Python .
The most recent syntax for this plugin gives users additional flexibility in initializing cell
field using BlobFieldInitializer:

<Steppable Type="BlobInitializer">
 <Region>
 <Gap>0</Gap>
 <Width>5</Width>
 <Radius>40</Radius>
 <Center x="100" y="100" z="0"/>
 <Types>Condensing,NonCondensing</Types>
 </Region>
</Steppable Type="BlobInitializer">

Similarly as for the UniformFieldInitializer users can define many regions each of which
is a blob of a particular center point , radius and list of cell types that will be assigned to
cells forming the blob.

IX.3.3. PIF Initializer
To initialize the configuration of the simulation lattice you can can write your own lattice
initialization file. Our experience suggests that you will probably have to write your own
initialization files rather than relying on built-in initializers. The reason is simple: the
built-in initializers implement very simple cell layouts, and if you want to study more
complicated cell arrangements, the built-in initializers will not be very helpful. Therefore
we encourage you to learn how to prepare lattice initialization files. Again, file definition
is not complicated and we will explain every step. The lattice initialization file tells
CompuCell3D how to lay out assign the simulation lattice pixels to cells.

The Potts Initial File (PIF) is a simple file format that we created for easy specification
of initial cell positions. The PIF consists of multiple lines of the following format:

cell# celltype x1 x2 y1 y2 z1 z2

-101-

Where cell# is the unique integer index of a cell, celltype is a string representing the
cell's initial type, and x1 and x2 specify a range of x-coordinates contained in the cell
(similarly y1 and y2 specify a range of y-coordinates and z1 and z2 specify a range of z-
coordinates). Thus each line assigns a rectangular volume to a cell. If a cell is not
perfectly rectangular, multiple lines can be used to build up the cell out of rectangular
sub-volumes (just by reusing the cell# and celltype).

A PIF can be provided to CompuCell3D by including the steppable object PIFInitializer.

Let's look at a PIF example for foams:

0 Medium 0 101 0 101 0 0
1 Foam 13 25 0 5 0 0
2 Foam 25 39 0 5 0 0
3 Foam 39 46 0 5 0 0
4 Foam 46 57 0 5 0 0
5 Foam 57 65 0 5 0 0
6 Foam 65 76 0 5 0 0
7 Foam 76 89 0 5 0 0

These lines define a background of Medium which fills the whole lattice and is then
overwritten by seven rectangular cells of type Foam numbered 1 through 7. Notice that
these cells lie in the xy plane (z1=0 z2=0 implies that cells have thickness =1) so this
example is a two-dimensional initialization.

You can write the PIF file manually, but using a script or program that will write PIF file
for you in the language of your choice (Perl, Python, Matlab, Mathematica, C, C++, Java
or any other programming language) will save a great deal of typing. You may also use
tools like PIFTracer which allow you to "paint" the lattice by tracing regions of the
experimental pictures.

Notice, that for compartmental cell model the format of the PIF file is different:

Include Clusters
cluster # cell# celltype x1 x2 y1 y2 z1 z2

For example:

Include Clusters
1 1 Side1 23 25 47 56 10 14
1 2 Center 26 30 50 54 10 14
1 3 Side2 31 33 47 56 10 14
1 4 Top 26 30 55 59 10 14
1 5 Bottom 26 30 45 49 10 14
2 6 Side1 35 37 47 56 10 14
2 7 Center 38 42 50 54 10 14
2 8 Side2 43 45 47 56 10 14
2 9 Top 38 42 55 59 10 14
2 10 Bottom 38 42 45 49 10 14

-102-

IX.3.4. PIFDumper Steppable

This steppable does opposite to PIFIitializer – it writes PIF file of current lattice
configuration. The syntax similar to the syntax of PIFInitializer:

<Steppable Type="PIFDumper" Frequency=”100”>
 <PIFName>line</PIFName>
</Steppable>

Notice that we used Frequency attribute of steppable to ensure that PIF files are written
every 100 MCS. Without it they would be written every MCS. The file names will have
the following format:

PIFName.MCS.pif

In our case they would be line.0.pif, line.100.pif, line.200.pif etc...

This plugin is actually quite useful. For example, if we want to start simulation from a
more configuration of cells (not rectangular cells as this is the case when we use Uniform
or Blob initializers). In such a case we would run a simulation with a PIFDumper
included and once the cell configuration reaches desired shape we would stop and use
PIF file corresponding to this state. Once we have PIF initial configuration we may run
many simulation starting from the same, realistic initial condition.

IX.3.5. Mitosis Steppabe.
This steppable is described in great detail in Python tutorial but because of its importance
we are including a copy of that description here.
In developmental simulations we often need to simulate cells which grow and divide. In
earlier versions of CompuCell3D we had to write quite complicated plugin to do that
which was quite cumbersome and unintuitive (see example 9). The only advantage of the
plugin was that exactly after the pixel copy which had triggered mitosis condition
CompuCell3D called cell division function immediately. This guaranteed that any cell
which was supposed divide at any instance in the simulation, actually did. However,
because state of the simulation is normally observed after completion of full a Monte
Carlo Step, and not in the middle of MCS it makes actually more sense to implement
Mitosis as a steppable. Let us examine the simplest simulation which involves mitosis.
We start with a single cell and grow it. When cell reaches critical (doubling) volume it
undergoes Mitosis. We check if the cell has reached doubling volume at the end of each
MCS. The folder containing this simulation is
examples_PythonTutorial/steppableBasedMitosis. The mitosis algorithm is implemented
in examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py

File:
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py

from PySteppables import *
from PySteppablesExamples import MitosisSteppableBase
import CompuCell

-103-

import sys

class VolumeParamSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def start(self):
 for cell in self.cellList:
 cell.targetVolume=25
 cell.lambdaVolume=2.0

 def step(self,mcs):
 for cell in self.cellList:
 cell.targetVolume+=1

class MitosisSteppable(MitosisSteppableBase):
 def __init__(self,_simulator,_frequency=1):
 MitosisSteppableBase.__init__(self,_simulator, _frequency)

 def step(self,mcs):
 cells_to_divide=[]

 for cell in self.cellList:
 if cell.volume>50: # mitosis condition
 cells_to_divide.append(cell)

 for cell in cells_to_divide:
 self.divideCellRandomOrientation(cell)
 def updateAttributes(self):

 parentCell=self.mitosisSteppable.parentCell
 childCell=self.mitosisSteppable.childCell
 childCell.targetVolume=parentCell.targetVolume
 childCell.lambdaVolume=parentCell.lambdaVolume
 if parentCell.type==1:
 childCell.type=2
 else:
 childCell.type=1

Two steppables: VolumeParamSteppable and MitosisSteppable are the essence of the
above simulation. The first steppable initializes volume constraint for all the cells present
at T=0 MCS (only one cell) and then every 10 MCS (see the frequency with which
VolumeParamSteppable in initialized to run -
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosis.py) it increases
target volume of cells, effectively causing cells to grow.
The second steppable checks every 10 MCS (we can, of course, run it every MCS) if cell
has reached doubling volume of 50. If so such cell is added to the list cells_to_divide
which subsequently is iterated and all the cells in it divide.

-104-

Remark: It is important to divide cells outside the loop where we iterate over entire cell
inventory. If we keep dividing cells in this loop we are adding elements to the list over
which we iterate over and this might have unwanted side effects. The solution is to use
use list of cells to divide as we did in the example.
Notice that we call self.divideCellRandomOrientation(cell) function to divide
cells. Other modes of division are available as well and they are shown in
examples_PythonTutorial/steppableBasedMitosis/steppableBasedMitosisSteppables.py as
commented line with appropriate explanation.
Notice MitosisSteppable inherits MitosisSteppableBase class (defined in
PySteppablesExamples.py).It is is the base class which ensures that after we call any of
the cell dividing function (e.g. divideCellRandomOrientation) CompuCell3D will
automatically call updatAttributes function as well. updateAttributes function is very
important and we must call it in order to ensure integrity and sanity of the simulation.
During mitosis new cell is created (accessed in Python as childCell – defined in
MitosisSteppableBase - self.mitosisSteppable.childCell) and as such this cell is
uninitialized. It does have default attributes of a cell such as volume, surface (if we
decide to use surface constraint or SurfaceTracker plugin) but all other parameters of
such cell are set to default values. In our simulation we have been setting targetVolume
and lambdaVolume individually for each cell. After mitosis childCell will need those
parameters to be set as well. To make things more interesting, in our simulation we
decided to change type of cell to be different than type of parent cell. In more complex
simulations where cells have more attributes which are used in the simulation, we have to
make sure that in the updateAttributes function childCell and its attributes get
properly initialized. It is also very common practice to change attributes of parentCell
after mitosis as well to account for the fact that parentCell is not the original
parentCell from before the mitosis.
Important: If you specify orientation vector for the mitosis the actual division will take
place along the line/plane perpendicular to this vector.
Important: the name of the function where we update attributes after mitosis has to be
exactly updateAtttributes. If it is called differently CC3D will not call it
automatically. We can of course call such function by hand, immediately we do the
mitosis but this is not very elegant solution.

Now we will discuss how to use PDE solvers in ComuCell3D. Most of the PDE solvers
solve PDE with diffusive terms. Let's take a look at them

IX.3.5. AdvectionDiffusionSolver.

This steppable solves advection diffusion equation on a cell field as opposed to grid. Of
course, the inaccuracies are bigger than in the case of PDE being solved on the grid but
on the other hand solving the PDE on a cell field means that we associate cocentration
with a given cell (not just with a lattice point). This means that as cells move so does the
concentration. In other words we get advection for free. The mathematical treatment of
this kind of approximation was spelled out in Phys. Rev. E 72, 041909 (2005) paper by
D.Dan et al.
The equation solved by this steppable is of the type:

-105-

2c

= D c+kc+ v c+ secretion
t

where c denotes concentration , D is diffusion constant, k decay constant, v

is velocity
field.
In addition to just solving advection-diffusion equation this module allows users to
specify secretion rates of the cells as well as different secretion modes. More about it in a
moment. First let's see how one uses AdvectionDiffusionSolver:

This is example syntax:

<Steppable Type="AdvectionDiffusionSolverFE">
 <DiffusionField>
 <DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>0.05</DiffusionConstant>
 <DecayConstant>0.003</DecayConstant>

<ConcentrationFileName>flowFieldConcentration2D.txt</ConcentrationFileName>
 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Fluid">0.5</Secretion>
 <SecretionOnContact Type="Fluid"
 <SecreteOnContactWith="Wall">0.3</SecretionOnContact>
 </SecretionData>

 </DiffusionField>
</Steppable>

Inside AdvectionDiffusionSolver you need to define sections that describe a field on
which the steppable is to operate. In our case we declare just one diffusion field. Inside
the diffusion field we specify sections describing diffusion and secretion. Let's take a
look at DiffusionData section first:

<DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>0.05</DiffusionConstant>
 <DecayConstant>0.003</DecayConstant>
 <ConcentrationFileName>flowFieldConcentration2D.txt</ConcentrationFileName>
 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
</DiffusionData>

We give a name (FGF) to the diffusion field – this is required as we will refer to this field
in other modules. Next we specify diffusion constant and decay constant.

Caution: We use Forward Euler Method to solve these equations. This is not a stable
method for solving diffusion equation and we do not perform stability checks. If you
enter too high diffusion constant for example you may end up with unstable (wrong)
solution. Always test your parameters to make sure you are not in the unstable region.

-106-

ConcentrationFileName is an optional tag and lets you specify a text file that contains
values of concentration for every pixel. The value of concentratio of the last pixel read
for a given cell becomes an overall value of concentration for a cell. That is if cell has,
say 8 pixels, and you specify different concentration at every pixel, then cell
concentration will be the last one read from the file.

Concentration file format is as follows:

x y z c

where x,y,z, denote coordinate of the pixel. c is the value of the concentration.

Example:

0 0 0 1.2
0 0 1 1.4
...

You may also specify cells which will not participate in the diffusion. You do it using
<DoNotDiffuseTo> tag. In this example you do not let any FGF diffuse into Wall cells.
You may of course use as many as necessary <DoNotDiffuseTo> tags .

In addition to diffusion parameters we may specify how secretion should proceed.
SecretionData section contains all the necessary information to tell CompuCell how to
handle secretion. Let's study the example:

<SecretionData>
 <Secretion Type="Fluid">0.5</Secretion>
 <SecretionOnContact Type="Fluid"
 SecreteOnContactWith="Wall">0.3</SecretionOnContact>
</SecretionData>

Here we have a definition two major secretion modes. Line:

<Secretion Type="Fluid">0.5</Secretion>

ensures that every cell of type Fluid will get 0.5 increase in concentration every MCS.
Line:

<SecretionOnContact Type="Fluid" SecreteOnContactWith="Wall">0.3
</SecretionOnContact>

means that cells of type Fluid will get additional 0.3 increase in concentration but only
when they touch cell of type Wall. This mode of secretion is called
SecretionOnContact.

-107-

IX.3.6. FlexibleDiffusionSolver

This steppable is one of the basic and most important modules in CompuCell3D
simulations. As the name suggests it is responsible for solving diffusion equation but in
addition to this it also handles chemical secretion which maybe thought of as being part
of general diffusion equation.

2c
= D c+kc+ secretion

t

where k is a decay constant of concentration c and D is the diffusion constant. The term
called secretion has the meaning as described below.
The principles of operations are analogous as in the case of AdvectionDiffusionSolver so
most of has been said there applies to FlexibleDiffusionSolve. Also the syntax is very
similar. Let's see an example

 <Steppable Type="FlexibleDiffusionSolverFE">
 <AutoscaleDiffusion/>
 <DiffusionField>
 <DiffusionData>
 <FieldName>FGF8</FieldName>
 <DiffusionConstant>0.1</DiffusionConstant>
 <DecayConstant>0.002</DecayConstant>
 <ExtraTimesPerMCS>5</ExtraTimesPerMCS>
 <DeltaT>0.1</DeltaT>
 <DeltaX>1.0</DeltaX>
 <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>

 <InitialConcentrationExpression>x*y

 </InitialConcentrationExpression>

 </DiffusionData>

 <SecretionData>
 <Secretion Type="Amoeba">0.1</Secretion>
 </SecretionData>

 <BoundaryConditions>
 <Plane Axis="X">
 <ConstantValue PlanePosition="Min" Value="10.0"/>
 <ConstantValue PlanePosition="Max" Value="10.0"/>
 </Plane>

 <Plane Axis="Y">
 <ConstantDerivative PlanePosition="Min" Value="10.0"/>
 <ConstantDerivative PlanePosition="Max" Value="10.0"/>
 </Plane>
 </BoundaryConditions>

 </DiffusionField>

 <DiffusionField>

-108-

 <DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>0.02</DiffusionConstant>
 <DecayConstant>0.001</DecayConstant>
 <DeltaT>0.01</DeltaT>
 <DeltaX>0.1</DeltaX>
 <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <SecretionOnContact Type="Medium"
 SecreteOnContactWith="Amoeba">0.1</SecretionOnContact>
 <Secretion Type="Amoeba">0.1</Secretion>
 </SecretionData>
 </DiffusionField>
 </Steppable>

We can also see new xml tags <DeltaT> and <DeltaX>. Their values determine the
correspondence between MCS and actual time and between lattice spacing and actual
spacing size. In this example for the first diffusion field one MCS corresponds to 0.1
units of actual time and lattice spacing is equal 1 unit of actual length. What is happening
here is that the diffusion constant gets multiplied by:

DeltaT/(DeltaX* DeltaX)

provided the decay constant is set to 0. If the decay constant is not zero DeltaT appears
additionally in the term (in the explicit numerical approximation of the diffusion equation
solution) containing decay constant so in this case it is more than simple diffusion
constant rescaling.
DeltaT and DeltaX settings are closely related to ExtraTimesPerMCS setting which
allows calling of diffusion (and only diffusion) more than once per MCS. The number of
extra calls per MCS is specified by the user on a per-field basis using ExtraTimesPerMCS
tag.
IMPORTANT: When using ExtraTimesPerMCS secretion functions will called only
once per MCS. This is different than using PDESolverCaller where entire module is
called multiple times (this include diffusion and secretion for all fields).

The AutoscaleDiffusion tag tells CC3D to automatically rescale diffusion constant
when switching between sqaure and hex lattices. In previous versions of CC3D such
scaling had to be done manually to ensure that solutions diffusion of equation on different
lattices match. Here we introduced for user convenience a simple tag that does rescaling
automatically. The rescaling factor comes from the fact that the discretization of the
divergence term in the diffusion equation has factors such as unit lengths, using surface
are and pixel/voxel volume in it. On square lattice all those values have numerical value
of 1.0. On hex lattice, and for that matter of non-quare latticeses, only pixel/voxel volume
has numerical value of 1. All other quantities have values different than 1.0 which causes
the necessity to rescale diffusion constant. The detail of the hex lattice derivation will be
presented in the Appendix

-109-

Instabilities of the Forward Euler Method
Most of the PDE soplvers in CC3D use Forward Euler exmplicit numerical scheme. This
method is unstable for large diffusioni constant. As a matter of fact using D=0.25 with
pulse initial condition will lead to instabilities in 2D. To deal with this you would
normally use implicit solvers however due to moving boundary conditions that we have
to deal with in CC3D simulations, memory requirements, perofmance and the fact that
most diffusion constants encountered in biology are quite low (unfortunately this is not
for all chemicals e.g. oxygen) we decided to use explicit scheme. If you have to use large
diffusion constants with explicit solvers you need to do rescaling:

1) Set D, t, x according to your model
2) If

∆
∆

0.16					 	3

you will need to call solver multiple times per MCS.
3) Set <ExtraTimesPerMCS> to N-1 where:

and

∆ /
∆

0.16					 	3

SecretionData sections are analogous to those defined in AdvectionDiffusionSolver.
here however, the secretion is done done on per-pixel basis (as opposed to per cell basis
for AdvectionDiffusionSolver). For example when we use the following xml statement

<Secretion Type="Amoeba">0.1</Secretion>

this means that every pixel that belongs to cells of type Amoebae will get boost in
concentration by 0.1. That is the secretion proceeds uniformly in the whole body of a cell.
Alternative secretion mode would be the one described by the following line:

<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">0.1
</SecretionOnContact>

Here the secretion will take place in medium and only in those pixels belonging to
Medium that touch directly Amoeba.
More secretion schemes will be added in the future.

Initial Conditions
In Advection Diffusion solver we used external file (<ConcentrationFileName>
tag) to specify initial conditions. FlexibleDiffusionSolverFE (and for that matter all
solvers except AdvectionDiffusion solver) accepts specification of initial concentration in
a form of a function of coordinates x, y, z. We use
<InitialConcentrationExpression> tag to input the formula. The initial
concentration can also be input from the Python script (typically in the start function of
the steppable) but often it is more convenient to type one line of the CC3DML script than
few lines in Python.

-110-

Boundary Conditions

All standard solvers (Flexible, Fast, and Reaction Diffusion) by default use the same
boundary conditions as the GGH simulation (and those are specified in the Potts section
of the CC3DML script). Users can, however, override those defaults and use customized
boundary conditions for each field individually. Currently CompuCell3D supports the
following boundary conditions for the diffusing fields: periodic, constant value
(Dirichlet) and constant derivative (von Neumann). To specify custom boundary
condition we include <BoundaryCondition> section inside <DiffusionField> tags.
The <BoundaryCondition> section describes boundary conditions along particular axes.
For example:
 <Plane Axis="X">
 <ConstantValue PlanePosition="Min" Value="10.0"/>
 <ConstantValue PlanePosition="Max" Value="10.0"/>
 </Plane>

specifies boundary conditions along the X axis. They are Dirichlet-type boundary
conditions. PlanePosition=”Min” denotes plane parallel to yz plane passing through
x=0. Similarly PlanePosition=”Min” denotes plane parallel to yz plane passing through
x=fieldDimX-1 where fieldDimX is x dimensionof the lattice.

By analogy we specify constant derivative boundary conditions:
 <Plane Axis="Y">
 <ConstantDerivative PlanePosition="Min" Value="10.0"/>
 <ConstantDerivative PlanePosition="Max" Value="10.0"/>
 </Plane>

We can also mix types of boundary conditions along single axis:
 <Plane Axis="Y">
 <ConstantDerivative PlanePosition="Min" Value="10.0"/>
 <ConstantValue PlanePosition="Max" Value="0.0"/>
 </Plane>

Here in the xz plane at y=0 we have von Neumann boundary conditions but at
y=fieldFimY-1 we have dirichlet boundary condition.

To specify periodic boundary conditions along, say x axis we use the following syntax:
 <Plane Axis="X">
 <Periodic/>
 </Plane>

Notice, that <Periodic> boundary condition specification applies to both “ends” of the
axis i.e. we cannot have periodic boundary conditions at x=0 and constant derivative at
x=fieldDimX-1.

The FlexibleDiffusionSolver is also capable of solving simple coupled diffusion type
PDE of the form:

-111-

2

2

2

d f

c f

c d

c
= D c+ kc+ secretion+m cd +m cf

t
d

= D d +kd + secretion+ n dc+n df
t
f

= D f +kf + secretion+ p fc+ p fd
t

where c g c f c dm , m , n , n , p , p are coupling coefficients. To code the

above equations in xml CompuCell3D syntax you need to use the following syntax:

<Steppable Type="FlexibleDiffusionSolverFE">
 <DiffusionField>
 <DiffusionData>
 <FieldName>c</FieldName>
 <DiffusionConstant>0.1</DiffusionConstant>
 <DecayConstant>0.002</DecayConstant>
 <CouplingTerm InteractingFieldName=”d” CouplingCoefficent=”0.1”/>
 <CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”0.2”/>
 <DeltaT>0.1</DeltaT>
 <DeltaX>1.0</DeltaX>
 <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Amoeba">0.1</Secretion>
 </SecretionData>
 </DiffusionField>

 <DiffusionField>
 <DiffusionData>
 <FieldName>d</FieldName>
 <DiffusionConstant>0.02</DiffusionConstant>
 <DecayConstant>0.001</DecayConstant>
 <CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.1”/>
 <CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”-0.2”/>
 <DeltaT>0.01</DeltaT>
 <DeltaX>0.1</DeltaX>
 <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Amoeba">0.1</Secretion>
 </SecretionData>
 </DiffusionField>

 <DiffusionField>
 <DiffusionData>
 <FieldName>f</FieldName>
 <DiffusionConstant>0.02</DiffusionConstant>
 <DecayConstant>0.001</DecayConstant>
 <CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.2”/>
 <CouplingTerm InteractingFieldName=”d” CouplingCoefficent=”0.2”/>
 <DeltaT>0.01</DeltaT>
 <DeltaX>0.1</DeltaX>
 <DoNotDiffuseTo>Bacteria</DoNotDiffuseTo>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Amoeba">0.1</Secretion>

Comment [MSOffice17]: Are coupling terms in
C++ code multiplied by concentration of that field?
Instead of “ md * d+ mf * f” using “ c*(md * d+
mf * f)”

-112-

 </SecretionData>
 </DiffusionField>
</Steppable>

As one can see the only addition that is required to couple diffusion equations has simple
syntax:
<CouplingTerm InteractingFieldName=”c” CouplingCoefficent=”-0.1”/>
<CouplingTerm InteractingFieldName=”f” CouplingCoefficent=”-0.2”/>

IX.3.7. FastDiffusionSolver2D

FastDiffusionSolver2DFE steppable is a simplified version of the
FlexibleDiffusionSolverFE steppable. It runs several times faster that flexible solver but
lacks some of its features. Typical syntax is shown below:

<Steppable Type="FastDiffusionSolver2DFE">
 <DiffusionField>
 <DiffusionData>
 <UseBoxWatcher/>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>0.010</DiffusionConstant>
 <DecayConstant>0.003</DecayConstant>
 <ExtraTimesPerMCS>2</ExtraTimesPerMCS>
 <DoNotDecayIn>Wall</DoNotDecay>
 <ConcentrationFileName>
 Demos/diffusion/diffusion_2D_fast_box.pulse.txt
 </ConcentrationFileName>
 </DiffusionData>
 </DiffusionField>
</Steppable>

In particular for fast solver you cannot specify cells into which diffusion is prohibited.
However, you may specify cell types where diffusant decay is prohibited
For exmplanation how ExtraTimesPerMCS works see section on
FlexibleDiffusionSolverFE.

IX.3.8. KernelDiffusionSolver

This diffusion solver has the advantage over previous solvers that it can handle large
diffusion constants. It is also stable. However, it does not accept options like
<DoNotDiffuseTo> or <DoNotDecayIn>. It also requires periodic boundary conditions.
Simply put KernelDiffusionSolver solves diffusion equation

2c
= D c+kc+ secretion

t

With fixed, periodic boundary conditions on the edges of the lattice. This is different
from FlexibleDiffusionSolver where the boundary conditions evolve. You also need to
choose a proper Kernel range (K) according to the value of diffusion constant. Usually
when K2 e-(K^2 / (4D)) is small (this is the main part of the integrand), the approximation
convergers to the exact value.

-113-

The syntax for this solver is as follows:

<Steppable Type="KernelDiffusionSolver">
 <DiffusionField>
 <Kernel>4</Kernel>
 <DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>1.0</DiffusionConstant>
 <DecayConstant>0.000</DecayConstant>
 <ConcentrationFileName>
 Demos/diffusion/diffusion_2D.pulse.txt
 </ConcentrationFileName>
 </DiffusionData>
 </DiffusionField>
</Steppable>

Inside <DiffusionField> tag one may also use option <CoarseGrainFactor> to
For example:

<Steppable Type="KernelDiffusionSolver">
 <DiffusionField>
 <Kernel>4</Kernel>
 <CoarseGrainFactor>2</CoarseGrainFactor>
 <DiffusionData>
 <FieldName>FGF</FieldName>
 <DiffusionConstant>1.0</DiffusionConstant>
 <DecayConstant>0.000</DecayConstant>
 <ConcentrationFileName>
 Demos/diffusion/diffusion_2D.pulse.txt
 </ConcentrationFileName>
 </DiffusionData>
 </DiffusionField>
</Steppable>

IX.3.9. ReactionDiffusionSolver

The reaction diffusion solver solves the following system of N reaction diffusion
equations:

21
1 1 1 1 2

22
2 2 2 1 2

2
1 2

, , ,

, , ,

, , ,

N

N

N
N N N N

c
= D c f c c c

t
c

= D c f c c c
t

c
= D c f c c c

t

Let's consider a simple example of such system:

-114-

2

2

0.1 (0.1)

0.0 0.1

F
= F H

t
H

= H F
t

It can be coded as follows:

<Steppable Type="ReactionDiffusionSolverFE">
 <AutoscaleDiffusion/>
 <DiffusionField>
 <DiffusionData>
 <FieldName>F</FieldName>
 <DiffusionConstant>0.010</DiffusionConstant>
 <ConcentrationFileName>
 Demos/diffusion/diffusion_2D.pulse.txt
 </ConcentrationFileName>
 <AdditionalTerm>-0.01*H</AdditionalTerm>
 </DiffusionData>
 </DiffusionField>

 <DiffusionField>
 <DiffusionData>
 <FieldName>H</FieldName>
 <DiffusionConstant>0.0</DiffusionConstant>
 <AdditionalTerm>0.01*F</AdditionalTerm>
 </DiffusionData>
 </DiffusionField>
</Steppable>

Notice how we implement functions f from the general system of reaction diffusion
equations. We simply use <AdditionalTerm> tag and there we type arithmetic
expression involving field names (tags <FieldName>). In addition to this we may include
in those expression word CellType. For example:

<AdditionalTerm>0.01*F*CellType</AdditionalTerm>

This means that function f will depend also on CellType . CellType hodls the value of
the type of the cell at particular location - x, y, z - of the lattice. The inclusion of the cell
type might be useful if you want to use additional terms which may change depending of
the cell type. Then all you have to do is to either use if statements inside
<AdditionalTerm> or form equivalent mathematical expression using functions allowed
by muParser (http://muparser.sourceforge.net/mup_features.html#idDef2)
For example, let's assume that additional term for second equation is the following:

0.1* if CellType=1

0.15* otherwiseH

F
f

F

In such a case additional term would be coded as follows:

<AdditionalTerm>if (CellType==1,0.01*F,0.15*F) </AdditionalTerm>

-115-

Notice that we have used here muParser function called if. The syntax of it is as follows:

if(condition, expression if condition true, \
 expression if condition false)

One thing to remember is that computing time of the additional term depends on the level
of complexity of this term. Thus it is not the best idea to code very complex expressions
using muParser.

Similarly as in the case of FlexibleDiffusionSolverwe may use AutoscaleDiffusion
tag tells CC3D to automatically rescale diffusion constant. See section
FlexibleDiffusionSolver or the Appendix for more information.

IX.3.10. Steady State diffusion solver
Often in the multi-scale simulations we have to deal with chemicals which have
drastically different diffusion constants. For slow diffusion fields we can use standard
explicit solvers (e.g. FlexibleDiffusionSolverFE) but once the diffusion constant becomes
large the number of extra calls to explicit solvers becomes so large that solving diffusion
euation using Forward-Euler based solvers is simply impractical. In situations when the
diffusion sonstant is so large that the solution of the diffusion equation is not that much
different from the asymptotic solution (i.e. at t) it is often more convenient to use
SteadyStateDiffusion solver which solves Helmholtz equation:
 2c kc F
where F is a source function of the coordinates - it is an input to the equation, k is decay
constant and c is the concentration. The F function in CC3D is either given implicitely by
specifying cellular secretion or explicitely by specifying concentration c before solving
Helmholtz equation.

The CC3D stead state diffusion solvers are stable and allow solutions for large values of
diffusion constants.

The example syntax for the steady-state solver is shown below:

<Steppable Type="SteadyStateDiffusionSolver2D">
 <DiffusionField>
 <DiffusionData>
 <FieldName>INIT</FieldName>
 <DiffusionConstant>1.0</DiffusionConstant>
 <DecayConstant>0.01</DecayConstant>
 </DiffusionData>
 <SecretionData>
 <Secretion Type="Body1">1.0</Secretion>
 </SecretionData>

 <BoundaryConditions>

 <Plane Axis="X">
 <ConstantValue PlanePosition="Min" Value="10.0"/>

-116-

 <ConstantValue PlanePosition="Max" Value="5.0"/>
 </Plane>

 <Plane Axis="Y">
 <ConstantDerivaive PlanePosition="Min" Value="0.0"/>
 <ConstantDerivaive PlanePosition="Max" Value="0.0"/>
 </Plane>

 </BoundaryConditions>

 </DiffusionField>

 </Steppable>

The syntax is is similar (actually, almost identical) to the syntax of the
FlexibleDiffusionSolverFE. The only difference is that while FlexibleDiffusionSolver
works in in both 2D and 3D users need to specify the dimensionality of the steady state
solver. We use

<Steppable Type="SteadyStateDiffusionSolver2D">

for 2D simulations when all the cells lie in the xy plane and

<Steppable Type="SteadyStateDiffusionSolver">

for simulations in 3D.

IX.3.11. BoxWatcher Steppable

This steppable can potentially speed-up your simulation. Every MCS (or every
Frequency MCS) it determines maximum and minimum coordinates of cells and then
imposes slightly bigger box around cells and ensures that in the subsequent MCS spin flip
attempts take place only inside this box containing cells (plus some amount of medium
on the sides). Thus instead of sweeping entire lattice and attempting random spin flips
CompuCell3D will only spend time trying flips inside the box. Depending on the
simulation the performance gains are up to approx. 30%. The steppable will work best if
you have simulation with cells localized in one region of the lattice with lots of empty
space. The steppable will adjust box every MCS (or every Frequency MCS) according to
evolving cellular pattern.

The syntax is as follows:

 <Steppable Type="BoxWatcher">
 <XMargin>5</XMargin>
 <YMargin>5</YMargin>
 <ZMargin>5</ZMargin>
 </Steppable>

-117-

All that is required is to specify amount of extra space (expressed in units of pixels) that
needs to be added to a tight box i.e. the box whose sides just touch most peripheral cells'
pixels.

IX.4. Additional Plugins and Modules

Besides the modules that were introduced above CompuCell3D contains other modules
which were developed to solve particular problem. For example module called
DictyFieldInitializer is used to prepare initial cell configuration for the simulation of
Dictyostelium discoideum morphogenesis based on the paper by P.Hogeweg and N.Savill
Modelling morphogenesis: from single cells to crawling slugs. J. theor. Biol. 184,
229-235.
Such modules have limited area of applicability and are mostly used in a single
simulation. For this reason we will not describe them in more detail here. Interested user
may consult CompuCell3D manual 3.2.0 where all such modules were described. It is our
goal however to eliminate a need to write customized modules as much as possible. For
example, DictyFieldInitializer can be easily replaced by using UniformInitializer and
defining several regions there. Similarly Reaction diffusion solver for this simulation can
be replaced by a general Reaction Diffusion solver described above.
While we might run into performance issues when using general as opposed to
customized, the flexibility and portability associated with using general use modules are
worth extra run time.

X.	References	
1. Bassingthwaighte, J. B. (2000) Strategies for the Physiome project. Annals of

Biomedical Engineering 28, 1043-1058.
2. Merks, R. M. H., Newman, S. A., and Glazier, J. A. (2004) Cell-oriented

modeling of in vitro capillary development. Lecture Notes in Computer Science
3305, 425-434.

3. Turing, A. M. (1953) The Chemical Basis of Morphogenesis. Philosophical
Transactions of the Royal Society B 237, 37-72.

4. Merks, R. M. H. and Glazier, J. A. (2005) A cell-centered approach to
developmental biology. Physica A 352, 113-130.

5. Dormann, S. and Deutsch, A. (2002) Modeling of self-organized avascular tumor
growth with a hybrid cellular automaton. In Silico Biology 2, 1-14.

6. dos Reis, A. N., Mombach, J. C. M., Walter, M., and de Avila, L. F. (2003) The
interplay between cell adhesion and environment rigidity in the morphology of
tumors. Physica A 322, 546-554.

7. Drasdo, D. and Hohme, S. (2003) Individual-based approaches to birth and death
in avascular tumors. Mathematical and Computer Modelling 37, 1163-1175.

8. Holm, E. A., Glazier, J. A., Srolovitz, D. J., and Grest, G. S. (1991) Effects of
Lattice Anisotropy and Temperature on Domain Growth in the Two-Dimensional
Potts Model. Physical Review A 43, 2662-2669.

9. Turner, S. and Sherratt, J. A. (2002) Intercellular adhesion and cancer invasion: A
discrete simulation using the extended Potts model. Journal of Theoretical
Biology 216, 85-100.

-118-

10. Drasdo, D. and Forgacs, G. (2000) Modeling the interplay of generic and genetic
mechanisms in cleavage, blastulation, and gastrulation. Developmental Dynamics
219, 182-191.

11. Drasdo, D., Kree, R., and McCaskill, J. S. (1995) Monte-Carlo approach to tissue-
cell populations. Physical Review E 52, 6635-6657.

12. Longo, D., Peirce, S. M., Skalak, T. C., Davidson, L., Marsden, M., and Dzamba,
B. (2004) Multicellular computer simulation of morphogenesis: blastocoel roof
thinning and matrix assembly in Xenopus laevis. Developmental Biology 271,
210-222.

13. Collier, J. R., Monk, N. A. M., Maini, P. K., and Lewis, J. H. (1996) Pattern
formation by lateral inhibition with feedback: A mathematical model of Delta-
Notch intercellular signaling. Journal of Theoretical Biology 183, 429-446.

14. Honda, H. and Mochizuki, A. (2002) Formation and maintenance of distinctive
cell patterns by coexpression of membrane-bound ligands and their receptors.
Developmental Dynamics 223, 180-192.

15. Moreira, J. and Deutsch, A. (2005) Pigment pattern formation in zebrafish during
late larval stages: A model based on local interactions. Developmental Dynamics
232, 33-42.

16. Wearing, H. J., Owen, M. R., and Sherratt, J. A. (2000) Mathematical modelling
of juxtacrine patterning. Bulletin of Mathematical Biology 62, 293-320.

17. Zhdanov, V. P. and Kasemo, B. (2004) Simulation of the growth of neurospheres.
Europhysics Letters 68, 134-140.

18. Ambrosi, D., Gamba, A., and Serini, G. (2005) Cell directional persistence and
chemotaxis in vascular morphogenesis. Bulletin of Mathematical Biology 67, 195-
195.

19. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S., Giraudo, E.,
Serini, G., Preziosi, L., and Bussolino, F. (2003) Percolation, morphogenesis, and
Burgers dynamics in blood vessels formation. Physical Review Letters 90,
118101.

20. Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. A., and Nasmyth,
K. (1999) Finishing the cell cycle. Journal of Theoretical Biology 199, 223-233.

21. Peirce, S. M., van Gieson, E. J., and Skalak, T. C. (2004) Multicellular simulation
predicts microvascular patterning and in silico tissue assembly. FASEB Journal
18, 731-733.

22. Merks, R. M. H., Brodsky, S. V., Goligorksy, M. S., Newman, S. A., and Glazier,
J. A. (2006) Cell elongation is key to in silico replication of in vitro
vasculogenesis and subsequent remodeling. Developmental Biology 289, 44-54.

23. Merks, R. M. H. and Glazier, J. A. (2005) Contact-inhibited chemotactic motility
can drive both vasculogenesis and sprouting angiogenesis. q-bio/0505033.

24. Kesmir, C. and de Boer., R. J. (2003) A spatial model of germinal center
reactions: cellular adhesion based sorting of B cells results in efficient affinity
maturation. Journal of Theoretical Biology 222, 9-22.

25. Meyer-Hermann, M., Deutsch, A., and Or-Guil, M. (2001) Recycling probability
and dynamical properties of germinal center reactions. Journal of Theoretical
Biology 210, 265-285.

26. Nguyen, B., Upadhyaya, A. van Oudenaarden, A., and Brenner, M. P. (2004)

-119-

Elastic instability in growing yeast colonies. Biophysical Journal 86, 2740-2747.
27. Walther, T., Reinsch, H., Grosse, A., Ostermann, K., Deutsch, A., and Bley, T.

(2004) Mathematical modeling of regulatory mechanisms in yeast colony
development. Journal of Theoretical Biology 229, 327-338.

28. Borner, U., Deutsch, A., Reichenbach, H., and Bar, M. (2002) Rippling patterns
in aggregates of myxobacteria arise from cell-cell collisions. Physical Review
Letters 89, 078101.

29. Bussemaker, H. J., Deutsch, A., and Geigant, E. (1997) Mean-field analysis of a
dynamical phase transition in a cellular automaton model for collective motion.
Physical Review Letters 78, 5018-5021.

30. Dormann, S., Deutsch, A., and Lawniczak, A. T. (2001) Fourier analysis of
Turing-like pattern formation in cellular automaton models. Future Generation
Computer Systems 17, 901-909.

31. Börner, U., Deutsch, A., Reichenbach, H., and Bär, M. (2002) Rippling patterns
in aggregates of myxobacteria arise from cell-cell collisions. Physical Review
Letters 89, 078101.

32. Zhdanov, V. P. and Kasemo, B. (2004) Simulation of the growth and
differentiation of stem cells on a heterogeneous scaffold. Physical Chemistry
Chemical Physics 6, 4347-4350.

33. Knewitz, M. A. and Mombach, J. C. (2006) Computer simulation of the influence
of cellular adhesion on the morphology of the interface between tissues of
proliferating and quiescent cells. Computers in Biology and Medicine 36, 59-69.

34. Marée, A. F. M. and Hogeweg, P. (2001) How amoeboids self-organize into a
fruiting body: Multicellular coordination in Dictyostelium discoideum.
Proceedings of the National Academy of Sciences of the USA 98, 3879-3883.

35. Marée, A. F. M. and Hogeweg, P. (2002) Modelling Dictyostelium discoideum
morphogenesis: the culmination. Bulletin of Mathematical Biology 64, 327-353.

36. Marée, A. F. M., Panfilov, A. V., and Hogeweg, P. (1999) Migration and
thermotaxis of Dictyostelium discoideum slugs, a model study. Journal of
Theoretical Biology 199, 297-309.

37. Savill, N. J. and Hogeweg, P. (1997) Modelling morphogenesis: From single cells
to crawling slugs. Journal of Theoretical Biology 184, 229-235.

38. Hogeweg, P. (2000) Evolving mechanisms of morphogenesis: on the interplay
between differential adhesion and cell differentiation. Journal of Theoretical
Biology 203, 317-333.

39. Johnston, D. A. (1998) Thin animals. Journal of Physics A 31, 9405-9417.
40. Groenenboom, M. A. and Hogeweg, P. (2002) Space and the persistence of male-

killing endosymbionts in insect populations. Proceedings in Biological Sciences
269, 2509-2518.

41. Groenenboom, M. A., Maree, A. F., and Hogeweg, P. (2005) The RNA silencing
pathway: the bits and pieces that matter. PLoS Computational Biology 1, 155-165.

42. Kesmir, C., van Noort, V., de Boer, R. J., and Hogeweg, P. (2003) Bioinformatic
analysis of functional differences between the immunoproteasome and the
constitutive proteasome. Immunogenetics 55, 437-449.

43. Pagie, L. and Hogeweg, P. (2000) Individual- and population-based diversity in
restriction-modification systems. Bulletin of Mathematical Biology 62, 759-774.

-120-

44. Silva, H. S. and Martins, M. L. (2003) A cellular automata model for cell
differentiation. Physica A 322, 555-566.

45. Zajac, M., Jones, G. L., and Glazier, J. A. (2000) Model of convergent extension
in animal morphogenesis. Physical Review Letters 85, 2022-2025.

46. Zajac, M., Jones, G. L., and Glazier, J. A. (2003) Simulating convergent extension
by way of anisotropic differential adhesion. Journal of Theoretical Biology 222,
247-259.

47. Savill, N. J. and Sherratt, J. A. (2003) Control of epidermal stem cell clusters by
Notch-mediated lateral induction. Developmental Biology 258, 141-153.

48. Mombach, J. C. M, de Almeida, R. M. C., Thomas, G. L., Upadhyaya, A., and
Glazier, J. A. (2001) Bursts and cavity formation in Hydra cells aggregates:
experiments and simulations. Physica A 297, 495-508.

49. Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B. and Sawada, Y. (2000)
Diffusion and deformations of single hydra cells in cellular aggregates.
Biophysical Journal 79, 1903-1914.

50. Mochizuki, A. (2002) Pattern formation of the cone mosaic in the zebrafish retina:
A cell rearrangement model. Journal of Theoretical Biology 215, 345-361.

51. Takesue, A., Mochizuki, A., and Iwasa, Y. (1998) Cell-differentiation rules that
generate regular mosaic patterns: Modelling motivated by cone mosaic formation
in fish retina. Journal of Theoretical Biology 194, 575-586.

52. Dallon, J., Sherratt, J., Maini, P. K., and Ferguson, M. (2000) Biological
implications of a discrete mathematical model for collagen deposition and
alignment in dermal wound repair. IMA Journal of Mathematics Applied in
Medicine and Biology 17, 379-393.

53. Maini, P. K., Olsen, L., and Sherratt, J. A. (2002) Mathematical models for
cell-matrix interactions during dermal wound healing. International Journal of
Bifurcations and Chaos 12, 2021-2029.

54. Kreft, J. U., Picioreanu, C., Wimpenny, J. W. T., and van Loosdrecht, M. C. M.
(2001) Individual-based modelling of biofilms. Microbiology 147, 2897-2912.

55. Picioreanu, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (2001) Two-
dimensional model of biofilm detachment caused by internal stress from liquid
flow. Biotechnology and Bioengineering 72, 205-218.

56. van Loosdrecht, M. C. M., Heijnen, J. J., Eberl, H., Kreft, J., and Picioreanu, C.
(2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek
International Journal of General and Molecular Microbiology 81, 245-256.

57. Popławski, N. J., Shirinifard, A., Swat, M., and Glazier, J. A. (2008) Simulations
of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg
model and the CompuCell3D modeling environment. Mathematical Biosciences
and Engineering 5, 355-388.

58. Chaturvedi, R., Huang, C., Izaguirre, J. A., Newman, S. A., Glazier, J. A., Alber,
M. S. (2004) A hybrid discrete-continuum model for 3-D skeletogenesis of the
vertebrate limb. Lecture Notes in Computer Science 3305, 543-552.

59. Popławski, N. J., Swat, M., Gens, J. S., and Glazier, J. A. (2007) Adhesion
between cells, diffusion of growth factors, and elasticity of the AER produce the
paddle shape of the chick limb. Physica A 373, 521-532.

60. Glazier, J. A. and Weaire, D. (1992) The Kinetics of Cellular Patterns. Journal of

-121-

Physics: Condensed Matter 4, 1867-1896.
61. Glazier, J. A. (1993) Grain Growth in Three Dimensions Depends on Grain

Topology. Physical Review Letters 70, 2170-2173.
62. Glazier, J. A., Grest, G. S., and Anderson, M. P. (1990) Ideal Two-Dimensional

Grain Growth. In Simulation and Theory of Evolving Microstructures, M. P.
Anderson and A. D. Rollett, editors. The Minerals, Metals and Materials Society,
Warrendale, PA, pp. 41-54.

63. Glazier, J. A., Anderson, M. P., and Grest, G. S. (1990) Coarsening in the Two-
Dimensional Soap Froth and the Large-Q Potts Model: A Detailed Comparison.
Philosophical Magazine B 62, 615-637.

64. Grest, G. S., Glazier, J. A., Anderson, M. P., Holm, E. A., and Srolovitz, D. J.
(1992) Coarsening in Two-Dimensional Soap Froths and the Large-Q Potts
Model. Materials Research Society Symposium 237, 101-112.

65. Jiang, Y. and Glazier, J. A. (1996) Extended Large-Q Potts Model Simulation of
Foam Drainage. Philosophical Magazine Letters 74, 119-128.

66. Jiang, Y., Levine, H., and Glazier, J. A. (1998) Possible Cooperation of
Differential Adhesion and Chemotaxis in Mound Formation of Dictyostelium.
Biophysical Journal 75, 2615-2625.

67. Jiang, Y., Mombach, J. C. M., and Glazier, J. A. (1995) Grain Growth from
Homogeneous Initial Conditions: Anomalous Grain Growth and Special Scaling
States. Physical Review E 52, 3333-3336.

68. Jiang, Y., Swart, P. J., Saxena, A., Asipauskas, M., and Glazier, J. A. (1999)
Hysteresis and Avalanches in Two-Dimensional Foam Rheology Simulations.
Physical Review E 59, 5819-5832.

69. Ling, S., Anderson, M. P., Grest, G. S., and Glazier, J. A. (1992) Comparison of
Soap Froth and Simulation of Large-Q Potts Model. Materials Science Forum 94-
96, 39-47.

70. Mombach, J. C. M. (2000) Universality of the threshold in the dynamics of
biological cell sorting. Physica A 276, 391-400.

71. Weaire, D. and Glazier, J. A. (1992) Modelling Grain Growth and Soap Froth
Coarsening: Past, Present and Future. Materials Science Forum 94-96, 27-39.

72. Weaire, D., Bolton, F., Molho, P., and Glazier, J. A. (1991) Investigation of an
Elementary Model for Magnetic Froth. Journal of Physics: Condensed Matter 3,
2101-2113.

73. Glazer, J. A., Balter, A., Popławski, N. (2007) Magnetization to Morphogenesis:
A Brief History of the Glazier-Graner-Hogeweg Model. In Single-Cell-Based
Models in Biology and Medicine. Anderson, A. R. A., Chaplain, M. A. J., and
Rejniak, K. A., editors. Birkhauser Verlag Basel, Switzerland. pp. 79-106.

74. Walther, T., Reinsch, H., Ostermann, K., Deutsch, A. and Bley, T. (2005)
Coordinated growth of yeast colonies: experimental and mathematical analysis of
possible regulatory mechanisms. Engineering Life Sciences 5, 115-133.

75. Keller, E. F. and Segel., L. A. (1971) Model for chemotaxis. Journal of
Theoretical Biology 30, 225-234.

76. Glazier, J. A. and Upadhyaya, A. (1998) First Steps Towards a Comprehensive
Model of Tissues, or: A Physicist Looks at Development. In Dynamical Networks
in Physics and Biology: At the Frontier of Physics and Biology, D. Beysens and

-122-

G. Forgacs editors. EDP Sciences/Springer Verlag, Berlin, pp. 149-160.
77. Glazier, J. A. and Graner, F. (1993) Simulation of the differential adhesion driven

rearrangement of biological cells. Physical Review E 47, 2128-2154.
78. Glazier, J. A. (1993) Cellular Patterns. Bussei Kenkyu 58, 608-612.
79. Glazier, J. A. (1996) Thermodynamics of Cell Sorting. Bussei Kenkyu 65, 691-

700.
80. Glazier, J. A., Raphael, R. C., Graner, F., and Sawada, Y. (1995) The Energetics

of Cell Sorting in Three Dimensions. In Interplay of Genetic and Physical
Processes in the Development of Biological Form, D. Beysens, G. Forgacs, F.
Gaill, editors. World Scientific Publishing Company, Singapore, pp. 54-66.

81. Graner, F. and Glazier, J. A. (1992) Simulation of biological cell sorting using a
2-dimensional extended Potts model. Physical Review Letters 69, 2013-2016.

82. Mombach, J. C. M and Glazier, J. A. (1996) Single Cell Motion in Aggregates of
Embryonic Cells. Physical Review Letters 76, 3032-3035.

83. Mombach, J. C. M., Glazier, J. A., Raphael, R. C., and Zajac, M. (1995)
Quantitative comparison between differential adhesion models and cell sorting in
the presence and absence of fluctuations. Physical Review Letters 75, 2244-2247.

84. Cipra, B. A. (1987) An Introduction to the Ising-Model. American Mathematical
Monthly 94, 937-959.

85. Metropolis, N., Rosenbluth, A., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953) Equation of state calculations by fast computing machines. Journal of
Chemical Physics 21, 1087-1092.

86. Forgacs, G. and Newman, S. A. (2005). Biological Physics of the Developing
Embryo. Cambridge Univ. Press, Cambridge.

87. Alber, M. S., Kiskowski, M. A., Glazier, J. A., and Jiang, Y. On cellular
automation approaches to modeling biological cells. In Mathematical Systems
Theory in Biology, Communication and Finance. J. Rosenthal, and D. S. Gilliam,
editors. Springer-Verlag, New York, pp. 1-40.

88. Alber, M. S., Jiang, Y., and Kiskowski, M. A. (2004) Lattice gas cellular
automation model for rippling and aggregation in myxobacteria. Physica D 191,
343-358.

89. Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. A., and Nasmyth,
K. (1999) Finishing the cell cycle. Journal of Theoretical Biology 199, 223-233.

90. Upadhyaya, A., Rieu, J. P., Glazier, J. A., and Sawada, Y. (2001) Anomalous
Diffusion in Two-Dimensional Hydra Cell Aggregates. Physica A 293, 549-558.

91. Cickovski, T., Aras, K., Alber, M. S., Izaguirre, J. A., Swat, M., Glazier, J. A.,
Merks, R. M. H., Glimm, T., Hentschel, H. G. E., Newman, S. A. (2007) From
genes to organisms via the cell: a problem-solving environment for multicellular
development. Computers in Science and Engineering 9, 50-60.

92. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas,
G., Forgacs, G., Alber, M., Hentschel, G., Newman, S. A., and Glazier, J. A.
(2004) CompuCell, a multi-model framework for simulation of morphogenesis.
Bioinformatics 20, 1129-1137.

93. Armstrong, P. B. and Armstrong, M. T. (1984) A role for fibronectin in cell
sorting out. Journal of Cell Science 69, 179-197.

94. Armstrong, P. B. and Parenti, D. (1972) Cell sorting in the presence of

-123-

cytochalasin B. Journal of Cell Science 55, 542-553.
95. Glazier, J. A. and Graner, F. (1993) Simulation of the differential adhesion driven

rearrangement of biological cells. Physical Review E 47, 2128-2154.
96. Glazier, J. A. and Graner, F. (1992) Simulation of biological cell sorting using a

two-dimensional extended Potts model. Physical Review Letters 69, 2013-2016.
97. Ward, P. A., Lepow, I. H., and Newman, L. J. (1968) Bacterial factors

chemotactic for polymorphonuclear leukocytes. American Journal of Pathology
52, 725-736.

98. Lutz, M. (1999) Learning Python. Sebastopol, CA: O’Reilly & Associates, Inc.
99. Balter, A. I., Glazier, J. A., and Perry, R. (2008) Probing soap-film friction with

two-phase foam flow. Philosophical Magazine, submitted.
100. Dvorak, P., Dvorakova, D., and Hampl, A. (2006) Fibroblast growth factor

signaling in embryonic and cancer stem cells. FEBS Letters 580, 2869-2287.

-124-

Appendix	

1. Calculating Inertia Tensor in CompuCell3D.

For each cell the inertia tensor is defined as follows:

2 2

2 2

2 2

i i i i i i
i i i

i i i i i i
i i i

i i i i i i
i i i

y z x y x z

I x y x z y z

x z y z x y

where index 'i' denotes i-th pixel of a given cell and xi, yi,zi are coordinates of that pixel in
a given coordinate frame.
where index 'i' denotes i-th pixel of a given cell and xi, yi,zi are coordinates of that pixel in
a given coordinate frame.

In Figure 21 we show one possible
coordinate frame in which one can
calculate inertia tensor. If the coordinate
frame is fixed calculating components of
inertia tensor for cell gaining or losing
one pixel is quite easy. We will be adding
and subtracting terms like 2 2

i iy z or i ix y .

However, in CompuCell3D we are mostly
interested in knowing tensor of inertia of a
cell with respect to xyz coordinate frame
with origin at the center of mass (COM)
of a given cell as shown in Fig 21. Now,
to calculate such tensor we cannot simply

add or subtract terms like 2 2
i iy z or i ix y to

account for lost or gained pixel. If a cell gains
or loses a pixel its COM coordinates change.
If so then all the xi, yi,zi coordinates that
appear in the inertia tensor expression will
have different value. Thus for each change in
cell shape (gain or loss of pixel) we would
have to recalculate inertia tensor from scratch.
This would be quite time consuming and
would require us to keep track of all the pixels
belonging to a given cell. It turns out however
that there is a better way of keeping track of
inertia tensor for cells. We will be using

x

y

xi

yi

Figure 21. Cell and its coordinate frame in
which we calculate inertia tensor

x

y

xi

yi

Figure 22. Cell and coordinate system
passing through center of mass of a
cell. Notice that as cell changes shape
the position of center of mass moves.

-125-

parallel axis theorem to do the calculations. Paralel axis theorem states that if ICOM is a
moment of inertia with respect to axis passing through center of mass then we can
calculate moment of inertia with respect to any parallel axis to the one passin through the
COM by using the following formula:

2
' 'x x xxI I Md

where xxI denotes moment of inertia with respect to x axis passing through center of

mass, ' 'x xI is a moment of inertia with respect to axis parallel to the x axis passing through

center of mass, d is the distance between the axes and M is mass of the cell.

Let us now draw a picture of a cell gaining one pixel:

Now using parallel axis theorem we can write expression for the moment of inertia after
cell gains one pixel the following that:

2
' ' (1)new new

xx x x newI I V d

where as before new
xxI denotes moment of inertia of a cell with new pixel with respect to x

axis passing through center of mass, ' '
new

x xI is a moment of inertia with respect to axis

parallel to the x axis passing through center of mass, dnew is the distance between the axes
and V+1 is volume of the cell after it gained one pixel. Now let us rewrite above equation
by adding ad subtracting Vd2 term:

x

y

xn+1

yn+1

Figure 23. Cell gaining one pixel.d denotes
a distance from origin of a fixed fram of
reference to a center of mass of a cell
before cell gains new pixel. dnew denotes
same distance but after cell gains new pixel

d dnew

-126-

2 2 2 2 2
' ' 1 1

2 2 2 2 2
' ' 1 1

2 2 2 2
1 1

(1)

(1)

(1)

new old
xx x x n n new

old
x x new n n

old
xx new n n

I I y z Vd Vd V d

I Vd Vd V d y z

I Vd V d y z

Therefore we have found an expression for moment of inertia passing through the center
of mass of the cell with additional pixel. Note that this expression involves moment of
inertia but for the old cell (i.e. the original cell, not the one with extra pixel). When we
add new pixel we know its coordinates and we can also easily calculate dnew .Thus when
we need to calculate the moment of intertia for new cell instead of performing summation
as given in the definition of the inertia tensor we can use much simpler expression.
This was diagonal term of the inertia tensor. What about off-diagonal terms? Let us write
explicitely expression for Ixy :

()() 1
N N N N N

xy i COM i COM i i COM i COM i COM COM
i i i i i

N

i i COM COM COM COM COM COM
i

N

i i COM COM
i

I x x y y x y x y y x x y

x y x Vy y Vx x y V

x y Vx y

where COMx denotes x COM position of the cell, similarly COMy denotes y COM position

of cell and V denotes cell volume. In the above formula we have used the fact that

i
i

COM i COM
i

x
x x x V

V

 and similarly for the y coordinate.

Now, for the new cell with additional pixel we have the following relation:
1

1 1

1 1

(1)

(1)

(1)

N
new new new

xy i i COM COM
i

N
new new

i i COM COM COM COM COM COM N N
i

old new new
xy COM COM COM COM N N

I x y V x y

x y Vx y x Vy V x y x y

I Vx y V x y x y

where we have added and subtracted COM COMVx y to be able to form
N

old
xy i i COM COM

i

I x y Vx y on the right hand side of the expression for new
xyI . As it was

the case for diagonal element, calculating off-diagonal of the inertia tensor involves old
xyI

and positions of center of mass of the cell before and after gaining new pixel. All those
quantities are either known a priori (old

xyI) or can be easily calculated (center of mass

position after gaining one pixel).
Therefore we have shown how we can calculate tensor of inertia for a given cell with
respect to a coordinate frame with origin at cell's center of mass, without evaluating full
sums. Such "local" calculations greatly speed up simulations

-127-

2.Calculating shape constraint of a cell – elongation term

The shape of single cell immersed in medium and not subject to too drastic surface or
surface constraints will be spherical (circular in 2D). However in certain situation we
may want to use cells which are elongated along one of their body axes. To facilitate this
we can place constraint on principal lengths of cell. In 2D it is sufficient to constrain one
of the principal lenghths of cell how ever in 3D we need to constrain 2 out of 3 principal
lengths. Our first task is to diagonalize inertia tensor (i.e. find a coordinate frame
transformation which brings inertia tensor to a giagonal form)

2.1. Diagonalizing inertia tensor

We will consider here more difficult 3D case. The 2D case is described in detail in
M.Zajac, G.L.jones, J,A,Glazier "Simulating convergent extension by way of anisotropic
differential adhesion" Journal of Theoretical Biology 222 (2003) 247–259.

In order to diagonalize inertia tensor we need to solve eigenvalue equation:
det() 0I or in full form

2 2

2 2

2 2

0

i i i i i i
i i i xx xy xz

i i i i i i xy yy yz
i i i

xz yz zz
i i i i i i

i i i

y z x y x z
I I I

x y x z y z I I I

I I I
x z y z x y

The eigenvalue equation will be in the form of 3rd order polynomial. The roots of it are
guaranteed to be real. The polynomial itself can be found either by explicit derivation,
using symbolic calculation or simply in Wikipedia (
http://en.wikipedia.org/wiki/Eigenvalue_algorithm)

so in our case the eigenvalue equation takes the form:

3 2 2 2 2

2 2 2

(I I I) (I +I I I I I I I I)

I I I I I I I I I 2I I I 0

xx yy zz xy yz xz xx yy yy zz xx zz

xx yy zz xx yz yy xz zz xy xy yz xz

L L L

This equation can be solved analytically, again we may use Wikipedia (
http://en.wikipedia.org/wiki/Cubic_function)
Now, the eigenvalues found that way are principal moments of inertia of a cell. That is
they are components of inertia tensor in a coordinate frame rotated in such a way that off-
diagonal elements of inertia tensor are 0:

-128-

0 0

0 0

0 0

xx

yy

zz

I

I I

I

In our cell shape constraint we will want to obtain ellipsoidal cells. Therefore the target
tensor of inertia for the cell should be tensor if inertia for ellipsoid:

2 2

2 2

2 2

1
0 0

5
1

0 0
5

1
0 0

5

b c

I a c

a b

where a,b,c are parameters describing the surface of an ellipsoid:
2 2 2

2 2 2
1

x y z

a b c

In other words a,b,c are half lengths of principal axes (they are analogues of circle's
radius)
Now we can determine semi axes lengths in terms of principal moments of inertia by
inverting the following set of equations:

2 2

2 2

2 2

1

5
1

5
1

5

xx

yy

zz

I b c

I a c

I a b

Once we have calculated semiaxes lengths in terms of moments of inertia we can plug –
in actual numbers for moment of inertia (the ones for actual cell) and obtain lengths of
semiexes. Next we apply quadratic constraint on largest (semimajor) and smallest
(seminimor axes). This is what elongation plugin does.

3 Forward Euler method for solving PDE's in CompuCell3D.

In CompuCell3D most of the solvers uses explicit schemes (Forward Euler method) to
obtain PDE solutions. Thus for the diffusion equation we have:

2 2 2

2 2 2

c c c c

t x y z

In a discretetized form we may write:

-129-

2

2

2

(,) (,) (,) 2 (,) (,)

(,) 2 (,) (,)

(,) 2 (,) (,)

c x t t c x t c x x t c x t c x x t

t x
c y y t c x t c y y t

y

c z z t c z t c z z t

z

where to save space we used shorthand notation:
(, , ,) (,)

(, , ,) (,)

c x x y z t c x x t

c x y z t c x t

and similarly for other coordinates.
After rearranging terms we get the following expression:

 2
(,) (,) (,) (,)

i neighbors

t
c x t t c i t c x t c x t

x

where the sum over index 'i' goes over neighbors of point (x,y,z) and the neighbors will
have the following concentrations: (,)c x x t , (,)c y y t ,…, (,)c z z t .

4. Calculating center of mass when using periodic boundary
conditions.

When you are running calculation with periodic boundary condition you may end up with

situation like in the figure below:

Clearly what happens is that simply connected cell is
wrapped around the lattice edge so part of it is in the
region of high values of x coordinate and the other is
in the region where x coordinates have low values.
Consequently a naïve calculation of center of mass
position according to :

i
i

COM

x
x

V

would result in COMx being somewhere in the middle

of the lattice and abviously outside the cell.A better
procedure could be as follows: Before calculating
center of mass when new pixel is added or lost we

"shift" a cell and new pixel (gained or lost)to the middle of the lattice do calculations "in
the middle of the lattice" and shift back. Now if after shifting back it turns out that center
of mass of a cell lies outside lattice position it in the center of mass by applygin a shift
equal to the length of the lattice and whose direction should be such that the center of
mass of the cell ends up inside the lattice (there is only one such shift and it might be be
equal to zero vector).

Figure 24. A connected cell in the
lattice edge area – periodic
boundary conditions are applied

x

y

-130-

This is how we do it using mathematical formulas:

COMs x c

First we define shift vector s

as a vector difference between vector pointing to center of
mass of the lattice and vector pointing to (approximately) the middle of the lattice.
Next we shift cell to the middle of the lattice using :

COM COMx x s

where COMx

denotes center of mass position of a cell after shifting but before adding or

subtracting a pixel.
Next we take into account the new pixel (either gained or lost) and calculate center of
mass position (for the shifted cell):

1
new COM i

COM

x V x
x

V

Above we have assumed that we are adding one pixel.
Now all that we need to do is to shift back new

COMx

by same vector s

that brought cell to

(approximately) center of the lattice.
new new

COM COMx x s

We are almost done. We still have to check if new
COMx

is inside the lattice. If this is not the

case we need to shift it back to the lattice but now we are allowed to use only a vector
whose components are multiples of lattice dimensions (and we can safely restrict to +1
and -1 multiples of the lattice dimmensions) . For example we may have:

max max(, ,0)P x y

 where maxx , maxy , maxz are dimensions of the lattice.

There is no cheating here. In the lattice with periodic boundary conditions you are
allowed to shift point coordinates a vector whose components are multiples of lattice
dimensions.

All we need to do is to examine new center of mass position and form suitable vector P

.

5. Dividing cluster cells

While dividing non-clustered cells is straightforward, doing the same for clustered cells is
more challenging. To divide non-cluster cell using directional mitosis algorithm we
construct a line or a plane passing through center of mass of a cell and pixels of the cell
(we are using PixelTracker plugin with mitosis) on one side of the line/plane end up in
child cell and the rest stays in parent cell. The orientation of the line/plane can be either
specified by the user or we can use CC3D built-in feature to calculate calculate
orientation tion of principal axes and divide either along minor or major axis.

With compartmental cells, things get more complicated because: 1) Compartmental cells
are composed of many subcells. 2) There can be different topologies of clusters. Some
clusters may look “snake-like” and some might be compactly packed blobs of subcells.
The algorithm which we implemented in CC3D works in the following way:

1) We first construct a set of pixels containing every pixel belonging to a cluster cell.
You may think of it as of a single “regular” cell.

-131-

2) We store volumes of compartments so that we know how big compartments shold
be after mitosis (they will be half of original volume)

3) We calculate center of mass of entire cluster and calculate vector offsets between
center of mass of a cluster and center of mass of particulat compartments as on
the figure below:

Figure 25. Vectors 1o

 and 2o

 show offsets between center of mass of a cluster and center

of mass particular compartments.

4) We pick division line/plane and for parents and child cells we offsets between

cluster center of mass (after mitosis) and center of masses of clusters. We do it
according to the formula:

 nnoop

2

1

where p

denotes offset after mitosis from center of mass of child (parent)
clusters, o

is orientation vector before mitosis (see picture above) and n

is a

normalized vector perpendicular to division line/plane. If we try to divide the
cluster along dashed line as on the picture below

Figure 26. Division of cell along dashed line. Notice the orientation of n

the offsets after the mitosis for child and parent cell will be 11 2

1
op

 and 22 op

 as

expected because both parent and child cells will retain their heights but after mitosis
will become twice narrower (cell with grey outer compartments is a parent cell):

-132-

Figure 27. Child and parent (the one with grey outer compartments) cells after
mitosis.
The formula given above is heuristic. It gives fairly simple way of assigning pixels of
child/parent clusters to cellular compartments. It is not perfect but the idea is to get
approximate shape of the cell after the mitosis and as simulation runs cell shape will
readjust based on constraints such as adhesion of focal point plasticity. Before
continuing with the mitosis we check if center of masses of compartments belong to
child/parent clusters. If the center of masses are outside their target pixels we abandon
mitosis and wait for readjustment of cell shape at which point mitosis algorithm will
pass this sanity check. For certain “exotic” shapes of cluster shapes presented mitosis
algorithm may not work well or at all . In this case we would have to write
specialized mitosis algorithm.
5) We divide clusters and knowing offsets from child/parent cluster center of mass

we assign pixels to particular compartments. The assignment is based on the
distance of particular pixel to center of masses of clusters. Pixel is assigned to
particular compartment if its distance to the center of mass of the compartment is
the smallest as compared to distances between centroids of other compartments. If
given compartment has reached its target volume and other compartmets are
underpopulated we would assign pixels to other compartments based on the
closest distance criterion. Altohugh this method may result in some deviation
from perfect 50-50 division of compartment volume in most cases after few MCS
cells will readjust their volume.

Figure 28. CC3D example of compartmental cell division. See also
examples_PythonTutorial/clusterMitosis.

7. Command line options of CompuCell3D
Although most users run CC3D using Player GUI sometimes it is very convenient to run
CC3D using command line options. CC3D allows to invoke Player directly from
command line which is convenient because if saves several clicks and if you run many
simulations this might be quite convenient.

Remark: On Windows we use .bat extension for run scripts and on Linux/OSX it is .sh.
Otherwise all the material in this section applies to all the platforms.

7.1. CompuCell3D Player Command Line Options

The command line options for running simulation with the player are as follows:

-133-

compucell3d.bat [options]

Options are:

-i <simulation file> - users specify simulation file they want to run. It can be either
CC3DML (XML) configuration file or Python script.

-s <screenshotDescriptionFileName> - name of the file containing description of
screenshots to be taken with the simulation. Usually this file is prepared using Player by
switching to different views, clickin camera button and saving screenshot description file
from the Player File menu.

-o <customScreenshotDirectoryName> - allows users to specify where screenshots
will be written. Overrides default settings.

--noOutput - instructs CC3D not to store any screenshots. Overrides Player settings.

--exitWhenDone - instructs CC3D to exit at the end of simulation. Overrides Player
settings.

-h, --help - prints command line usage on the screen

Example command may look like:

compucell3d.bat –i Demos\cellsort_2D\cellsort_2D.xml –s
screenshotDescription.sdfml –o Demos\cellsort_2D\screenshot

The frequency of the screenshots is read using Player settings so if you need to adjust it
please use either GUI directly or change it using PlayerSettings plugin (see example
Demos\cellsort_2D\cellsort_2D_PlayerSettings.xml)

7.2. Runnig CompuCell3D in a GUI-Less Mode - Command Line
Options.

Sometimes when you want to run CC3D on a cluster you will have to use runScript.bat
which allows running CC3D simulations without invoking GUI. However, all the
screenshots will be still stored.
Remark: current version of this script does not handle properly relative paths so it has to
be run from the installation directory of CC3D i.e. you have to cd into this directory prior
to runnit runScript.bat. Another solution is to use full paths.

The output of this script is in the form of vtk files which can be subsequently replayed in
the Player (and one can take screenshots then). By default all fields present in the
simulation are stored in the vtk file. If users want to remove some of the fields fro mbeing
stored in the vtk format they have to pass this information in the Python script:

-134-

CompuCellSetup.doNotOutputField(_fieldName)

The best place to put such stetements is directly before steppable section in the Python
main script. See also commented line (and try uncommenting it) in
examples_PythonTutorial\ diffusion_extra_player_field\
diffusion_2D_extra_player_field.py.
Storing entire fields (as opposed to storing screenshots) preserves exact snapshots of the
simulation and allows result postprocessing. In addition to the vtk files runScript stores
lattice description file with .dml extension which users open in the Player (File->Open
Lattice Description Summary File…) if they want to reply generated vtk files.

The format of the command is:

runScript.bat [options]

The command line options for runScript.bat are as follows:

-i <simulation file> - users specify simulation file they want to run. It can be either
CC3DML (XML) configuration file or Python script. Remember about using full paths if
you run the script from directory different than
-c <outputFileCoreName> - allows users to specify core name for the vtk files. The
default name for vtk files is “Step”

-o <customVtkDirectoryName> - allows users to specify where vtk files and the .dml
file will be written. Overrides default settings

-f <frequency> or –outputFrequency=<frequency> - allows to specify how often
vtk files are stored to the disk. Those files tend to be quite large for bigger simulations so
storing them every single MCS (default setting) slows down simulation considerably and
also uses a lot of disk space.

--noOutput - instructs CC3D not to store any output. This option makes little sense in
most cases.

-h, --help - prints command line usage on the screen

Example command may look as follows:

runScript.bat –i examples_PythonTutorial\cellsort_2D_info_printer\
cellsort_2D_info_printer.py –f 10
–o examples_PythonTutorial\cellsort_2D_info_printer\screenshots
–c infoPrinter

-135-

8. Managing CompuCell3D simulations (CC3D project files)
Until version 3.6.0 CompuCell3D simulations were stored as a combination of Python,
XML, and PIF files. This solution was working fine but there were significant problems
with keeping track of simulations files. We still support this convention. However,
starting with version 3.6.0 we introduced new way of managing CC3D simulations by
enforcing that a single CC3D simulation is stored in a folder containing .cc3d project file
describing simulation resources (.cc3d is in fact XML), such as XML configuration file,
Python scripts, PIF files, Concentration filets etc… and a directory called Simulation
where all the resources reside. The structure of the new-style CC3D simulation is
presented in the diagram below:

->CellsortDemo

CellsortDemo.cc3d
 ->Simulation
 Cellsort.xml
 Cellsort.py
 CellsortSteppables.py
 Cellsort.piff
 FGF.txt
Bold fonts denote folders. The benefit of using CC3D project files instead of loosely
related files are as follows:

1) Previously users had to guess which file needs to be open in CC3D – XML or
Python. While in a well written simulation one can link the files together in a way
that when user opens either one the simulation would work but, nevertheless, such
approach was clumsy and unreliable. Starting with 3.6.0 users open .cc3d file and
they don’t have to stress out that CompUCell3D will complain with error
message.

2) All the files specified in the .cc3d project files are copied to the result output
directory along with simulation results (uncles you explicitely specify otherwise).
Thus, when you run multiple simulations each one with different parameters, the
copies of all XML and Python files are stored eliminating guessing which
parameters were associated with particular simulations.

3) All file paths appearing in the simulation files are relative paths with respect to
main simulation folder. This makes simulations portable because all simulation
resources are contained withing single folder. In the example above when
referring to Cellsort.piff file from Cellsort.xml you use “Simulation/
Cellsort.piff”. This effectively eliminates drawbacks of previous approach – when
user one stores his simulations in Demos/cellsort and gives this simulation to his
colleague who stores simulation in MySimulations/cellsort then second user will
most likely see error message informing him that file
“Demos/cellsort/cellsort.piff” was not found (I assume here that initial condition
is specified using cellsort.piff). With approach based on relative paths such
problems do not exist. Second user can put the simulation anywhere he wants and
it will run just fine.

-136-

4) New style of storing CC3D simulations has also another advantage – it makes
graphical management of simulation content and simulation generation very easy.
As amatetr of fact new component of CC3D suite – Twedit++ - CC3D edition has
a graphical tool that allows for easy project file management and it also has new
simulation wizadrd which allows users to build template of CC3D simulation
within less than a minute.

Let’s now look in detail at the structure of .cc3d files:

<Simulation version="3.6.0">
 <XMLScript>Simulation/Cellsort.xml</XMLScript>
 <PythonScript>Simulation/Cellsort.py</PythonScript>
 <Resource Type="Python">Simulation/CellsortSteppables.py</Resource>
 <PIFFile>Simulation/Cellsort.piff</PIFFile>
 <Resource Type="Field" Copy="No">Simulation/FGF.txt</Resource>
</Simulation>

As you can see the structure of the file is quite flat. All that we are storing there is names
of files that are used in the simulation. Two files have special tags <XMLFile> which
specifies name of the XML file storing “XML portion” of the simulation and
<PythonScript> which specifies main Python script. We have also PIFFile tag which is
used to designate PIF files. All other files used in the simulation are referred to as
Resources. For example Python steppable file is a resource of type “Python”. FGF.txt is
aresource of type “Field”. Notice that all the files are specified using paths relative to
main simulation directory.
As we mentioned before, when you run .cc3d simulation all the files listed in the project
file are copied to result folder. If for somereason oyu want to avoid coping of some of the
files, simply add Copy=”No” attribute in the tag with file name specification.

9. Keeping Track of Simulation Files (deprecated)
CompuCell3D will store screenshots, vtk lattice snapshots and CC3DML file/Python
main script in the output directory. However often simulations consist of several files:
CC3DML, Python main script, Python steppable script, Python plugin script, PIF files
etc. If you want those files to be archived with the rest of simulation output you need to
use SimulationFileStorage steppable declared in PySteppablesExamples.py.

The usage is very simple (see also
examples_PythonTutorial\cellsort_2D_info_printer\cellsort_2D_info_printer.py):

from PySteppablesExamples import SimulationFileStorage
sfs=SimulationFileStorage(_simulator=sim,_frequency=10)
sfs.addFileNameToStore("\
examples_PythonTutorial/cellsort_2D_info_printer/cellsort_2D.xml")
sfs.addFileNameToStore("\
examples_PythonTutorial/cellsort_2D_info_printer/cellsort_2D_info_printer.py")
sfs.addFileNameToStore("examples_PythonTutorial/cellsort_2D_info_printer\
/cellsort_2D_steppables_info_printer.py")

-137-

steppableRegistry.registerSteppable(sfs)

It wil ensure that files listed here will be writte to simulation directory. This way if you
keep changing simulation files you will be able to easily recover entire simulation at

